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Abstract

We define admissible quasi-Hopf quantized universal enveloping (QHQUE) algebras by

_-adic valuation conditions. We show that any QHQUE algebra is twist-equivalent to an

admissible one. We prove a related statement: any associator is twist-equivalent to a Lie

associator. We attach a quantized formal series algebra to each admissible QHQUE algebra

and study the resulting Poisson algebras.

r 2003 Elsevier Inc. All rights reserved.

0. Introduction

In [WX], Weinstein and Xu introduced a geometric counterpart of the R-matrix of
a quasi-triangular quantum group: they proved that if ðg; rÞ is a finite dimensional
quasi-triangular Lie bialgebra, then the dual group G� is equipped with a braiding

RWXAAutððG�Þ2Þ with properties analogous to those of quantum R-matrices (in
particular, it is a set-theoretic solution of the quantum Yang–Baxter Equation). An
explicit relation to the theory of quantum groups was later given in [GH,EH,EGH]:
to a quasi-triangular QUE algebra ðU_ðgÞ;m;RÞ quantizing ðg; rÞ; one associates

its quantized formal series algebra (QFSA) U_ðgÞ0CU_ðgÞ; U_ðgÞ0 is a flat deforma-

tion of the Hopf–Poisson algebra OG� ¼ ðUðg�ÞÞ� of formal functions of G�: Then

one proves that AdðRÞ preserves U_ðgÞ0
%#2; and AdðRÞj_¼0 coincides with the
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automorphism RWX of O
%#2

G� ; moreover, r ¼ _ logðRÞj_¼0 is a function of O
%#2

G� ;

independent of a quantization of g�; which may be expressed universally in terms of
r; and RWX coincides with the ‘‘time one automorphism’’ of the Hamiltonian vector
field generated by r:
In this paper, we study the analogous problem in the case of quasi-quantum

groups (quasi-Hopf QUE algebras). The classical limit of a QHQUE algebra is a Lie
quasi-bialgebra (LQBA). V. Drinfeld proposed to attach Poisson–Lie ‘‘quasi-
groups’’ to each LQBA ([Dr4]). Axioms for Poisson–Lie quasi-groups are the quasi-
Hopf analogues of the Weinstein–Xu axioms.
A Poisson–Lie quasi-group is a Poisson manifold X ; together with a ‘‘product’’

Poisson map X 2 �!mX
X ; a unit for this product eAX ; and Poisson automorphisms

FXAAutðX 3Þ; F12;3;4
X ; F1;23;4

X and F1;2;34
X AAutðX 4Þ; such that

mX 3 ðid� mX Þ ¼ mX 3 ðmX � idÞ 3FX ;

ðmX � id� idÞ 3F12;3;4
X ¼ FX 3 ðmX � id� idÞ;

ðid� mX � idÞ 3F1;23;4
X ¼ FX 3 ðid� mX � idÞ; etc:

and F1;2;34
X 3F12;3;4

X ¼ ðid� FX Þ 3F1;23;4
X 3 ðFX � idÞ:

A twistor for the quasi-group ðX ;mX ;FX Þ is a collection of Poisson automorphisms

FXAAutðX 2Þ; F
12;3
X ; F

1;23
X AAutðX 3Þ; F

ð12Þ3;4
X ; F

1ð23Þ;4
X ; F

12;34
X ; F

1ð23Þ;4
X ; F

1;ð23Þ4
X A

AutðX 4Þ such that

ðmX � idÞ 3 F
12;3
X ¼ FX 3 ðmX � idÞ;

ððmX 3 ðid� mX ÞÞ � idÞ 3 F
1ð23Þ;4
X ¼ FX 3 ððmX 3 ðid� mX ÞÞ � idÞ;

F
ð12Þ3;4
X ¼ ðFX � idÞ 3 F

1ð23Þ;4
X 3 ðFX � idÞ	1; etc:

A twistor replaces the quasi-group ðX ;mX ;FX Þ by ðX ;m0
X ;F

0
X Þ with m0

X ¼ mX 3 FX

and F0
X ¼ ðF1;23

X Þ	1 3 ðFX � idÞ	1 3FX 3 F 1;23
X 3 ðid� FX Þ:

It is useful to further require that the automorphisms FX ; FX are given by

Lagrangian bisections of a Karasev–Weinstein groupoid associated with X 3;X 2:
Other axioms for Poisson–Lie quasi-groups were proposed in a differential-
geometric language in [Ban,KS].
We do not know a ‘‘geometric’’ construction of a twist-equivalence class of

ðX ;mX ;FX Þ associated to each Lie quasi-bialgebra, in the spirit of [WX]. Instead we
generalize the ‘‘construction of a QFS algebra and passage to Poisson geometry’’
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part of the above discussion, and we derive from there a construction of triples
ðX ;mX ;FX Þ; in the case of Lie quasi-bialgebras with vanishing cobracket.
Let us describe the generalization of the ‘‘construction of a QFS algebra’’ part

(precise statements are in Section 1). We introduce the notion of an admissible quasi-
Hopf QUE algebra, and we associate a QFSA to such a QHQUE algebra. Each
QHQUE algebra can be made admissible after a suitable twist.
We generalize the ‘‘passage to Poisson geometry’’ part as follows. The reduction

modulo _ of the obtained QFS algebra is a quintuple ðA;m;P;D; *jÞ satisfying certain
axioms; in particular expðV *jÞ is an automorphism of A

b##3; and ðA;m; expðV *jÞÞ
satisfies the axioms dual to those of ðX ;mX ;FX Þ:
When the Lie quasi-bialgebra arises from a metrized Lie algebra, admissible

QHQUE algebras quantizing it are given by Lie associators, and we obtain a quasi-
group ðX ;mX ;FX Þ using our construction. We also prove that its twist-equivalence
class does not depend on the choice of an associator.
Finally, we prove a related result: any associator is twist-equivalent to a unique

Lie associator.

1. Outline of results

Let K be a field of characteristic 0: Let ðU ;mÞ be a topologically free K½½_��-
algebra equipped with algebra morphisms

D : U-Uc##U ; and e : U-K½½_��

with ðe#idÞ 3 D ¼ ðid#eÞ 3 D ¼ id

such that the reduction of ðU ;m;DÞ modulo _ is a universal enveloping algebra. Set

U 0 ¼ fxAU j for any tree P; dðPÞðxÞA_jPjU
b##jPjg

(see the definitions of a tree, dðPÞ; and jPj in Section 2). We prove:

Theorem 1.1. U 0 is a topologically free K½½_��-algebra. It is equipped with a complete

decreasing algebra filtration

ðU 0ÞðnÞ ¼ fxAU j for any tree P; dðPÞðxÞA_nU
b##jPjg:

U 0 is stable under the multiplication m and the map D : U-U
b##2 induces a continuous

algebra morphism

DU 0 : U 0-U 0 %#2 ¼ lim
’
n

U 0b##2
X

p;qjpþq¼n

U 0ðpÞ#U 0ðqÞ

,0@ 1A:
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Set O :¼ U 0=_U 0: Then O is a complete commutative local ring and the reduction

modulo _ of DU 0 is a continuous ring morphism

DO : O-O
%#2 ¼ lim

’F
n

O#2
X

p;qjpþq¼n

OðpÞ#OðqÞ

,0@ 1A;

where OðpÞ ¼ U 0ðpÞ=ð_U-U 0ðpÞÞ:

Theorem 1.2. Let ðU ;m;D;FÞ be a quasi-Hopf QUE algebra. Let g be the Lie algebra

of primitive elements of U=_U ; so U=_U ¼ UðgÞ: Assume that

_ logðFÞAðU 0Þ %#3: ð1:1Þ

Then there is a noncanonical isomorphism of filtered algebras U 0=_U 0-bSS�ðgÞ; wherebSS�ðgÞ is the formal series completion of the symmetric algebra S�ðgÞ:

When ðU ;m;D;FÞ satisfies the hypothesis (1.1), we say that it is admissible.
In that case, we say that U 0 is the quantized formal series algebra (QFSA)
corresponding to ðU ;m;D;FÞ: Let us recall the notion of a twist of a quasi-

Hopf QUE algebra ðU ;m;D;FÞ: This is an element FAðU b##2Þ�; such that
ðe#idÞðFÞ ¼ ðid#eÞðFÞ ¼ 1: It transforms ðU ;m;D;FÞ into the quasi-Hopf algebra
ðU ;m; FD; FFÞ; where

FD ¼ AdðFÞ 3 D; and FF ¼ ð1#FÞðid#DÞðFÞFðD#idÞðFÞ	1ðF#1Þ	1:

Theorem 1.3.

(1) Let ðU ;m;D;FÞ be an admissible quasi-Hopf QUE algebra. Let us say that a twist

F of U is admissible if _ logðFÞAU 0 %#2: Then the twisted quasi–Hopf algebra

ðU ;m; FD; FFÞ is also admissible, and its QFSA coincides with U 0:
(2) Let ðU ;m;D;FÞ be an arbitrary quasi-Hopf QUE algebra. There exists a twist F0

of U such that the twisted quasi–Hopf algebra ðU ;m; F0D; F0FÞ is admissible.

Theorem 1.3 can be interpreted as follows. Let ðU ;mÞ be a formal deformation of

a universal enveloping algebra. The set of twists of U is a subgroup T of ðU b##2Þ�:
Denote by Q the set of all quasi-Hopf structures on ðU ;mÞ; and by Qadm the subset of
admissible structures. If Q is nonempty, then Qadm is also nonempty, and all its
elements give rise to the same subalgebra U 0CU (Theorem 1.3, (1)). Using U 0; we
then define the subgroupTadmCT of admissible twists. We have a natural action of
T on Q; which restricts to an action of Tadm on Qadm: Theorem 1.3 (2) says that the
natural map

Qadm=Tadm-Q=T
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is surjective. Let us explain why it is not injective in general. Any QUE Hopf algebra

ðU ;m;DÞ is admissible as a quasi-Hopf algebra. If uAU� and F ¼ ðu#uÞDðuÞ	1;
then ðU ;m; FDÞ is a Hopf algebra. So ðU ;m;DÞ and ðU ;m; FDÞ are in the same class
of Q=T: These are also two elements of Qadm; the corresponding QFS algebras are
U 0 and AdðuÞðU 0Þ: In general, these algebras do not coincide, so ðU ;m;DÞ and

ðU ;m; FDÞ are not in the same class of Qadm=Tadm:
The following result is a refinement of Proposition 3.10 of [Dr2]. Let ðg;m;jÞ be a

pair of a Lie algebra ðg; mÞ and jA
V3ðgÞg: Then ðg; d ¼ 0;jÞ is a Lie bialgebra.

Proposition 1.4. There exists a series EðjÞAUðgÞ#3½½_��; expressed in terms of ðm;jÞ
by universal acyclic expressions, such that ðUðgÞ½½_��;m0;D0;EðjÞÞ is an admissible

quantization of ðg; m; d ¼ 0;jÞ:

This proposition is proved in Section 6.
Recall that the main axioms for a quasi-Hopf algebra ðA;m;D;FÞ are that (a) F

measures the noncoassociativity of D; and (b) F satisfies the pentagon equation. By
analogy, we set:

Definition 1.5. A quasi-Hopf Poisson algebra is a quintuple ðA;m0;P;D; *jÞ; where
* ðA;m0Þ is a formal series algebra,
* P is a Poisson structure on A ‘‘vanishing at the origin’’ (i.e., such that ðPÞCmA;

where mA is the maximal ideal of A),

* D : A-Ac##A is a continuous Poisson algebra morphism, such that ðe#idÞ 3 D ¼
ðid#eÞ 3 D ¼ id; where e : A-A=mA ¼ K is the natural projection,

* *jAðmAÞ
b##3 satisfies

ðid#DÞðDðaÞÞ ¼ *j%ðD#idÞðDðaÞÞ%ð	 *jÞ; aAA;

*j1;2;34% *j12;3;4 ¼ *j2;3;4% *j1;23;4% *j1;2;3;

where we set f%g ¼ f þ g þ 1
2

Pð f ; gÞ þ?; the Campbell–Baker–Hausdorff

(CBH) series of the Lie algebra ðA;PÞ:

Such a structure is the function algebra of a ‘‘formal Poisson–Lie quasi-group’’.

If f̃Am
b##2
A ; we define the twist of the quasi-Hopf Poisson algebra ðA;m0;P;D; *jÞ

by f̃ as the algebra ðA;m0;P; f̃D; f̃ *jÞ; where

f̃DðaÞ ¼ f̃%DðaÞ%ð	f̃ Þ; and

f̃ *j ¼ f̃ 2;3%f̃ 1;23% *j%ð	f̃ 12;3Þ%ð	f̃ 1;2Þ;

then ðA;m0;P; f̃D; f̃ *jÞ is again a quasi-Hopf Poisson algebra.
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Remark 1.6. If L is any Artinian local K-ring with residue field K; set X ¼
HomKðA;LÞ: Then X is the ‘‘Poisson–Lie quasi-group’’, in the sense of the
Introduction. Namely, D induces a product mX : X � X-X ; and expðV *jÞ;
expðV *j12;3;4Þ; etc., induce automorphisms FX ; F12;3;4

X ; etc., of X ; that satisfy the

quasi-group axioms (we denote by Vf the Hamiltonian derivation of A
b##k induced by

fAA
b##k). Moreover, if f̃ is a twist of A; then expðVf̃ Þ; expðVf̃ 12;3Þ; expðVf̃ ð12Þ3;4Þ; etc.,

define a twistor ðFX ;F12;3
X ;F

ð12Þ3;4
X ;yÞ of ðX ;mX ;FX Þ: Twisting A by f̃ corresponds

to twisting ðX ;mX ;FX Þ by ðFX ;F 12;3
X ;yÞ:

Lemma 1.7. If ðA;m0;P;D; *jÞ is a quasi-Hopf Poisson algebra, set g ¼ mA=ðmAÞ2;
then P induces a Lie bracket m on g; the map D	 D1;2 induces a linear map

d : g-L2ðgÞ; and the reduction of Altð *jÞ is an element j of L3ðgÞ: Then ðg; m; d;jÞ is a

Lie quasi-bialgebra. Moreover, twisting ðA;m0;P;D; *jÞ by f̃ corresponds to twisting

ðg; m; d;jÞ by

f :¼ ðAltð f̃ Þmod ðmAÞ2#mA þ mA#ðmAÞ2ÞAL2ðgÞ:

Taking the reduction modulo _ of a QUE algebra over g induces a natural map

Qadm=Tadm-fquasi-Hopf Poisson algebra structures on bSS�ðgÞg=twists:

To summarize, we have a diagram

quasi-Hopf poisson algebra
/twistsQ / T Qadm / Tadm

class

{Lie quasi-bialgebra structures on (g, �)} / twists,

red↓ ↓

→← 〈

structures on S. (g)

where class is the classical limit map described in [Dr2], and red is the map described
in Lemma 1.7. It is easy to see that this diagram commutes.
When U is a Hopf QUE algebra, it can be viewed as a quasi-Hopf algebra with

F ¼ 1; which is then admissible. The corresponding quasi-Hopf Poisson algebra is

the Hopf-Poisson structure on OG� ¼ ðUðg�ÞÞ�; and *j ¼ 0:
Let ðg; m; d;jÞ be a Lie quasi-bialgebra. A lift ofðg; m; d;jÞ is a quasi-Hopf Poisson

algebra, whose reduction is ðg; m; d;jÞ: A general problem is to construct a lift for
any Lie quasi-bialgebra. We will not solve this problem, but we will give partial
existence and uniqueness results.
Assume that d ¼ 0: A Lie quasi-bialgebra is then the same as a triple ðg; m;jÞ of a

Lie algebra ðg; mÞ and jA
V3ðgÞg:

Theorem 1.8. (1) There exists a lift

ðbSS�ðgÞ;m0;Pg� ;D0; *jÞ ð1:2Þ
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of ðg; m; d ¼ 0;jÞ: Here Pg� is the Kostant–Kirillov Poisson structure on g� and D0 is

the coproduct for which the elements of g are primitive.
(2) Any two lifts of ðg; m; d ¼ 0;jÞ of the form (1.2) are related by a g-invariant

twist.

Examples of Lie quasi-bialgebras with d ¼ 0 arise from metrized Lie algebras, i.e.,

pairs ðg; tgÞ of a Lie algebra g and tgAS2ðgÞg: Then j ¼ ½t1;2g ; t2;3g �: Recall that a Lie

associator is a noncommutative formal series FðA;BÞ; such that logFðA;BÞ is a Lie
series ½A;B�þhigher degree terms, satisfying the pentagon and hexagon identities
(see [Dr3]).

Proposition 1.9. If F is a Lie associator, we may set j ¼ logðFÞð%t1;2g ; %t2;3g Þ; where %t
i; j
g is

the image of t
i; j
g in bSS�ðgÞb##3; and we use the Poisson bracket of bSS�ðgÞb##3

in the

expression of logðFÞð%t1;2g ; %t2;3g Þ:

We prove these results in Section 6. If now F is a general (non–Lie) associator,

ðUðgÞ½½_��; m0;D0;Fð_t1;2g ; _t2;3g ÞÞ is a quasi-Hopf QUE algebra, but it is admissible

only when F is Lie ( for general g). According to Theorem 1.3 (2), it is twist-
equivalent to an admissible quasi-Hopf QUE algebra. We prove

Theorem 1.10. Any (non-Lie) associator is twist-equivalent to a unique Lie associator.

So the ‘‘concrete’’ version of the twist of Theorem 1.10 is an example of the twist
F0 of Theorem 1.3, (2).

2. Definition and properties of U 0

In this section, we prove Theorem 1.1. We first introduce the material for the

definition of U 0: trees (a); the map dðPÞ (b); then we prove Theorem 1.1 in (c) and (d).

2.1. Binary complete planar rooted trees

Definition 2.1. An n-binary complete planar rooted tree (n-tree for short) is a set of
vertices and oriented edges satisfying the following conditions:

� each edge carries one of the labels fl; rg:
� if we set:

valency of a vertex ¼ ðcardðincoming edgesÞ; cardðoutgoing edgesÞÞ;

we have
3 there exists exactly one vertex with valency ð0; 2Þ (the root)
3 there exists exactly n vertices with valency ð1; 0Þ (the leaves)
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3 all other vertices have valency ð1; 2Þ
3 if a vertex has valency ðx; 2Þ; then one of its outgoing edges has label l and the
other has label r:

Let us denote, for nX2;

Treen ¼ fn-binary complete planar rooted treesg:

By definition, Tree1 consists of one element (the tree with a root and one nonmarked
edge) and Tree0 consists of one element (the tree with a root and no edge). We will
write jPj ¼ n if P is a tree in Treen:

Definition 2.2 (Extracted trees). Let P be a binary complete planar rooted tree. Let
L be the set of its leaves and let L0 be a subset of L: We define the extracted subtree
PL0 as follows:

(1) P̃L0 is the set of all edges connecting the root with an element of L0;
(2) the vertices of P̃L0 all have valency ð0; 2Þ; ð1; 0Þ; ð1; 2Þ or ð1; 1Þ;
(3) PL0 is obtained from P̃L0 by replacing each maximal sequence of edges related by

a ð1; 1Þ vertex, by a single edge whose label is the label of the first edge of the
sequence.

Then PL0 is a jL0j-binary complete planar rooted tree.

Definition 2.3 (Descendants of a tree). If we cut the tree P by removing its root and
the related edges, we get two trees P0 and P00; its left and right descendants.

In the same way, we define the left and right descendants of a vertex of P:
If P is a n-tree, there exists a unique bijection of the set of leaves with f1;y; ng;

such that for each vertex, the number attached to any leaf of its left descendant is
smaller than the number attached to any leaf of its right descendant.

2.2. Definition of DðPÞ; dðPÞ : U-U
b##n

Let us place ourselves in the hypothesis of Theorem 1.1. For P0 (resp., P1;P2) the

only tree of Tree0 (resp., Tree1;Tree2), we set DðP0Þ ¼ e (resp., DðP1Þ ¼ id; DðP2Þ ¼ D).
When P is a n-tree with descendants P0 and P00; we set

DðPÞ ¼ ðDðP0Þ#DðP00ÞÞ 3 D;

so DðPÞ is a linear map U-U
b##n:

We set dðPÞ ¼ ðid	 Z 3 eÞ#jPj
3 DðPÞ; so dðPÞ is a linear map U-U

b##n:

In particular, dðP0ÞðxÞ ¼ eðxÞ; dðP1ÞðxÞ ¼ x 	 eðxÞ1; and dðP2ÞðxÞ ¼ DðxÞ 	 x#1	
1#x þ eðxÞ1#1:

We use the notation dðiÞ ¼ DðPiÞ for i ¼ 0; 1; 2; and d ¼ dð2Þ:
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We have also

dðPÞ ¼ ðdðP0Þ#dðP
00ÞÞ 3 d:

2.3. Behavior of dðPÞ with respect to multiplication

If S ¼ fi1;y; ikg is a subset of f1;y; ng; where i1oi2o?oik; the map x/xS is

the linear map U
b##k-U

b##n; defined by

x1#?#xk/1#i1	1#x1#1#i2	i1	1#x2#?#1#ik	ik	1	1#xk#1#n	ik	1:

If S ¼ |; x/xS is the map K-U
b##n; 1/1#n:

Proposition 2.4. For PATreen; we have the identity

dðPÞðxyÞ ¼
X

S0;S00Cf1;y;ngj
S0,S00¼f1;y;ng

ðdðS0ÞðxÞÞS
0
ðdðS00ÞðyÞÞS

00
;

for any x; yAU :

This proposition is proved in Section 5.

2.4. Construction of U 0

Let us set

U 0 ¼ fxAU j for any tree P; dðPÞðxÞA_jPjU
b##jPjg:

Then U 0 is a topologically free K½½_��-submodule of U : Moreover, if x; yAU 0; and P

is a tree, then

dðPÞð½x; y�Þ ¼
X

S;S0Cf1;y;jPjg
S,S0¼f1;y;jPjg

½dðPSÞðxÞS; dðPS0 ÞðyÞS
0
�;

the summand corresponding to a pair ðS;S0Þ with S-S0 ¼ | is zero, and the _-adic

valuation of the other summands isXjSj þ jS0jXjPj þ 1; so dðPÞð½x; y�ÞA_jPjþ1U b##jPj:

On the other hand, there exists zAU such that ½x; y� ¼ _z; so dðPÞðzÞA_jPjU b##jPj; so
zAU 0 and we get ½x; y�A_U 0: It follows that U 0=_U 0 is commutative. Let us set

U 0ðnÞ ¼ U 0-_nU : ð2:3Þ
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We have a decreasing filtration

U 0 ¼ U 0ð0Þ*U 0ð1Þ*U 0ð2Þ*?;

we have U 0ðnÞC_nU ; so U 0 is complete for the topology induced by this filtration.

This is an algebra filtration, i.e., U 0ðiÞU 0ð j ÞCU 0ðiþj Þ: It induces an algebra filtration
on U 0=_U 0;

U 0=_U 0*?*U 0ðiÞ=ðU 0ðiÞ-_U 0Þ*?;

for which U 0=_U 0 is complete. Moreover, the completed tensor product

U 0 %#U 0 ¼ lim
’F

n

U 0c##U 0
X

p;qjpþq¼n

U 0ðpÞ c##U 0ðqÞ

,0@ 1A
identifies with

lim
’F

n

ðfxAUc##U j8P; Q; ðdðPÞ#dðQÞÞðxÞA_jPjþjQjU
b##jPjþjQjg=

fxAUc##U j8P; Q; ðdðPÞ#dðQÞÞðxÞA_maxðn;jPjþjQjÞU
b##jPjþjQjgÞ:

If xAU 0; and P;Q are trees, with jPj; jQja0; then since dðPÞð1Þ ¼ dðQÞð1Þ ¼ 0;
we have

ðdðPÞ#dðQÞÞðDðxÞÞ ¼ ðdðPÞ#dðQÞÞðdðxÞÞ ¼ dðRÞðxÞA_jRjU
b##jRj

¼ _jPjþjQjU
b##jPjþjQj;

where R is the tree whose left and right descendants are P and Q; so jRj ¼ jPj þ jQj:
On the other hand,

ðdðPÞ#eÞðDðxÞÞ ¼ dðPÞðxÞ#1A_jPjU#jPj:

ðe#dðPÞÞðDðxÞÞ ¼ 1#dðPÞðxÞA_jPjU#jPj;

so DðxÞ satisfies ðdðPÞ#dðQÞÞðDðxÞÞA_jPjþjQjU
b##jPjþjQj for any pair of trees ðP;QÞ:

D : U-Uc##U therefore induces an algebra morphism DU 0 : U 0-U 0 %#2; whose
reduction modulo _ is a morphism of complete local rings

O-O
%#2 ¼ lim

’F
n

O#2
X

p;qjpþq¼n

OðpÞ#OðqÞ

,0@ 1A;

where O ¼ U 0=_U 0 and OðpÞ ¼ U 0ðpÞ=ðU 0ðpÞ-_U 0Þ:
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3. Classical limit of U 0

We will prove Theorem 1.2 as follows. We first compare the various dðPÞ; where P

is a n-tree (Proposition 3.1). Relations found between the dðPÞ imply that they have
_-adic valuation properties close to those of the Hopf case (Proposition 3.2). We then
prove Theorem 1.2.

3.1. Comparison of the various dðPÞ

Let P and P0 be n-trees. There exists an element FP;P0AU
b##n; such that DðPÞ ¼

AdðFP;P0Þ 3 DðP0Þ: The element FP;P0 is a product of images of F and F	1 by the

various maps U
b##3-U

b##n obtained by iteration of D: We have

FP0;P0 ¼ FP0;PFP;P0 ð3:4Þ

for any n-trees P0;P;P0: For example,

ðid#DÞ 3 D ¼ AdðFÞ 3 ððD#idÞ 3 DÞ;

ðD#DÞ 3 D ¼ AdðF12;3;4Þ 3 ððD#id#2Þ 3 ðD#idÞ 3 DÞ; etc:

Proposition 3.1. Assume that _ logðFÞAðU 0Þ %#3: Then there exists a sequence of

elements

FPP0RSn ¼
X
a

F PP0RSn
1;a #?#F PP0RSn

n;a AðU 0 %#nÞ %#n;

indexed by the triples ðR;S; nÞ; where R is a tree such that jRjon; S is a subset of

f1;y; ng with cardðSÞ ¼ jRj; and n is an integer X1; such that the equality

dðPÞ ¼AdðFP;P0Þ 3 dðP0Þ þ
X

kjkon

X
R a k	tree

X
SCf1;y;ng;
cardðSÞ¼kX

nX1

X
a

ad_ðFPP0RSn
1;a Þ 3? 3 ad_ðF PP0RSn

n;a Þ 3 ðdðRÞÞS ð3:5Þ

holds. Here ad_ðxÞðyÞ ¼ 1
_ ½x; y�:

Proof. Let us prove this statement by induction on n: When n ¼ 3; we find

dð1ð23ÞÞ ¼ AdðFÞdðð12Þ3Þ þ ðAdðFÞ 	 1Þðd1;2 þ d1;3 þ d2;3 þ dð1Þ1 þ dð1Þ2 þ dð1Þ3Þ;

so the identity holds with F PP0RSn ¼ 1
n!ð_ logFÞ

%#n for all choices of ðR;S; nÞ; except
when jRj ¼ 0; in which case F PP0RSn ¼ 0: Assume that the statement holds for any
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pair of k-trees, kpn; and let us prove it for a pair ðP;P0Þ of ðn þ 1Þ-trees. For k any
integer, let PleftðkÞ be the k-tree corresponding to

dðPleftðkÞÞ ¼ ðd#id#k	2Þ 3? 3 d:

Thanks to (3.4), we may assume that P0 ¼ Pleftðn þ 1Þ and P is arbitrary. Let P0 and

P00 be the subtrees of P; such that jP0j þ jP00j ¼ n þ 1; and dðPÞ ¼ ðdðP0Þ#dðP
00ÞÞ 3 d:

Let P1 and P2 be the n-trees such that

dðP1Þ ¼ ðdðPleftðk0ÞÞ#dðP
00ÞÞ 3 d and dðP2Þ ¼ ðdðPleftðk0ÞÞ#dðPleftðk00ÞÞÞ 3 d

Assume that jP1ja1: Using (3.4), we reduce the proof of (3.5) to the case of the pairs
ðP;P1Þ; ðP1;P2Þ and ðP2;P0Þ: Then the induction hypothesis applied to the pair

ðP0;Pleftðk0ÞÞ; together with FP;P1 ¼ FP0;Pleftðk0Þ#1#k00
; implies

dðPÞ ¼AdðFP;P1Þ 3 dðP1Þ þ
X

kjkok0

X
R a k	tree

X
SCf1;y;k0g;
cardðSÞ¼kX

nX1

X
a

AdðFP;P1Þ 3 ad_ðF P0Pleftðk0ÞSn
1;a #1#k00 Þ?ad_ðFP0Pleftðk0ÞSn

n;a #1#k00 Þ

3 ððdðRÞ#dðP
00ÞÞ 3 dÞS;k

0þ1;y;nþ1;

which is (3.5) for ðP;P1Þ: In the same way, one proves a similar identity relating P1

and P2: Let us now prove the identity relating P2 and P0: We have dðP2Þ ¼
ðd#id#n	1Þ 3 dðP0

2
Þ and dðP0Þ ¼ ðd#id#n	1Þ 3 dðP0

0
Þ; where P0

2 and P0
0 are n-trees. We

have

FP2;P0 ¼ ðD#id#n	2Þ 3FP0
2
;P0

0

so we get

dðP2Þ ¼AdðFP2;P0Þ 3 dðP0Þ

þ ðAdðFP2;P0Þ 	AdððFP0
2
;P0

0Þ1;3;y;nþ1ÞÞ 3 ðdðP0
0
ÞÞ1;3;y;nþ1

þ ðAdðFP2;P0Þ 	AdððFP0
2
;P0

0Þ2;3;y;nþ1ÞÞ 3 ðdðP0
0
ÞÞ2;3;y;nþ1

þ ðd#id#n	1Þ
X
kpn

X
R a k	tree

X
SCf1;y;ng;
cardðSÞ¼k

X
nX1

0BB@

�
X
a

ad_ðF
P0
2
P0
0
Sn

1;a Þ?ad_ðF
P0
2
P0
0
Sn

n;a Þ 3 ðdðRÞÞS

1CCA:
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We have _ logFP2;P0AU 0 %#nþ1 and _ logFP0
2
;P0

0AU 0 %#n; this fact and the relations

ðd#id#n	1Þðad_ðx1Þ?ad_ðxnÞ 3 ðdðRÞÞSÞ

¼ ðad_ðx12;y;nþ1
1 Þ 3? 3 ad_ðx12;y;nþ1

n Þ 	 ad_ðx1;3;y;nþ1
1 Þ 3? 3 ad_ðx1;3;y;nþ1

n Þ

	 ad_ðx2;3;y;nþ1
1 Þ 3? 3 ad_ðx2;3;y;nþ1

n ÞÞ 3 ðdðRÞÞSþ1

if 1eS; and

ðd#id#n	1Þðad_ðx1Þ?ad_ðxnÞ 3 ðdðRÞÞSÞ

¼ ad_ðx12;y;nþ1
1 Þ 3? 3 ad_ðx12;y;nþ1

n Þ 3 ððd#id#n	1Þ 3 dðRÞÞ1;2;S
0þ1

þ ðad_ðx12;y;nþ1
1 Þ 3? 3 ad_ðx12;y;nþ1

n Þ 	 ad_ðx1;3;y;nþ1
1 Þ 3? 3 ad_ðx1;3;y;nþ1

n ÞÞ

3 ðdðRÞÞ1;S
0þ1 þ ðad_ðx12;y;nþ1

1 Þ 3? 3 ad_ðx12;y;nþ1
n Þ 	 ad_ðx2;3;y;nþ1

1 Þ 3? 3 ad_ðx2;3;y;nþ1
n ÞÞ

3 ðdðRÞÞ2;S
0þ1

if S ¼ S0,f1g; where 1eS0; imply that dðP2Þ 	AdðFP2;P0Þ 3 dðP0Þ has the desired form.
Let us now treat the case jP1j ¼ 1: For this, we introduce the trees P3 and P4; such

that:

dðP3Þ ¼ ðid#n	1#dÞ 3 ðid#n	2#dÞ 3? 3 d;

dðP4Þ ¼ ðid#n	1#dÞ 3 ðd#id#n	2Þ 3 ðd#id#n	3Þ 3? 3 ðd#idÞ 3 d:

We then prove the relation for the pair ðP;P3Þ in the same way as for ðP1;P2Þ (only
the right branch of the tree is changed); the relation for ðP3;P4Þ in the same way as

for ðP2;P3Þ (instead of composing a known relation by d#id#n	1; we compose it

with id#n	1#d); and using the identity

dðP4Þ ¼ ðd#id#n	1Þ 3 ðid#n	2#dÞ 3 ðd#id#n	3Þ 3? 3 d;

we prove the relation for ðP4;PÞ in the same way as for ðP2;P3Þ (composing a known
relation by d#id#n	1). &

3.2. Properties of dðPÞ

Proposition 3.2. Let n be an integer and xAU :

(1) Assume that for any tree R; such that jRjon; we have dðRÞðxÞA_jRjU
b##jRj: Then the

conditions

dðPÞðxÞA_nU
b##n; ð3:6Þ

where P is an n-tree, are all equivalent.
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(2) Assume that for any tree R; such that jRjon; we have dðRÞðxÞA_jRjþ1U
b##jRj: Then

the elements

1

_n d
ðPÞðxÞmod _


 �
AUðgÞ#n;

where P is an n-tree, are all equal and belong to ðg#nÞSn ¼ SnðgÞ:

Proof. Let us prove (1). We have dðPÞ ¼ ðid	 Z 3 eÞ#jPj
3 dðPÞ; where Z :K½½_��-U is

the unit map of U ; so

dðPÞ ¼AdðFP;P0Þ 3 dðP0Þ þ
X

kjkon

X
R a k	tree

X
SCf1;y;ng;
cardðSÞ¼k

X
nX1

X
a

ðid	 Z 3 eÞ#n
3 ad_ðF PP0RSn

1;a Þ 3? 3 ad_ðFPP0RSn
n;a Þ 3 ðdðRÞÞS:

Then (1) follows from:

Lemma 3.3. Let S be a subset of f1;y; ng (we will write jSj instead of cardðSÞ) and

let U0 be the kernel of the counit of U. Let xA_jSjðU0Þ
b##jSj

and F1;y;Fn be elements of

ðU 0Þ %#n: Then

ðid	 Z 3 eÞ#nðad_ðF1Þ?ad_ðFnÞðxSÞÞA_nðU0Þ
b##n:

Proof of Lemma. Each element FAðU 0Þ %#n is uniquely expressed as a sum F ¼P
SAPðf1;y;ngÞ FS; where FS belongs to the image of

ðU 0
0Þ

%#jSj-ðU 0Þ %#n;

f/f S;

Pðf1;y; ngÞ is the set of subsets of f1;y; ng; and U 0
0 is the kernel of the counit of

U 0: Then

ðid	 Z 3 eÞ#nðad_ðF1Þ?ad_ðFnÞðxSÞÞ

¼
X

S1;y;SnAPðf1;y;ngÞ
ðid	 Z 3 eÞ#nðad_ððF1ÞS1

Þ?ad_ððFnÞSn
ÞðxSÞÞ:

The summands corresponding to ðS1;y;SnÞ such that S1,?Sn,Saf1;y; ng are

all zero. Moreover, each ðFaÞSa
can be expressed as ð faÞSa ; where faA_jSajðU0Þ

b##jSaj:

The lemma then follows from the statement:
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Statement 3.4. If S;S0Cf1;y; ng; xA_jSjðU0Þ
b##jSj; yA_jS

0 jðU0Þ
b##jS0j; then 1

_½x; y� can

be expressed as zS,S0
; where zA_jS,S0 jðU0Þ

b##jS,S0 j:

Proof. If S-S0 ¼ |; then ½x; y� ¼ 0; so the statement holds. If S-S0a|; then the

_-adic valuation of 1
_ ½x; y� is X	 1þ jSj þ jS0jXjSj þ jS0j 	 jS-S0j ¼ jS,S0j: &

Let us now prove property (2). The above arguments immediately imply that the

ð 1_ndðPÞðxÞmod _Þ; jPj ¼ n; are all equal. This defines an element SnðxÞAUðgÞ#n:

If jPj ¼ n; we have ðid#k#d#id#n	k	1Þ 3 dðPÞðxÞA_nþ1U
b##nþ1; so if d0 : UðgÞ-

UðgÞ#UðgÞ is defined by d0ðxÞ ¼ D0ðxÞ 	 x#1	 1#x þ eðxÞ1#1; D0 being the

coproduct of UðgÞ; then ðid#k#d0#id#n	k	1ÞðSnðxÞÞ ¼ 0; so

SnðxÞAg#n: ð3:7Þ

Let us denote by si;iþ1 the permutation of the factors i and i þ 1 in a tensor power.

For i ¼ 1;y; n 	 1; let us compute ðsi;iþ1 	 idÞðSnðxÞÞ: Let P0 be a ðn 	 1Þ-tree and
let P be the n-tree such that dðPÞ ¼ ðid#i	1#d#id#n	i	1Þ 3 dðP0Þ: Then

ðsi;iþ1 	 idÞðSnðxÞÞ ¼
1

_
ðid#i	1#ðd2;1 	 dÞ#id#n	i	1Þ 3 dðP0ÞðxÞmod _

� �
:

By assumption, dðP
0ÞðxÞA_nU

b##n	1; moreover, d2;1 	 d ¼ D2;1 	 D; so ðd2;1 	 dÞðUÞC
_ðUc##UÞ; therefore

ðid#i	1#ðd2;1 	 dÞ#id#n	i	1Þ 3 dðP0ÞðxÞA_nþ1U
b##n;

it follows that ðsi;iþ1 	 idÞðSnðxÞÞ ¼ 0; therefore SnðxÞ is a symmetric tensor of

UðgÞ#n: Together with (3.7), this gives SnðxÞAðg#nÞSn : This ends the proof of
Proposition 3.2. &

3.3. Flatness of U 0 (proof of Theorem 1.2)

Let us set

U 00ðnÞ ¼ fxAU 0jdðPÞðxÞA_jPjþ1U
b##jPj if jPjpn 	 1g:

Then by Proposition 2.4, we have a decreasing algebra filtration

U 0 ¼ U 00ð0Þ*U 00ð1Þ*U 00ð2Þ*?*_U 0: ð3:8Þ

We have U 00ðnÞ*U 0ðnÞ þ _U 0 (we will see later that this is an equality). We derive
from (3.8) a decreasing filtration

O ¼ O00ð0Þ*O00ð1Þ*O00ð2Þ*?;
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where O ¼ U 0=_U 0 and O00ðnÞ ¼ U 00ðnÞ=_U 0: We have\
nX0

O00ðnÞ ¼ f0g;

this means that
T

nX0 U 00ðnÞ ¼ _U 0; which is proved as follows: if x belongs to

-nX0U
00ðnÞ; then eðxÞ ¼ Oð_Þ; x 	 eðxÞ1 ¼ Oð_2Þ; so x ¼ _y; where yAU : Moreover,

djPjðyÞ ¼ Oð_jPjÞ for any P; so yAU 0:
The fact that O is complete for this filtration will follow from its identification

with the filtration O*O0ð1Þ*? (this will be established in Proposition 3.6), where

O0ðiÞ ¼ U 0ðiÞ=_U 0-U 0ðiÞ and U 0ðiÞ is defined in (2.3). We first prove:

Proposition 3.5. Set bgrgr00ðOÞ ¼ c""nX0 O
00ðnÞ=O00ðnþ1Þ: Then there is a unique linear map

ln : gr
00
nðOÞ-SnðgÞ; taking the class of x to the common value of all

1
n!ð 1_n dðPÞðxÞmod _Þ; where P is a n-tree. The resulting map l : bgrgr00ðOÞ-bSS�ðgÞ is an

isomorphism of graded complete algebras.

Proof. In Proposition 3.2, we constructed a map U 00ðnÞ-SnðgÞ; by x/ common

value of 1
n!ð 1_n dðPÞðxÞmod _Þ for all n-trees P: The subspace U 00ðnþ1ÞCU 00ðnÞ is clearly

contained in the kernel of this map, so we obtain a map

ln : U 00ðnÞ=U 00ðnþ1Þ ¼ O00ðnÞ=O00ðnþ1Þ-SnðgÞ:

Let us prove that l ¼ c""nX1 ln is a morphism of algebras. If xAU 00ðnÞ and yAU 00ðmÞ;
Proposition 2.4 implies that if R is any ðn þ mÞ-tree, we have

dðPÞðxyÞ ¼
X

S0;S00Cf1;y;nþmgj
S0,S00¼f1;y;nþmg

dðRS0 ÞðxÞS
0
dðRS00 ÞðyÞS

00
:

The _-adic valuation of the term corresponding to ðS0;S00Þ is XjS0j þ jS00j if jS0jXn

and jS00jXm; and XjS0j þ jS00j þ 1 otherwise, so the only contributions to

ð 1
_nþm dðRÞðxyÞmod _Þ are those of the pairs ðS0;S00Þ such that S0-S00 ¼ |: Then:

1

_nþm dðRÞðxyÞmod _

 �

¼
X

S0;S00Cf1;y;nþmgj
jS0 j¼n;jS00 j¼m;

S0-S00¼|

1

_n d
ðRS0 ÞðxÞmod _


 �
1

_m dðRS00 ÞðyÞmod _

 �

¼
X

S0;S00Cf1;y;nþmgj
jS0 j¼n;jS00 j¼m;

S0-S00¼|

ðn!lnðxÞS
0
Þðm!lmðyÞS

00
Þ

¼ ðn þ mÞ!lnðxÞlmðyÞ;
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because the map

S�ðgÞ-ðTðgÞ; shuffle productÞ;

x1?xn/
X
sASn

xsð1Þ#?#xsðnÞ

is an algebra morphism. Therefore lnþmðxyÞ ¼ lnðxÞlmðyÞ: Let us prove that ln is

injective. If xAU 00ðnÞ is such that ð 1_n dðPÞðxÞmod _Þ ¼ 0 for any n-tree P; then

xAU 00ðnþ1Þ; so its class in O00ðnÞ=O00ðnþ1Þ ¼ U 00ðnÞ=U 00ðnþ1Þ is zero. So each ln is injective,
so l is injective.

To prove that l is surjective, it suffices to prove that l1 is surjective. Let us fix xAg:

We will construct a sequence xnAU ; nX0 such that eðxnÞ ¼ 0; ð1_ xn mod _Þ ¼ x;

xnþ1Axn þ _nU for any nX1; and if P is any tree such that jPjpn;

dðPÞðxnÞA_jPjU b##jPj (this last condition implies that dðQÞðxnÞA_nU
b##jQj for jQjXn).

Then the limit x̃ ¼ limn-N ðxnÞ exists, belongs to U 0; satisfies eðx̃Þ ¼ 0 and

ð1_ d1ðx̃Þmod _Þ ¼ x; so its class in U 00ð1Þ=U 00ð2Þ is a preimage of x:

Let us now construct the sequence ðxnÞnX0: We fix a linear map g-fyAU jeðyÞ ¼
0g; y/ %y; such that for any yAg; ð %ymod _Þ ¼ y: We set x1 ¼ _ %x: Let us construct

xnþ1 knowing xn: By Proposition 3.2, if Q is any ðn þ 1Þ-tree, dðQÞðxnÞA_nU
b##nþ1; and

ð 1_n dðQÞðxnÞmod _Þ is an element of Snþ1ðgÞ; independent of Q: Let us write this

element as X
sASnþ1

X
a

ya
sð1Þ?ya

sðnþ1Þ; where
X
a

ya
1#?#ya

nþ1Ag#nþ1:

Then we set

xnþ1 ¼ xn 	
_n

ðn þ 1Þ!
X

sASnþ1

X
a

%ya
sð1Þ? %ya

sðnþ1Þ: &

We now prove:

Proposition 3.6. (1) For any nX0; U 00ðnÞ ¼ U 0ðnÞ þ _U 0;

(2) The filtrations O ¼ O0ð0Þ*O0ð1Þ*? and O ¼ O00ð0Þ*O00ð1Þ*? coincide, and O is

complete and separated for this filtration.

Proof. Let us prove (1). We have to show that U 00ðnÞCU 0ðnÞ þ _U 0: Let xAU 00ðnÞ:

We have dðPÞðxÞA_jPjþ1U b##jPj for jPjpn 	 1; and for P an n-tree,

ð 1_n dðPÞðxÞmod _ÞASnðgÞ and is independent of P: Write this element of SnðgÞ asP
sASn

P
aya

sð1Þ#?ya
sðnÞ:

In Proposition 3.5, we construct a linear map g-U 0-_U ; x/x̃; such that eðx̃Þ ¼ 0

and ð1_ x̃mod _Þ ¼ x:
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Set fn ¼ 1
n!

P
sASn

P
a ỹ a

sð1Þ?ỹ a
sðnÞ: Then each ỹ a

i belongs to U 0-_U ; so

fnAU 0-_nU ¼ U 0ðnÞ: Moreover, x 	 fn belongs to U 00ðnþ1Þ: Iterating this procedure,

we construct elements fnþ1; fnþ2;y; where each fk belongs to U 0ðkÞ: The seriesP
kXn fk converges in U 0; denote by f its sum, then x 	 f belongs to

T
kXn U 00ðkÞ ¼

_U 0: So U 00ðnÞCU 0ðnÞ þ _U 0: The inverse inclusion is obvious. This proves (1). Then

(1) immediately implies that for any n; O0ðnÞ ¼ O00ðnÞ: We already know that O is

complete and separated for O ¼ O0ð0Þ*O0ð1Þ*?; which proves (2). &

Proof of Theorem 1.2 (End). O is a complete local ring, and we have a ring

isomorphism bgrgrðOÞ-bSS�ðgÞ: Then any lift g-O0ð1Þ of O0ð1Þ-O0ð1Þ=O0ð2Þ ¼ g yields a

continuous ring morphism m : bSS�ðgÞ-O: The associated graded of m is the identity, so
m is an isomorphism. So O is noncanonically isomorphic to bSS�ðgÞ: &

Remark 3.7. When U is Hopf and g is finite-dimensional, U 0=_U 0 identifies

canonically with OG� ¼ ðUðg�ÞÞ�; where g� is the dual Lie bialgebra of g

(see [Dr1,Ga]). The natural projection Tðg�Þ-Uðg�Þ and the identification Tðg�Þ� ¼bTTðgÞ (where bTTðgÞ means the degree completion) induce an injection U 0=_U 0 ¼
OG� ¼ ðUðg�ÞÞ�+ bTTðgÞ: The map U 0=_U 0+ bTTðgÞ can be interpreted simply as

follows. For any xAU 0; we have ð 1_n dnðxÞmod _ÞAg#n: Then U 0=_U 0+ bTTðgÞ takes
the class of xAU 0 to the sequence ð 1_n dnðxÞmod _ÞnX0:

On the quasi-Hopf case, we have no canonical embedding U 0=_U 0+ bTTðgÞ because
the various ð 1_n dðPÞðxÞmod _Þ do not necessarily coincide for all the n-trees P: This is

related to the fact that one cannot expect a Hopf pairing Uðg�Þ#ðU 0=_U 0Þ-K since
g� is no longer a Lie algebra, so Uðg�Þ does not make sense.
On the other hand, Theorem 1.2 can be interpreted as follows: in the Hopf case,

the exponential induces an isomorphism of formal schemes g�-G�; so U 0=_U 0

identifies noncanonically with Og� ¼ bSS�ðgÞ: In the quasi-Hopf case, although there is

no formal group G�; we still have an isomorphism U 0=_U 0 !B bSS�ðgÞ:

4. Twists

4.1. Admissible twists

If ðU ;m;D;FÞ is an arbitrary QHQUE algebra, we will call a twist FAðU b##2Þ�

admissible if _ logðFÞAðU 0Þ %#2:

Proposition 4.1. Let ðU ;m;D;FÞ be an admissible quasi-Hopf algebra and F an

admissible twist. Then the twisted quasi-Hopf algebra ðU ;m; FD; FFÞ is admissible.

ARTICLE IN PRESS
B. Enriquez, G. Halbout / Advances in Mathematics 186 (2004) 363–395380



Proof. Let e0 : U 0-K be the composed map U 0 !e K½½_�� ��!mod _
K; where e is the counit

map. Let m_ ¼ Kerðe0Þ: We set m
ð3Þ
_ ¼ Kerðe#3Þ: We have m

ð3Þ
_ ¼ m_ %#ðU 0Þ %#2 þ

U 0 %#m_ %#U 0 þ ðU 0Þ %#2 %#m_:

When a; b are in ðmð3Þ
_ Þ2; the CBH series a%b ¼ a þ b þ ½a; b�_ þ? converges in

ðU 0Þ %#3; where ½	;	�_ ¼ 1
_ ½	;	�: Indeed, ½mð3Þ

_ ;m
ð3Þ
_ �_Cm

ð3Þ
_ ; so

½ðmð3Þ
_ Þ2; ½y; ðmð3Þ

_ Þ2�_; �_Cðmð3Þ
_ Þnþ2;

where n is the number of ½	;	�_ involved. Finally, a series
P

nX0 fn; where

fnAðmð3Þ
_ Þn; converges in ðU 0Þ %#3: indeed, m

ð3Þ
_ C_ðU 0Þ %#3; so ðmð3Þ

_ ÞnC_nðU 0Þ %#3:

Both f :¼ _ logðFÞ and _ logðFÞ belong to ðmð3Þ
_ Þ2: Then we have

_ logðFFÞ ¼ f 1;2%f 12;3%ð_ logðFÞÞ%ð	f 1;23Þ%ð	f 2;3Þ:

Since U 0 %#3 is stable under %; we have _ logðFFÞAU 0 %#3: So ðU ;m; FD; FFÞ is
admissible. &

Let us now prove

Proposition 4.2. Under the hypothesis of Proposition 4.1, the QFS algebra U 0
F

corresponding to ðU ;m; FD; FFÞ coincides with the QFS algebra U 0 corresponding to

ðU ;m;D;FÞ:

We will first prove the following lemma:

Lemma 4.3. Let P be an n-tree. Then

dðPÞF ¼ dðPÞ þ
X
kpn

X
R a k	tree

X
SCf1;y;ngj
cardðSÞ¼kX

nX1

X
a

ad_ð f
S;P
1;a Þ 3? 3 ad_ð f S;P

n;a Þ 3 ðdðRÞÞS; ð4:9Þ

where for each n;
P

a f S;P
1;a #?#f S;P

n;a AðU 0 %#nÞ %#n:

Remark 4.4. One can prove that in the right-hand side of (4.9), the contribution of

all terms with k ¼ n is ðAdðF ðPÞÞ 	 idÞ 3 dðPÞ where F ðPÞ is the product of FI ;J (I ; J

subsets of f1;y; ng; such that maxðIÞominðJÞ) and their inverses such that

DðPÞ
F ¼ AdðF ðPÞÞ 3 DðPÞ:
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Proof of the Lemma. Eq. (4.9) may be proved by induction on jPj: Let us prove it for
the unique tree P such that jPj ¼ 2:

dð2ÞF ¼ dð2Þ þ
X
nX1

1

n!
ad_ð f Þnðdð2ÞðxÞ þ dð1ÞðxÞ1 þ dð1ÞðxÞ2Þ;

where (1) and (2) are the 1- and 2-trees. Assume that (4.9) is proved when jPj ¼ n:
Let P0 be an ðn þ 1Þ-tree. Then for some iAf1;y; ng; we have

dðPÞF ¼ ðid#i	1#dð2ÞF #id#n	iÞ 3 dðP
0Þ

F ;

where jP0j ¼ n: Then:

dðPÞF ¼ðid#i	1#DF#id#n	iÞ 3 dðP
0Þ

F 	 ðdðP
0Þ

F Þ1;y;bii;y;nþ1 	 ðdðP
0Þ

F Þ1;y;ciþ1iþ1;y;nþ1

¼ðid#i	1#DF#id#n	iÞ 3 dðP
0Þ þ

X
kpn

X
R a k	tree

X
SCf1;y;ngj
cardðSÞ¼k

0BB@

�
X
nX1

X
a

ad_ð f
S;P0

1;a Þ 3? 3 ad_ð f S;P0

n;a Þ 3 ðdðRÞÞS

1CCA
	 ð?Þ1?bii;y;nþ1 	 ð?Þ1;y;ciþ1iþ1;y;nþ1

¼AdðF i;iþ1Þ 3 dðPÞ þ ðdðP0ÞÞ1;y;bii;y;nþ1 þ ðdðP0ÞÞ1;y;ciþ1iþ1;y;nþ1



þ
X
kpn

X
R a k	tree

X
SCf1;y;ngj
cardðSÞ¼k

X
nX1

X
a

ad_ðð f
S;P0

1;a Þ1;y;fi;iþ1g;y;nþ1Þ

3 ad_ðð f S;P0

n;a Þ1;y;fi;iþ1g;y;nþ1Þ 3 ð1#i	1#D#1#n	iÞ 3 ðdðRÞÞS
�

	 ð?Þ1;y;bii;y;nþ1 	 ð?Þ1;y;ciþ1iþ1;y;nþ1;

this has the desired form because:

ðAdðFi;iþ1Þ 	 1Þ 3 ðdðPÞ þ ðdðP0ÞÞ1;y;bii;y;nþ1 þ ðdðP0ÞÞ1;y;ciþ1iþ1;y;nþ1Þ

¼
X
nX1

1

n!
ad_ð f i;iþ1ÞnðdðPÞ þ ðdðP0ÞÞ1;y;bii;y;nþ1 þ ðdðP0ÞÞ1;y;ciþ1iþ1;y;nþ1Þ:

This proves (4.9). &
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Proof of Proposition 4.2 (End). One repeats the proof of Proposition 3.2 to prove

that if xAU 0; then we have dðPÞF ðxÞA_jPjU b##jPj for any tree P: So U 0CU 0
F : Since

ðU ;m;D;FÞ is the twist by F	1 of ðU ;m; FD; FFÞ; and _ logðF	1Þ ¼
	_ logðFÞAðU 0Þ %#2CðU 0

F Þ
%#2; F	1 is admissible for ðU ;m; FD; FFÞ; so we have also

U 0
FCU 0; so U 0

F ¼ U 0: &

4.2. Twisting any algebra into an admissible algebra

Proposition 4.5. Let ðU ;m;D;FÞ be a quasi-Hopf algebra. There exists a twist F0 such

that the twisted quasi-Hopf algebra ðU ;m; F0D; F0FÞ is admissible.

Proof. We construct F0 as a convergent infinite product F0 ¼ ?Fn?F2; where

FnA1þ _n	1U
b##2; and the Fn’s have the following property: if %Fn ¼ FnFn	1?F2; if

Fn ¼ %FnF; and dðPÞn : U-U
b##jPj is the map corresponding to a tree P and to Dn ¼

Adð %FnÞ 3 D; then we have

ðdðPÞn #dðQÞ
n #dðRÞ

n Þð_ logðFnÞÞA_jPjþjQjþjRjU
b##jPjþjQjþjRj

for any trees P;Q;R such that jPj þ jQj þ jRjpn:
Assume that we have constructed F1;y;Fn; and let us construct Fnþ1:

The argument of Proposition 3.2 shows that for any integers ðn1; n2; n3Þ such that
n1 þ n2 þ n3 ¼ n þ 1; and any trees P;Q;R such that jPj ¼ n1; jQj ¼ n2; jRj ¼ n3;

1

_n ðdðPÞn #dðQÞ
n #dðRÞ

n Þð_ logðFnÞÞmod _

 �

ASn1ðgÞ#Sn2ðgÞ#Sn3ðgÞ;

and is independent of the trees P; Q; R: The direct sum of these elements is an

element %jn of S�ðgÞ#3; homogeneous of degree n þ 1: Since Fn satisfies the pentagon
equation

ðid#id#DnÞðFnÞ	1ð1#FnÞðid#Dn#idÞðFnÞðFn#1ÞðDn#id#idÞðFnÞ	1 ¼ 1;

j_
n :¼ _ logðFnÞ satisfies the equation

ð	ðid#id#DnÞðj_
nÞÞ%ð1#j_

nÞ%ððid#Dn#idÞðj_
nÞÞ%

ðj_
n#1Þ%ð	ðDn#id#idÞðj_

nÞÞ ¼ 0; ð4:10Þ

where we set

a%b ¼ a þ b þ 1
2
½a; b�_ þ?
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(the CBH series for the Lie bracket ½	;	�_). The left-hand side of (4.10) is equal to

ð	Dn#id#idþ id#Dn#id	 id#id#DnÞðj_
nÞ

þ ð1#j_
nÞ þ ðj_

n#1Þ þ brackets: ð4:11Þ

Let ðn1; n2; n3; n4Þ be integers such that n1 þ?þ n4 ¼ n þ 1: Let P;Q;R;S be trees

such that jPj ¼ n1;y; jSj ¼ n4: Let us apply dðPÞn #?#dðSÞn to (4.11). On the one

hand,

ðdðPÞn #dðQÞ
n #dðRÞ

n #dðSÞn ÞðDn#id#idÞðj_
nÞ ¼ ðdðP,QÞ

n #dðRÞ
n #dðSÞn Þðj_

nÞ;

where P,Q is the tree with left descendant P and right descendant Q: Therefore

1

_n ðdðPÞn #dðQÞ
n #dðRÞ

n #dðSÞn ÞðDn#id#idÞðj_
nÞmod _


 �
¼ ðD0#id#idÞð %jnÞn1;n2;n3;n4

;

where the index ðn1;y; n4Þ means the component in #4
i¼1S

niðgÞ: In the same way,

ðdðPÞn #dðQÞ
n #dðRÞ

n #dðSÞn Þðð4:11Þ without bracketsÞ ¼ dð %jnÞn1;n2;n3;n4
;

where d : S�ðgÞ#2-S�ðgÞ#3 is the co-Hochschild cohomology differential.

On the other hand, if a1 and a2AU
b##4 are such that

ðdðPÞn #?#dðSÞn ÞðaiÞA_infðjPjþ?þjSj;nÞU
b##4

for any trees ðP;y;SÞ; then if ðP;y;SÞ are such that jPj þ?þ jSj ¼ n; we have

ðdðPÞn #?#dðSÞn Þ 1

_
½a1; a2�


 �
A_nþ1U

b##n;

one proves this in the same way as the commutativity of U 0=_U 0 (see Theorem 1.1).

Then the relation 1
_n ðdðPÞn #?#dðSÞn Þð4:11Þj_¼0 ¼ 0 yields dð %jnÞ ¼ 0:

This relation implies that

%jn ¼ dð %fnÞ þ ln;

where %fnAS�ðgÞ#2 and lnAL3ðgÞ: Moreover, fn and ln both have degree n þ 1: This

implies that ln ¼ 0: Let fnAðUðgÞ#2Þpnþ1 be a preimage of %fn by the projection

ðUðgÞ#2Þpnþ1-ðUðgÞ#2Þpnþ1=ðUðgÞ#2Þpn ¼ ðS�ðgÞ#2Þnþ1

(where the indices n and pn mean ‘‘homogeneous part of degree n’’ and ‘‘part of

degree pn’’). Let f _
n AU

b##2 be a preimage of fn by the projection U
b##2-

U
b##2=_U

b##2 ¼ UðgÞ#2: Set Fnþ1 ¼ expð_n	1fnÞ: We may assume that _nfnA

ðUð %FnÞ0Þ
%#2; where Uð %FnÞ0 ¼ fxAU jdðPÞn ðxÞA_infðn;jPjÞU b##jPjg: Then Fnþ1 ¼ Fnþ1Fn:
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If P;Q;R are such that jPj þ jQj þ jRj ¼ n þ 1; then

ðdðPÞn #dðQÞ
n #dðRÞ

n Þð_ logðFnþ1ÞÞA_nþ1U
b##nþ1:

Then according to Lemma 4.3,

ðdðPÞnþ1#dðQÞ
nþ1#dðRÞ

nþ1 	 dðPÞn #dðQÞ
n #dðRÞ

n Þð_logðFnþ1ÞÞ

has _-adic valuation 4jPj þ jQj þ jRj when jPj þ jQj þ jRjpn þ 1: So ðdðPÞnþ1#

dðQÞ
nþ1#dðRÞ

nþ1Þð_ logðFnþ1ÞÞA_jPjþjQjþjRjU
b##jPjþjQjþjRj whenever jPj þ jQj þ jRjp

n þ 1: &

5. Proof of Proposition 2.4

We work by induction on n: The statement is obvious when n ¼ 0; 1: For n ¼ 2;
we get

dð2ÞðxyÞ ¼ dð2ÞðxÞdð2ÞðyÞ þ dð2ÞðxÞðdð1ÞðyÞ1 þ dð1ÞðyÞ2 þ dð0ÞðyÞ|Þ

þ ðdð1ÞðxÞ1 þ dð1ÞðyÞ1 þ dð0ÞðyÞ|Þdð2ÞðyÞ

þ dð1ÞðxÞ1dð2ÞðyÞ2 þ dð1ÞðxÞ2dð2ÞðyÞ1; ð5:12Þ

so the statement also holds.

Assume that the statement is proved when P is a n-tree. Let %P be a ðn þ 1Þ-tree.
There exists an integer kAf0;y; n 	 1g; such that %P may be viewed as the glueing of
the 2-tree on the kth leaf of a n-tree P: Then we have

dð %PÞ ¼ ðid#k#dð2Þ#id#n	k	1Þ 3 dðPÞ:

Let us assume, for instance, that k ¼ n 	 1: If n is an integer, set

Sn ¼ fðS0;S00ÞjS0;S00Cf1;y; ng and S0,S00 ¼ f1;y; ngg:

Then

Sn ¼ ffng;|ðSn	1Þ,f|;fngðSn	1Þ,ffng;fngðSn	1Þðdisjoint unionÞ;

where fa;bðS0;S00Þ ¼ ðS0,a;S00,bÞ: By hypothesis, we have

dðPÞðxyÞ ¼
X

ðS1;S2ÞASn

dðPS1 ÞðxÞS1dðPS2 ÞðyÞS2 ;
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therefore

dðPÞðxyÞ ¼
X

ðS0;S00ÞASn	1

dðPS0,fngÞðxÞS
0,fngdðPS00 ÞðyÞS

00

þ dðPS0 ÞðxÞS
0
dðPS00,fngÞðyÞS

00,fng

þ dðPS0,fngÞðxÞS
0,fngdðPS00,fngÞðyÞS

00,fng:

Applying id#n	1#dð2Þ to this identity and using (5.12) and the identities

ðid#k#dð1Þ#id#jPj	k	1Þ 3 dðPÞ ¼ dðPÞ;

ðid#k#dð0Þ#id#jPj	k	1Þ 3 dðPÞ ¼ 0;

we get dð %PÞðxyÞ

¼
X

ðS0;S00ÞASn	1

ðððid#jS0j#dð2ÞÞ 3 dðPS0,fngÞÞðxÞS
0,fn;nþ1gdðPS00 ÞðyÞS

00

þ dðPS0 ÞðxÞS
0
ððid#jS00 j#dð2ÞÞ 3 dðPS00,fngÞÞðyÞS

00,fn;nþ1g

þ ððid#jS0 j#dð2ÞÞ 3 dðPS0,fngÞÞðxÞS
0,fn;nþ1gððid#jS00 j#dð2ÞÞ 3 dðPS00,fngÞÞðyÞS

00,fn;nþ1g

þððid#jS0 j#dð2ÞÞ 3 dðPS0,fngÞÞðxÞS
0,fn;nþ1gðdðPS00,fngÞðyÞS

00,fng þ dðPS00,fngÞðyÞS
00,fnþ1gÞ

þðdðPS0,fngÞðxÞS
0,fng þ dðPS0,fngÞðxÞS

0,fnþ1gÞððid#jS00 j#dð2ÞÞ 3 dðPS00,fngÞÞðyÞS
00,fn;nþ1g

þ dðPS0,fngÞðxÞS
0,fngdðPS00,fngÞðyÞS

00,fnþ1g þ dðPS0,fngÞðxÞS
0,fnþ1gdðPS00,fngÞðyÞS

00,fngÞ:

So we get dð %PÞðxyÞ

¼
X

ðS0;S00ÞASn	1

ðdð %PS0,fn;nþ1gÞðxÞS
0,fn;nþ1gdð %PS00 ÞðyÞS

00

þ dð %PS0 ÞðxÞS
0
dð %PS00,fn;nþ1gÞðyÞS

00,fn;nþ1g

þ dð %PS0,fn;nþ1gÞðxÞS
0,fn;nþ1gdð %PS00,fn;nþ1gÞðyÞS

00,fn;nþ1g

þ dð %PS0,fn;nþ1gÞðxÞS
0,fn;nþ1gðdð %PS00,fngÞðyÞS

00,fng þ dð %PS00,fnþ1gÞðyÞS
00,fnþ1gÞ

þ ðdð %PS0,fngÞðxÞS
0,fng þ dð %PS0,fnþ1gÞðxÞS

0,fnþ1gÞdð %PS00,fn;nþ1gÞðyÞS
00,fn;nþ1g

þdð %PS0,fngÞðxÞS
0,fngdð %PS00,fnþ1gÞðyÞS

00,fnþ1g þ dð %PS0,fnþ1gÞðxÞS
0,fnþ1gdð %PS00,fngÞðyÞS

00,fngÞ:
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We have

Snþ1 ¼ ffn;nþ1g;fn;nþ1gðSn	1Þ,ffn;nþ1g;fngðSn	1Þ,ffn;nþ1g;fnþ1gðSn	1Þ

, ffn;nþ1g;|ðSn	1Þ,ffng;fn;nþ1gðSn	1Þ,ffnþ1g;fn;nþ1gðSn	1Þ

, f|;fn;nþ1gðSn	1Þ,ffng;fnþ1gðSn	1Þ,ffnþ1g;fngðSn	1Þ ðdisjoint unionÞ;

where we recall that fa;bðS0;S00Þ ¼ ðS0,a;S00,bÞ: So we get

dð %PÞðxyÞ ¼
X

ð %S0; %S00ÞASnþ1

dðP %S0 ÞðxÞj %S
0jdðP %S00 ÞðyÞj %S

00 j:

The proof is the same for a general kAf0;y; n 	 1g: This establishes the induction.

6. Proofs of Proposition 1.4, Theorem 1.8 and Proposition 1.9

Proof of Proposition 1.4. According to [Dr2], Proposition 3.10, there exists a series

E0ðjÞAUðgÞ#3½½_��; expressed in terms of ðm;jÞ by universal acyclic expressions (and
therefore invariant), such that E0ðjÞ ¼ 1þ Oð_2Þ; and E0ðjÞ satisfies the pentagon
identity. Then ðUðgÞ½½_��;m0;D0;E

0ðjÞÞ is a quasi-Hopf algebra. By Theorem 1.3(2),

there exists a twist FAUðgÞ#2½½_���; such that ðUðgÞ½½_��;m0;
FD0;

FE0ðjÞÞ is
admissible.

E0ðjÞ gives rise to a collection of invariant elements E0ðjÞp1;p2;p3;n
A#2

i¼1S
piðgÞ;

defined by the condition that the image of E0ðjÞ by the symmetrization map

UðgÞ#3½½_��-S�ðgÞ½½_�� is
P

nX0;p1;p2;p3X0 _
nE0ðjÞp1;p2;p3;n

: F is then expressed using

only the E0
p1;p2;p3;n

; the Lie bracket and the symmetric group operations on the g#n:

So F is invariant and defined by universal acyclic expressions. Therefore FD0 ¼ D0:

EðjÞ :¼ FE0ðjÞ is then expressed by universal acyclic expressions, and defines an
admissible quantization of ðg; m; d ¼ 0;jÞ: &

Proof of Theorem 1.8(1). We have then EðjÞAðUðgÞ½½_��0Þ %#3: Since the coproduct

is D0; UðgÞ½½_��0 is the complete subalgebra of UðgÞ½½_�� generated by _g; so it is

a flat deformation of bSS�ðgÞ with Kostant–Kirillov Poisson structure. We then set
*j :¼ EðjÞ modulo _: &

Proof of Theorem 1.8(2). Let *j1; *j2 be the elements of bSS�ðgÞ %#3 such that

ðbSS�ðgÞ;m0;Pg� ;D0; *jiÞ

are quasi-Hopf Poisson algebras. Let C be the lowest degree component of *j1 	 *j2:
Then the degree k of C is X4: Taking the degree k part of the difference of the
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pentagon identities for *j1 and *j2; we find dðCÞ ¼ 0; where d : S�ðgÞ#3-S�ðgÞ#4 is

the co-Hochschild differential. So AltðCÞAL3ðgÞ; and since AltðCÞ also has degree

X4; AltðCÞ ¼ 0: If Cp1;p2;p3 is the component of C in #3
i¼1 SpiðgÞ then we may define

inductively BAðS�ðgÞ#2Þg; homogeneous of degree k; such that dðBÞ ¼ C; as follows.

We set B0;k ¼ B1;k	1 ¼ 0; B2;k	2 ¼ 1
2
ðid#mÞðC1;1;k	2Þ; and

Biþ1;k	i	1 ¼
1

i þ 1
ðid#mÞ½Ci;1;k	i	1 þ ððid#dÞðBi;k	iÞÞi;1;k	i	1�;

where Bi; j is the component of B in SiðgÞ#S jðgÞ and m is the product of S�ðgÞ:
Applying the twist B to the quasi-Hopf Poisson algebra ðbSS�ðgÞ;m0;Pg� ;D0; *j1Þ
amounts to replacing *j1 by *j0

1; such that *j0
1 	 *j2 has valuation Xk þ 1: Applying

successive twists, we obtain the result. &

Proof of Proposition 1.9. According to [Dr3],

ðUðgÞ½½_��; m0; D0; e_tg=2; Fð_t1;2g ; _t2;3g ÞÞ

is a quasi-triangular quasi-Hopf algebra. One checks that since F is Lie, it is
admissible; then the reduction modulo _ of the corresponding QFS algebra is the
quasi-Hopf Poisson algebra of Proposition 1.9. &

Remark 6.1. In the proof of Theorem 1.8(2), we cannot use Theorem A of [Dr2]
because we do not know that the twist constructed there is admissible.

7. Associators and Lie associators

In this section, we state precisely and prove Theorem 1.10.

7.1. Statement of the result

Let Tn; nX2; be the algebra with generators ti; j; 1p1ajpn; and relations

t j;i ¼ ti; j;

½ti; j þ ti;k; t j;k� ¼ 0 when i; j; k are all distinct;

½ti; j; tk;l � ¼ 0 when i; j; k; l are all distinct:

tn is defined as the Lie algebra with the same generators and relations. Then Tn ¼
UðtnÞ: (tn is introduced in [Dr3]; Tn is called the ‘‘algebra of infinitesimal chord
diagrams’’ in [BN].)
When npm and ðI1;y; InÞ is a collection of disjoint subsets of f1;y;mg; there is

a unique algebra morphism Tn-Tm taking ti; j to
P

aAIi ;bAIj
ta;b: We call it an

insertion-coproduct morphism and denote it by x/xI1;y;In : In particular, we have
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an action of Sn on Tn: Let us attribute degree 1 to each generator ti; j; this defines

gradings on the algebra Tn and on the Lie algebra tn: We denote bycTTn and bttn their

completions for this grading. Then ðcTTnÞ� is the preimage of K� by the natural

projection cTTn-K; and the exponential is a bijection ðcTTnÞ0-1þ ðcTTnÞ0 (where

ðcTTnÞ0 ¼ KerðcTTn-KÞ). We have an exact sequence

1-1þ ðcTTnÞ0-ðcTTnÞ�-K�-1:

An associator is an element F of 1þ ðcTTnÞ0; satisfying the pentagon equation

F1;2;34F12;3;4 ¼ F2;3;4F1;23;4F1;2;3; ð7:13Þ

the hexagon equations

e
t1;3þt2;3

2 ¼ F3;1;2e
t1;3

2 ðF1;3;2Þ	1e
t2;3

2 F1;2;3

and

e
t1;2þt1;3

2 ¼ ðF2;3;1Þ	1e
t1;3

2 F2;1;3e
t1;2

2 ðF1;2;3Þ	1

and AltðFÞ ¼ 1
8
½t1;2; t2;3�þ terms of degree 42: We denote by Assoc the set of

associators. If F satisfies the duality condition F3;2;1 ¼ F	1; then both hexagon

equations are equivalent. We denote by Assoc0 the subset of all FAAssoc satisfying

the duality condition. If FA1þ ðcTT2Þ0 and FA1þ ðcTT3Þ0; the twist of F by F is

FF ¼ F2;3F1;23FðF1;2F12;3Þ	1:

This defines an action of 1þ ðcTT2Þ0 on 1þ ðcTT3Þ0; which preserves Pent ¼ fFA1þ
ðcTT3Þ0jF satisfies (7.13)g; Assoc and Assoc0 (Pent and Assoc are preserved because F

has the form f ðt1;2Þ; fA1þ tK½½t��; so the ‘‘twisted R-matrix’’ F R ¼ F 2;1RF	1 ¼
f ðt2;1Þet1;2=2 f ðt1;2Þ	1 ¼ et1;2=2: Assoc0 is preserved because each F is such that

F ¼ F2;1:) We denote by Assoc0Lie; AssocLie and PentLie the subsets of all F in Assoc;

Assoc0 and Pent; such that logðFÞAbtt3:
Theorem 7.1. There is exactly one element of PentLie (resp., AssocLie; Assoc

0
Lie) in

each orbit of the action of 1þ ðcT2T2Þ0 on Pent (resp., Assoc; Assoc0). The isotropy

group of each element of Pent is felt1;2 jlAKgC1þ ðcT2T2Þ0:

7.2. Proof of Theorem 7.1

The arguments are the same in all three cases, so we treat the case of Assoc:
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Let F belong to Assoc: Set F ¼ 1þ
P

i40 Fi; where Fi is the degree i component

of F: Let d be the co-Hochschild differential,

d :Tn-Tnþ1

x /
Xn

i¼1
ð	1Þiþ1

x1;y;fi;iþ1g;y;nþ1 	 x2;3;y;nþ1 þ ð	1Þn
x1;2;y;n:

Then dðF2Þ ¼ 0; and AltðF2Þ ¼ 1
8
½t1;2; t2;3�: Computation shows that this implies

that for some lAK; we have F2 ¼ 1
8
½t1;2; t2;3� þ ldððt1;2Þ2Þ: We construct FA1þ

ðcTTÞ0; such that FFAAssocLie; as an infinite product F ¼ ?Fn?F2; where FiA1þ
ðcTT2ÞXi (the index Xi means the part of degree Xi). If we set F2 ¼ 1þ lðt1;2Þ2; then
logðF2FÞAt3 þ ðcTT3ÞX3: Assume that we have found F3;y;Fn	1; such that

logð %Fn	1FÞAt3 þ ðcTT3ÞXn; where %Fn	1 ¼ Fn	1?F2: Then jðn	1Þ :¼ logð %Fn	1FÞ satisfies

ðjðn	1ÞÞ1;2;34%ðjðn	1ÞÞ12;3;4 ¼ ðjðn	1ÞÞ2;3;4%ðjðn	1ÞÞ1;23;4%ðjðn	1ÞÞ1;2;3;

where % is the CBH product in ðcTT3Þ0: Let j
ðn	1Þ
n be the degree n part of jðn	1Þ:

Then we get dðjðn	1Þ
n ÞAt4:We now use the following statement, which will be proved

in the next subsection.

Proposition 7.2. If gAT3 is such that dðgÞAt4; then there exists bAT2; such that

gþ dðbÞAt3: If g has degree n; one can choose b of degree n:

It follows that there exists bAT2 of degree n; such that jðn	1Þ
n 	 dðbÞAt3: Set

Fn ¼ 1þ b; then jðnÞ ¼ logð %FnFÞ is such that jðnÞAjðn	1Þ 	 dðbÞ þ ðcTT3ÞXnþ1; so

jðnÞAt3 þ ðcTT3ÞXnþ1: Moreover, the product F ¼ ?Fn?F2 is convergent, and FF

then satisfies logðFFÞAbtt3: This proves the existence of F ; such that FFAAssocLie:
Let us now prove the uniqueness of an element of AssocLie; twist-equivalent to

FAAssoc: This follows from:

Proposition 7.3. Let F0 and F00 be elements of AssocLie; and let F belong to 1þ ðcTT2Þ0:
Then FF0 ¼ F00 if and only if there exists lAK such that F ¼ elt1;2 and F00 ¼ F0:

Proof of Proposition 7.3. Since t1;2 þ t1;3 þ t2;3 is central in cTT3; we have
FlF0 ¼ F0

when Fl ¼ elt; for any lAK: Conversely, let Fi be the degree i part of F : Then for

some l0AK; we have F1 ¼ l0t: Replacing F by F 0 ¼ FF	l0 ; we get
F 0
F0 ¼ F00; and

F 0 	 1 has valuation X2 ( for the degree in t). Assume that F 0 	 1a0 and let n be its
valuation. Let F 0

n be the degree n part of F 0: Then dðF 0
nÞAt3: On the other hand,

F 0
n ¼ mðt1;2Þn; where mAK	 f0g: Now dððt1;2ÞnÞAT3 ¼ Uðt3Þ has degree pn

for the filtration of Uðt3Þ; and its symbol in Snðt3Þ ¼ grnðUðt3ÞÞ is
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Pv	1
n0¼1

n
n0
� �

ðt1;3Þn
0
ðt2;3Þn	n0 	

Pn	1
n00¼1

n
n00
� �

ðt1;2Þn
00
ðt1;3Þn	n00 : this is the image of a nonzero

element in SnðKt1;2"Kt1;3"Kt2;3Þ under the injection Snð"1piojp3 Kti; jÞ+Snðt3Þ;
so it is nonzero. So F 0a1 leads to a contradiction. So F ¼ Fl0 ; therefore

F00 ¼ F0: &

Note that we have proved the analogue of Proposition 7.2, where the indices of
T3; t4; etc., are shifted by 	1:

7.3. Decomposition of t3 and proof of Proposition 7.2

To end the proof of the first part of Theorem 7.1, it remains to prove Proposition
7.2. For this, we construct a decomposition of tn: For i ¼ 1;y; n; there is a unique
algebra morphism ei :Tn-Tn	1; taking ti; j to 0 for any jai; and taking tj;k to

tj	lið j Þ;k	liðkÞ if j; kai; where lið j Þ ¼ 0 if joi and ¼ 1 if j4i: Then ei induces a Lie

algebra morphism *ei : tn-tn	1: Set *tn ¼
Tn

i¼1 Kerð*eiÞ: Then we have

Lemma 7.4.

tn ¼
Mn

k¼0

M
IAPkðf1;y;ngÞ

ð*tkÞI ;

where Pkðf1;y; ngÞ is the set of subsets of f1;y; ng of cardinal k; and ð*tkÞI
is the

image of *tk under tk-tn; x/xi1;y;ik ; where I ¼ fi1;y; ikg:

Proof. Let F be the free Lie algebra with generators t̃i; j; where 1piojpn: It is

graded by G :¼ Nfði;j Þj1piojpng: the degree of t̃i; j is the vector di; j ; whose ði0; j0Þ
coordinate is dði;j Þ;ði0;j0Þ: For

%
kAG; we denote by F

%
k the part of F of degree

%
k: Let

p :F-tn be the canonical projection. Since the defining ideal of tn is graded, we have

tn ¼
M
%
kAG

pðF
%
kÞ: ð7:14Þ

On the other hand, one checks that *tn ¼ "
%
kA *G pðF

%
kÞ; where *G is the set of maps

k : fði; j Þj1piojpng-N; such that for each i;
P

j j j4i kði; j Þ þ
P

j j joi kð j; iÞa0:

Define a map l : G-Pðf1;y; ngÞ as follows (Pðf1;y; ngÞ is the set of subsets of
f1;y; ngÞ: l takes the map k : fði; j Þj1piojpng-N to fij

P
j j j4i kði; j Þ þP

j j joi kð j; iÞa0g: Then for each IAPðf1;y; ngÞ; ð*tjI jÞI identifies with

"
%
kAl	1ðIÞ pðF

%
kÞ: Comparing with (7.14), we get

tn ¼
M

IAPðf1;y;ngÞ
ð*tjI jÞI : &
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When n ¼ 3; we get t3 ¼ Kt1;2"Kt1;3"Kt2;3"*t3: On the other hand, the fact that
the insertion-coproduct maps take tn to tm implies that d :Tn-Tnþ1 is compatible
with the filtrations induced by the identification Tn ¼ UðtnÞ; Tnþ1 ¼ Uðtnþ1Þ: The
associated graded map is

gr�ðdÞ : S�ðtnÞ-S�ðtnþ1Þ:

Proposition 7.2 now follows from:

Lemma 7.5. When kX2; the cohomology of the complex

Skðt2Þ ��!grkðdÞ
Skðt3Þ ��!grkðdÞ

Skðt4Þ

vanishes.

Proof. We have

Skðt3Þ ¼
Mk

a¼0
Sk	a M

1piojp3

Kti; j

 !
#Sað*t3Þ: ð7:15Þ

Let xASkðt3Þ; and let ðxaÞa¼0;y;k be its components in the decomposition (7.15).

We have

S�ðt4Þ ¼ S�ð*t4Þ# #
2piojp4

S�ð*t1;i;j3 Þ##
4

i¼2
S�ð*t1;i2 Þ#S�ðt2;3;43 Þ:

We denote by p the projection

p : S�ðt4Þ-*t
1;3;4
3 #S�ðt2;3;43 Þ;

which is the tensor product of: the identity on the last factor, the projection to degree

1 on the factor S�ð*t1;3;43 Þ; and the projection to degree 0 in all other factors. We also

denote by m : *t1;3;43 #S�ðt2;3;43 Þ-S�ðt3Þ the map induced by the identifications

*t
1;3;4
3 Ct

1;3;4
3 Ct3; t

2;3;4
3 Ct3 followed by the product map in S�ðt3Þ: We denote by

d1; d2; d3 the maps T3-T4 defined by

d1ðxÞ ¼ x12;3;4 	 x1;3;4 	 x2;3;4;

d2ðxÞ ¼ x1;23;4 	 x1;2;4 	 x1;3;4;

d3ðxÞ ¼ x1;2;34 	 x1;2;3 	 x1;2;4;

so d ¼ d1 	 d2 þ d3: The maps di are compatible with the filtrations of T3

and T4; we denote by grkðdiÞ the corresponding graded maps, so
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grkðdÞ ¼ grkðd1Þ 	 grkðd2Þ þ grkðd3Þ: Then if we set

x1 ¼
X

a;b;cjaþbþc¼k	1
ðt1;2Þaðt1;3Þbðt2;3Þc#ea;b;c;

where ea;b;cA*t3; we have

m 3 p 3 grkðd1ÞðxÞ ¼
Xk

a¼0
axa

 !
	 ðt2;3Þk	1

e0;0;k	1:

On the other hand, let us define the i-degree of an element of ð*tjI jÞI to be 1 if iAI and

0 if ieI : Then the i-degree of #ICf1;y;ng SaI ðð*tjI jÞI ÞCS�ðtnÞ is
P

I jiAI aI : If x is

homogeneous for the 1-degree, then so is grkðd2ÞðxÞ; and 1-degreeðgrkðd2ÞðxÞÞ ¼
1-degreeðxÞ: On the other hand, the elements of S�ðt4Þ whose 1-degree is a1 are in
the kernel of p: It follows that

m 3 p 3 grkðd2ÞðxaÞ ¼ 0 if aa1;

and p 3 grkðd2Þðx1Þ ¼ ðe0;0;k	1Þ1;3;4½ðt2;4 þ t3;4Þk	1 	 ðt3;4Þk	1�; so

m 3 p 3 grkðd2Þðx1Þ ¼ e0;0;k	1½ðt1;3 þ t2;3Þk	1 	 ðt2;3Þk	1�:

Finally, p 3 grkðd3ÞðxÞ ¼ 0: If x is such that grkðdÞðxÞ ¼ 0; we have

m 3 p 3 grkðdÞðxÞ ¼ 0; so X
aX0

axa ¼ e0;0;k	1ðt1;3 þ t2;3Þk	1:

Looking at degrees in the decomposition (7.15), we get xa ¼ 0 for aX2; and x1 ¼
e0;0;k	1ðt1;3 þ t2;3Þk	1: Using the projection p0 : S�ðt4Þ-*t1;2;43 #S�ðt1;2;33 Þ; we get in the

same way x1 ¼ ek	1;0;0ðt1;2 þ t1;3Þk	1: Now ek	1;0;0ðt1;2 þ t1;3Þk	1 ¼ e0;0;k	1ðt1;3 þ
t2;3Þk	1 implies ek	1;0;0 ¼ e0;0;k	1 ¼ 0 so x1 ¼ 0: Therefore xASkð"1piojp3 Kti; jÞ:
Let us set x ¼ Sðt1;2; t1;3; t2;3Þ; where S is a homogeneous polynomial of degree k of
K½u; v;w�: Since dðxÞ ¼ 0; we have

Sðt1;3 þ t2;3; t1;4 þ t2;4; t3;4Þ 	 Sðt1;2 þ t1;3; t1;4; t2;4 þ t3;4Þ

þ Sðt1;2; t1;3 þ t1;4; t2;3 þ t2;4Þ ¼ Sðt2;3; t2;4; t3;4Þ þ Sðt1;2; t1;3; t2;3Þ

(equality in S�ð"1piojp4 Kti; jÞ).
Applying @

@t1;2
3

@
@t3;4

to this equality, we get

ð@u@wSÞðt1;2 þ t1;3; t1;4; t2;4 þ t3;4Þ ¼ 0;
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therefore @u@wS ¼ 0: We have therefore

Sðu; v;wÞ ¼ Pðu; vÞ þ Qðv;wÞ;

where P and Q are homogeneous polynomials of degree k: Moreover, dðxÞ ¼ 0; so

½Pðt1;2; t1;3 þ t1;4Þ 	 Pðt1;2 þ t1;3; t1;4Þ 	 Pðt1;2; t1;3Þ�

þ ½Qðt1;4 þ t2;4; t3;4Þ 	 Qðt1;4; t2;4 þ t3;4Þ 	 Qðt2;4; t3;4Þ�

þ ½Pðt1;3 þ t2;3; t1;4 þ t2;4Þ þ Qðt1;3 þ t1;4; t2;3 þ t2;4Þ

	 Pðt2;4; t2;4Þ 	 Qðt1;3; t2;3Þ� ¼ 0: ð7:16Þ

Write this as an identity

Bðt1;2; t1;3; t1;4Þ þ Cðt1;4; t2;4; t3;4Þ þ Aðt2;3; t1;4; t1;3; t2;4Þ ¼ 0:

Then A (resp., B;C) is independent of t2;3 (resp., t1;2; t3;4). Let us now determine P

and Q: Since Bðt1;2; t1;3; t1;4Þ ¼ Bð0; t1;3; t1;4Þ; we have Pðu; v þ wÞ 	 Pðu þ v;wÞ 	
Pðu; vÞ ¼ Pð0; v þ wÞ 	 Pðv;wÞ 	 Pð0; vÞ: Therefore ðdP̃Þðu; v;wÞ ¼ 0; where

P̃ðu; vÞ ¼ Pðu; vÞ 	 Pð0; vÞ and d is the co-Hochschild differential of polynomials in

one variable. The corresponding cohomology is zero, so there exists a polynomial %P;
such that

Pðu; vÞ 	 Pð0; vÞ ¼ %Pðu þ vÞ 	 %PðuÞ 	 %PðvÞ:

We conclude that Pðu; vÞ has the form

Pðu; vÞ ¼ %Pðu þ vÞ 	 %PðuÞ 	 RðvÞ ð7:17Þ

where %P and R are polynomials in one variable of degree k; since Pðu; vÞ is

homogeneous of degree k; we can assume that %P and R are monomials of degree k:

In the same way, since Cðt1;4; t2;4; t3;4Þ ¼ Cðt1;4; t2;4; 0Þ; we have Qðu þ v;wÞ 	
Qðu; v þ wÞ 	 Qðv;wÞ ¼ Qðu þ v; 0Þ 	 Qðu; vÞ 	 Qðv; 0Þ; so ðdQ̃Þðu; v;wÞ ¼ 0; where

Q̃ðu; vÞ ¼ Qðu; vÞ 	 Qðu; 0Þ: So Qðu; vÞ has the form

Qðu; vÞ ¼ %Qðu þ vÞ 	 %QðvÞ 	 SðuÞ; ð7:18Þ

where %Q and S are polynomials in one variable of degree k; which can be assumed to
be monomials of degree k: We have therefore

x ¼ %P1;23 þ %Q12;3 	 %P1;2 	 %Q2;3 	 T1;3;

where %P ¼ %Pðt1;2Þ; %Q ¼ %Qðt1;2Þ and T ¼ ðR þ SÞðt1;2Þ: So x ¼ dð %QÞ þ ð %P þ %QÞ1;23 	
ð %P þ %QÞ1;2 	 T1;3: Set a ¼ %P þ %Q; we have dðyÞ ¼ 0; where y ¼ a1;23 	 a1;2 	 T1;3;

applying e1 to dðyÞ ¼ 0; we get T2;3 	 T2;4 ¼ 0; so T ¼ 0: We then get a12;34 	
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a12;3 	 a2;34 þ a2;3 ¼ 0: Applying e3 3 e2 to this identity, we get a1;4 ¼ 0: Finally %P ¼
	 %Q; so x ¼ dð %QÞ; which proves the lemma. &

7.4. Isotropy groups

Proposition 7.3 can be generalized to the case of a pair of elements of PentLie; and
it implies that the isotropy group of each element of PentLie is the additive group

felt1;2 ; lAKg: Let F be an element of Pent: There exists an element FLie of PentLie in

the orbit of F: So the isotropy groups of F and FLie are conjugate. Since 1þ ðcTT2Þ0 is
commutative, the isotropy group of F is felt1;2 ; lAKg:
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