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Abstract

We define admissible quasi-Hopf quantized universal enveloping (QHQUE) algebras by
h-adic valuation conditions. We show that any QHQUE algebra is twist-equivalent to an
admissible one. We prove a related statement: any associator is twist-equivalent to a Lie
associator. We attach a quantized formal series algebra to each admissible QHQUE algebra
and study the resulting Poisson algebras.
© 2003 Elsevier Inc. All rights reserved.

0. Introduction

In [WX], Weinstein and Xu introduced a geometric counterpart of the R-matrix of
a quasi-triangular quantum group: they proved that if (g,r) is a finite dimensional
quasi-triangular Lie bialgebra, then the dual group G* is equipped with a braiding
Zwx € Aut((G*)?) with properties analogous to those of quantum R-matrices (in
particular, it is a set-theoretic solution of the quantum Yang—Baxter Equation). An
explicit relation to the theory of quantum groups was later given in [GH,EH,EGH]:
to a quasi-triangular QUE algebra (Uy(g),m, R) quantizing (g,r), one associates
its quantized formal series algebra (QFSA) Ui(g)' = Un(g); Us(g) is a flat deforma-
tion of the Hopf-Poisson algebra O = (U(g*))" of formal functions of G*. Then

one proves that Ad(R) preserves U;l(g)@z7 and Ad(R)|,_, coincides with the
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automorphism Zwyx of (ng; moreover, p = hlog(R)|,_, is a function of @‘?ﬁ
independent of a quantization of g*, which may be expressed universally in terms of
r, and Zwx coincides with the “time one automorphism’ of the Hamiltonian vector
field generated by p.

In this paper, we study the analogous problem in the case of quasi-quantum
groups (quasi-Hopf QUE algebras). The classical limit of a QHQUE algebra is a Lie
quasi-bialgebra (LQBA). V. Drinfeld proposed to attach Poisson—-Lie “quasi-
groups’’ to each LQBA ([Dr4]). Axioms for Poisson—Lie quasi-groups are the quasi-
Hopf analogues of the Weinstein—Xu axioms.

A Poisson—Lie quasi-group is a Poisson manifold X, together with a “product”

Poisson map X2 X, a unit for this product ee X, and Poisson automorphisms

dyeAut(X?), o @12 and @1 e Aut(X*), such that

mXO(id X mX) :mxo(mx X id)odjx,
(my x id x id) o @Y = Dy o (my x id x id),
(id x my x id) o @\2* = @y o (id x my x id), etc.

and @y o @12 = (id x dy) o By o (dy x id).

A twistor for the quasi-group (X, my, @y) is a collection of Poisson automorphisms
FyeAut(X?), F*3, FiPeAut(xd), F{P¥* g4 g2t plias plie

Aut(X*) such that

(my x id) o Fy? = Fy o (my x id),

((my o (id x my)) x id) o F{** = Fy o (my < (id x my)) x id),

FyP3 = (@y xid) o F{) o (y xid) !, ete.

A twistor replaces the quasi-group (X, my, @x) by (X,nly, @) with my = my o Fy
and @, = (Fy) "o (Fy xid) ™" o @y o Fy* o (id x Fy).

It is useful to further require that the automorphisms @y, Fy are given by
Lagrangian bisections of a Karasev—Weinstein groupoid associated with X3, X2
Other axioms for Poisson-Lie quasi-groups were proposed in a differential-
geometric language in [Ban,KS].

We do not know a ‘“‘geometric” construction of a twist-equivalence class of

(X, my, ®y) associated to each Lie quasi-bialgebra, in the spirit of [WX]. Instead we
generalize the “construction of a QFS algebra and passage to Poisson geometry”
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part of the above discussion, and we derive from there a construction of triples
(X,my,®y), in the case of Lie quasi-bialgebras with vanishing cobracket.

Let us describe the generalization of the “construction of a QFS algebra™ part
(precise statements are in Section 1). We introduce the notion of an admissible quasi-
Hopf QUE algebra, and we associate a QFSA to such a QHQUE algebra. Each
QHQUE algebra can be made admissible after a suitable twist.

We generalize the “passage to Poisson geometry” part as follows. The reduction
modulo # of the obtained QFS algebra is a quintuple (A4, m, P, A, @) satisfying certain

axioms; in particular exp(¥}) is an automorphism of A®3 and (4,m,exp(V5;))
satisfies the axioms dual to those of (X, my, ®yx).

When the Lie quasi-bialgebra arises from a metrized Lie algebra, admissible
QHQUE algebras quantizing it are given by Lie associators, and we obtain a quasi-
group (X, my, ®x) using our construction. We also prove that its twist-equivalence
class does not depend on the choice of an associator.

Finally, we prove a related result: any associator is twist-equivalent to a unique
Lie associator.

1. Outline of results

Let K be a field of characteristic 0. Let (U,m) be a topologically free IK[[A]]-
algebra equipped with algebra morphisms

A:U->UQU, and ¢:U-K][H]
with (e®id) o4 = (id®¢) o4 =id
such that the reduction of (U, m, 4) modulo # is a universal enveloping algebra. Set
U' = {xeU| for any tree P, 6 (x)enl”lU®IF}
(see the definitions of a tree, 5<P), and |P| in Section 2). We prove:

Theorem 1.1. U’ is a topologically free K[[h]]-algebra. It is equipped with a complete
decreasing algebra filtration

(U = {xeU| for any tree P, 5% (x)en"U®M}.

U’ is stable under the multiplication m and the map A : U — U®? induces a continuous
algebra morphism

Ay U = U'®? = lim U'®? Z U U@

n P.qlp+q=n
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Set O = U'/hU'. Then O is a complete commutative local ring and the reduction
modulo h of Ay is a continuous ring morphism

Ag:0-0% =1im [ 092 [ > 0" g
" palptq=n

where OW) = U'W) /(hU A U'P)).

Theorem 1.2. Let (U, m, A, ®) be a quasi-Hopf QUE algebra. Let g be the Lie algebra
of primitive elements of U/hU, so U/hU = U(g). Assume that

hlog(®)e(U)®. (1.1)

Then there is a noncanonical isomorphism of filtered algebras U' /WU’ —>§‘(g), where
§(g) is the formal series completion of the symmetric algebra S'(g).

When (U,m, 4,®) satisfies the hypothesis (1.1), we say that it is admissible.
In that case, we say that U’ is the quantized formal series algebra (QFSA)
corresponding to (U,m, A, ®). Let us recall the notion of a twist of a quasi-
Hopf QUE algebra (U,m,A,®). This is an element Fe(U®2?)*, such that
(e®id)(F) = (id®¢)(F) = 1. It transforms (U, m, 4, @) into the quasi-Hopf algebra
(U,m,*A,F®), where

FA=Ad(F)o4, and o =(1Q®F)(id®4)(F)o(4®id)(F)"'(F®1)".

Theorem 1.3.

(1) Let (U,m, A, ®) be an admissible quasi-Hopf QUE algebra. Let us say that a twist
F of U is admissible if hlog(F)eU’ ®2 Then the twisted quasi-Hopf algebra
(U,m,* A, F®) is also admissible, and its QFSA coincides with U’.

(2) Let (U,m, A, ®) be an arbitrary quasi-Hopf QUE algebra. There exists a twist Fy
of U such that the twisted quasi-Hopf algebra (U, m," A Fo®) is admissible.

Theorem 1.3 can be interpreted as follows. Let (U, m) be a formal deformatign of
a universal enveloping algebra. The set of twists of U is a subgroup 7 of (U®?2)*.
Denote by 2 the set of all quasi-Hopf structures on (U, m), and by 2,4, the subset of
admissible structures. If 2 is nonempty, then 2,4, is also nonempty, and all its
elements give rise to the same subalgebra U’ < U (Theorem 1.3, (1)). Using U’, we
then define the subgroup  yam =7 of admissible twists. We have a natural action of
J on 2, which restricts to an action of I 4qy on Z,gm. Theorem 1.3 (2) says that the
natural map

Qadm/fa/—adm - Q/?/—
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is surjective. Let us explain why it is not injective in general. Any QUE Hopf algebra
(U,m, 4) is admissible as a quasi-Hopf algebra. If ue U* and F = (u@®u)A(u)"",
then (U, m,¥ A) is a Hopf algebra. So (U, m, A) and (U, m,* A) are in the same class
of 2/7 . These are also two elements of 2,4n; the corresponding QFS algebras are
U’ and Ad(u)(U'). In general, these algebras do not coincide, so (U,m, 4) and
(U,m,A) are not in the same class of 2u4m/7 adm-

The following result is a refinement of Proposition 3.10 of [Dr2]. Let (g, 4, ) be a
pair of a Lie algebra (g,u) and @€ /\3(9)9. Then (g,0 =0, @) is a Lie bialgebra.

Proposition 1.4. There exists a series &(¢o) e U(q)® [[H]], expressed in terms of (i, ¢)
by universal acyclic expressions, such that (U(g)[[h]], mo, 4o, E(@)) is an admissible
quantization of (g, 1,0 =0, ).

This proposition is proved in Section 6.

Recall that the main axioms for a quasi-Hopf algebra (4, m, 4, ®) are that (a) @
measures the noncoassociativity of 4, and (b) @ satisfies the pentagon equation. By
analogy, we set:

Definition 1.5. A quasi-Hopf Poisson algebra is a quintuple (4, myg, P, 4, »), where

® (A,my) is a formal series algebra,
® P is a Poisson structure on 4 “‘vanishing at the origin” (i.e., such that (P) cmy,
where my is the maximal ideal of A),

o A:A4 —»A@A is a continuous Poisson algebra morphism, such that (¢e®id) -4 =
(id®e) o 4 = id, where ¢: 4— A/my = K is the natural projection,

o He(my)® satisfies

(Jd®4)(A(a)) = p % (A®id)(A(a)) * (—), ae4,

~1,2,34 ~1234 _ ~234 3 ~1234 3 ~123
7 * =07k P *po,

where we set fkg=/+g+4P(f,g)+ -, the Campbell-Baker-Hausdorff
(CBH) series of the Lie algebra (A4, P).

Such a structure is the function algebra of a “formal Poisson—Lie quasi-group”.

If fe mf?z, we define the twist of the quasi-Hopf Poisson algebra (4, my, P, 4, »)
by f as the algebra (4,mq, P,’A,/p), where

TA(a) = f% A(a) % (—f), and

'f<7> :];2,3 *f1’23 * oKk (—f12’3) * (—fl‘z);

then (A, my, P,/A,/p) is again a quasi-Hopf Poisson algebra.
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Remark 1.6. If A is any Artinian local K-ring with residue field K, set X =
Homg (4, 4). Then X is the “Poisson-Lie quasi-group”, in the sense of the

Introduction. Namely, 4 induces a product my:X x X—X, and exp(Vj),

exp(Vnss), etc., induce automorphisms @y, ¢}2"3’4, etc., of X, that satisfy the

quasi-group axioms (we denote by Vr the Hamiltonian derivation of 4 ®k induced by

f€A®K). Moreover, if fis a twist of 4, then exp(Vy), exp(Viia), exp(Viaansa), ete.,

define a twistor (FX,F;,Z‘}, )((12)3‘4, ...) of (X,my,®y). Twisting 4 by f corresponds

to twisting (X, my, ®yx) by (FX,F;(M, o).

Lemma 1.7. If (A,mq, P, A, ) is a quasi-Hopf Poisson algebra, set g = mA/(mA)2;
then P induces a Lie bracket u on o, the map A — A" induces a linear map
8 : g— A%(q), and the reduction of Alt(p) is an element ¢ of A*(g). Then (g, 1,9, ¢) is a
Lie quasi-bialgebra. Moreover, twisting (A, mg, P, A, p) by 1 corresponds to twisting

(9, 14,0, ) by
/= (Alt(f) mod (my)* ®@my + my ® (my)*) € A%(g).
Taking the reduction modulo # of a QUE algebra over g induces a natural map
Dadm/ T adm — {quasi-Hopf Poisson algebra structures on §(g)} /twists.
To summarize, we have a diagram
quasi-Hopf poisson algebra

structureson 8 (g)
class; L red

27 < 2! Tam - { }/twists

{Lie quasi-bialgebra structures on (g, u)} / twists,

where class is the classical limit map described in [Dr2], and red is the map described
in Lemma 1.7. It is easy to see that this diagram commutes.

When U is a Hopf QUE algebra, it can be viewed as a quasi-Hopf algebra with
& = 1, which is then admissible. The corresponding quasi-Hopf Poisson algebra is
the Hopf-Poisson structure on Og- = (U(g*))", and @ = 0.

Let (g, 1, 0, @) be a Lie quasi-bialgebra. A lift of(g, 1, 9, ¢) is a quasi-Hopf Poisson
algebra, whose reduction is (g, i, d,®). A general problem is to construct a lift for
any Lie quasi-bialgebra. We will not solve this problem, but we will give partial
existence and uniqueness results.

Assume that 6 = 0. A Lie quasi-bialgebra is then the same as a triple (g, 4, @) of a

Lie algebra (g, ) and pe A\*(g)°.
Theorem 1.8. (1) There exists a lift

(S'(8), mo, Py, A0, ) (1.2)
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of (8,u,0 =0,¢). Here Py is the Kostant—Kirillov Poisson structure on §* and Ay is
the coproduct for which the elements of g are primitive.

(2) Any two lifts of (g,1,0 =0, ) of the form (1.2) are related by a g-invariant
twist.

Examples of Lie quasi-bialgebras with 6 = 0 arise from metrized Lie algebras, i.e.,
pairs (g, 7,) of a Lie algebra g and 7,€5°(g)". Then ¢ = [1;%, 72]. Recall that a Lie
associator is a noncommutative formal series (A4, B), such that log &(4, B) is a Lie

series [A, B]+higher degree terms, satisfying the pentagon and hexagon identities
(see [Dr3)).

Proposition 1.9. If @ is a Lie associator, we may set ¢ = log(®)(7y?,72%), where 7l is
the image of tg’j in §'(g)®3, and we use the Poisson bracket of §‘(g)®3 in the

12 23),

expression of log(®)( JRREY

We prove these results in Section 6. If now @ is a general (non-Lie) associator,
(U(g)[[R)], mo, Ao, @(hty?, he;?)) is a quasi-Hopf QUE algebra, but it is admissible
only when @ is Lie (for general g). According to Theorem 1.3 (2), it is twist-
equivalent to an admissible quasi-Hopf QUE algebra. We prove

Theorem 1.10. Any (non-Lie) associator is twist-equivalent to a unique Lie associator.

So the “concrete’ version of the twist of Theorem 1.10 is an example of the twist
Fy of Theorem 1.3, (2).

2. Definition and properties of U’

In this section, we prove Theorem 1.1. We first introduce the material for the
definition of U’: trees (a); the map o®) (b); then we prove Theorem 1.1 in (¢) and (d).

2.1. Binary complete planar rooted trees

Definition 2.1. An n-binary complete planar rooted tree (n-tree for short) is a set of
vertices and oriented edges satisfying the following conditions:

e cach edge carries one of the labels {/,r}.
o if we set:

valency of a vertex = (card(incoming edges), card(outgoing edges)),

we have
o there exists exactly one vertex with valency (0,2) (the root)
o there exists exactly n vertices with valency (1,0) (the leaves)
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o all other vertices have valency (1,2)
o if a vertex has valency (x,2), then one of its outgoing edges has label / and the
other has label r.

Let us denote, for n>=2,
Tree, = {n-binary complete planar rooted trees}.

By definition, Tree; consists of one element (the tree with a root and one nonmarked
edge) and Tree, consists of one element (the tree with a root and no edge). We will
write |P| = n if P is a tree in Tree,.

Definition 2.2 (Extracted trees). Let P be a binary complete planar rooted tree. Let
L be the set of its leaves and let L' be a subset of L. We define the extracted subtree
P;; as follows:

(1) P, is the set of all edges connecting the root with an element of L',

(2) the vertices of Py, all have valency (0,2), (1,0), (1,2) or (1,1);

(3) Py is obtained from Py, by replacing each maximal sequence of edges related by
a (1,1) vertex, by a single edge whose label is the label of the first edge of the
sequence.

Then Py is a |L'|-binary complete planar rooted tree.

Definition 2.3 (Descendants of a tree). If we cut the tree P by removing its root and
the related edges, we get two trees P’ and P”, its left and right descendants.

In the same way, we define the left and right descendants of a vertex of P.

If P is a n-tree, there exists a unique bijection of the set of leaves with {1, ..., n},
such that for each vertex, the number attached to any leaf of its left descendant is
smaller than the number attached to any leaf of its right descendant.

2.2. Definition of AP 5. U— U®n

Let us place ourselves in the hypothesis of Theorem 1.1. For Py (resp., Py, P») the
only tree of Treey (resp., Tree;, Tree,), we set A7) = ¢ (resp., A7) = id, 4%2) = 4).
When P is a n-tree with descendants P’ and P”, we set

AP — (A(P’)®A(P”)) o A,

so A%) is a linear map U— U®".

We set 67 = (id — 1103)®‘P| o AP 50 6P is a linear map U— U®",

In particular, ) (x) = ¢(x), 6" (x) = x — &(x)1, and 67 (x) = 4(x) — x®1 —
I®@x+ex)I®I1.

We use the notation ) = AP for i = 0,1,2,and 6 = o).
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We have also

o) = (3P @6y 4.

2.3. Behavior of 0P with respect to multiplication

If ¥ = {i}, ..., ik} is a subset of {1, ..., n}, where i <i» < --- <, the map x+> x* is

the linear map U®% - U®”, defined by

N @y 1T ey @I @YnE - @1 T @@ 19

If ¥ =0, x+—x* is the map K- U®" 1+—1®",

Proposition 2.4. For PeTree,, we have the identity

Meyy = > @ @)T 1),
X 3" {1,... n}|
2or'={1,....n}

for any x,yeU.

This proposition is proved in Section 5.

2.4. Construction of U’

Let us set

U' = {xeU| for any tree P, 6 (x)enl”lU®IF},

Then U’ is a topologically free K[[A]]-submodule of U. Moreover, if x,ye U’, and P
is a tree, then

(= 3 P, M)

52 {1,...,|P}
Tur=(1,...,|P[]}

the summand corresponding to a pair (2,2’) with XN X" = () is zero, and the h-adic
valuation of the other summands is >|2| + || >|P| + 1; s0 67 ([x,y]) e WP+ U @I,
On the other hand, there exists ze U such that [x,y] = hz, so 6 (z)enl”U®IP!; so
ze U’ and we get [x,y]ehU’. It follows that U’ /AU’ is commutative. Let us set

U'™ =U nh"U. (2.3)
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We have a decreasing filtration
U =00y pS e

we have U™ c#"U, so U’ is complete for the topology induced by this filtration.
This is an algebra filtration, i.e., U U'/) « U'+/)_ It induces an algebra filtration
on U'/hU’,

U'/hU > - o0 /(U AU S -,
for which U’/hU’ is complete. Moreover, the completed tensor product
U'®U' =lim (U’/®\ vl oW @U/(m)

Pyqlp+q=n

identifies with

lim ({(xe U UIYP, 0, (6" ®06Q)(x)ehlHe ity

(xe UBUNP, 0, (5P ®5@)(x)ehmtrlritiol y@iriony).
If xeU', and P,Q are trees, with |P|,|Q|#0, then since 67 (1) =69 (1) =0,

we have

(0P @6 (4(x)) = (6P ®69)(5(x)) = 5(R>(x)€h|RIU§\R\

_plPlel g elriil

where R is the tree whose left and right descendants are P and Q; so |R| = |P| + |Q].
On the other hand,

0P @) (4(x)) = 0P (x)@ 1ehPIU®IP.

(e®@6D)(A(x)) = 1@ (x)enlPlU®I,

so A(x) satisfies (3 ®09)(4(x))ehl? A UBIPHIQl for any pair of trees (P, Q).
A:U>UQU therefore induces an algebra morphism Ay : U'— U'®2 whose
reduction modulo # is a morphism of complete local rings

00— 082 — hﬁ (@@2 Z (Q([’)@@(lﬁ) 7

Psqlp+q=n

where ¢ = U'/hU’" and 07) = U'®) /(U'P) A RUY).
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3. Classical limit of U’

We will prove Theorem 1.2 as follows. We first compare the various o) where P

is a n-tree (Proposition 3.1). Relations found between the o) imply that they have
h-adic valuation properties close to those of the Hopf case (Proposition 3.2). We then
prove Theorem 1.2.

3.1. Comparison of the various 6P

Let P and P, be n-trees. There exists an element 77 e U®" such that 4" =
Ad(®P ) o AP0 The element @7 is a product of images of ® and @' by the

various maps U®3 — U®” obtained by iteration of 4. We have
of P = P PP (3.4)
for any n-trees Py, P, P'. For example,

({d®4) o4 = Ad(®) - (4®id) - A),

(A@4) o4 =Ad(d'>3*) o (4®id®?) - (4®id) - 4), etc.

Proposition 3.1. Assume that hlog(qﬁ)e(U’)&)3

elements

. Then there exists a sequence of

PPyREv PPyRZv PPyREv D\ ®
FPPo ‘:ZFl,ao ‘®"'®Fv,a0 »e(Ul®n) v7

o

indexed by the triples (R,X,v), where R is a tree such that |R|<n, X is a subset of
{1, ...,n} with card(X) = |R|, and v is an integer =1, such that the equality

8P =Ad(@PPry o5 4 N N >

klk<n R a k—tree Xc<{l,...,n},
card(2)=k

Z Z ad FPP()RZ» o ... Oadh(FPPoRZL) o (5(R))Z (35)

v=1 o

holds. Here ady(x)(y) =[x, y].
Proof. Let us prove this statement by induction on n. When n = 3, we find
5(](23)) _ Ad(¢)5 ((12)3 (Ad( ) l)(51’2+5]73 +52,3 +5(])] _'_5(])2 _’_5(])3)7

so the identity holds with FFPR> = L(hlog ¢)®v for all choices of (R, X,v), except

when |R| = 0, in which case FFPPR> = (. Assume that the statement holds for any
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pair of k-trees, k<n, and let us prove it for a pair (P, Py) of (n+ 1)-trees. For k any
integer, let Py (k) be the k-tree corresponding to

§Prn (k) _ (5®id®k72) 0.0,

Thanks to (3.4), we may assume that Py = P (n + 1) and P is arbitrary. Let P’ and
P" be the subtrees of P, such that |[P'| +|P"| =n+ 1, and 6% = (6") @ 6%")) - .
Let P; and P, be the n-trees such that

5P — (& 5(Prere(k )®5 P’)) 5 and o) = (5(Plefl(k/))®5(Pleﬁ(k”>)) 0d

Assume that | P1|# 1. Using (3.4), we reduce the proof of (3.5) to the case of the pairs
(P, Py),(P1,Pp) and (P,, Py). Then the induction hypothesis applied to the pair
(P, Piesi (K')), together with @771 = @7 Pen®) @ 1®K implies

ENTECRIES YD W >
klk<k' R a k—tree Yc={l,....k'},
card(2)=k

Z Z Ad((PP’Pl) o adh(Fl}LPIen(k')Z" ®1 ®k”) adh(FP/P]eﬁ )Zv ® 1 ®K )

v>1 o

o ((5(R) ®5(P” ) 5)Zk+1 ,,,,, l’

which is (3.5) for (P, P;). In the same way, one proves a similar identity relating P;
and P,. Let us now prove the identity relating P, and P,. We have o) =
(6®@id®™ 1) o6 and 6P = (5®id®"!) - 6F), where P, and P} are n-trees. We
have

o — (A®id®"2) . o2l
so we get
5(F2) :Ad((pl’z,l’o) o (o)
+ (Ad(@PZ’PO) _ Ad((gbplzvpz))l’37"‘7"+l)) o (5(P’0))1,3,‘..,n+1

+ (Ad((I)PE’PO) _ Ad((¢P§,P6)2.3,...,n+])) o (5(P6))2,3,...,n+l

G DD DD DD

k<n R a k—tree X<{l,....n}, v=1
card(2)=k

P.P, 3y

<3 ad (F) - ady(F37) < (60
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We have hlog @7 e U'®t1 and hlog &> e U'®"; this fact and the relations
(6®@id®" ") (ady(x1)---ady(x,) = (37)*)

_ (adh(x%ZA,....,nJrl) o ... Oadh(XIZ,...,n+l) _ adh(x%,B,...,nJrl) o ... oad;,(x‘l,‘3""""+1)
. adh<x%,3,...,n+1) oo adﬁ(x2’3""’”+l)) o (5(R))2+1

if 1¢%2, and
(O®id®" ") (ady(x1)+-ady(x,) o (8%

— ad;,(xiz""’”“) oo adh(xiz""’”+l) o ((5®id®n4) R 5(1{))1‘2,241
+ (adh(x}Z,.“,nJrl) 0 eee Oa'dh(x‘I)27"‘“'n+l) _ ad;,(xi’3""”’+l) ... Oadh(xi'} 77777 n+1))
o (5<R))1Ay+1 + (adh(xiz ,,,,, n+l) o Oadh(x‘1‘2.,m.n+l) _ adh(xf‘3 ,,,,, n+l) o Oadh(x%}‘,.‘.,nﬂ))

5 (5(R))2,2/+1

if ¥ = 2" U{1}, where 1¢ 3’ imply that 8" — Ad(@">%) o 57) has the desired form.
Let us now treat the case |P;| = 1. For this, we introduce the trees P3 and P4, such
that:

0P = (1d®" 1 ®06) o (Id®" 2 ®5) o -+ 0 0,

P = (id®" 1 ®06) o (0®id®" ) o (6@id®" ) o - o (d®id) - .

We then prove the relation for the pair (P, P3) in the same way as for (P, P;) (only
the right branch of the tree is changed); the relation for (P3, P4) in the same way as
for (P,, P3) (instead of composing a known relation by d®id®"!
with id®"!' ®4); and using the identity

o) = (3@1d®" 1) o (Id®" 2 ®0) » (d@id®" ) o - 04,

, We compose it

we prove the relation for (P4, P) in the same way as for (P,, P3) (composing a known
relation by 6®id®"""). O

3.2. Properties of 6P
Proposition 3.2. Let n be an integer and xe U.

(1) Assume that for any tree R, such that |R|<n, we have 3 (x) e 'Rl U®IRI Then the
conditions

dP(x)en"U®", (3.6)

where P is an n-tree, are all equivalent.
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(2) Assume that for any tree R, such that |R|<n, we have oW (x) ehRHTU®IRI Then
the elements

(% 5P (x) mod h) eU(g)®",

=
=)

where P is an n-tree, are all equal and belong to (g®")~" = S"(g).

Proof. Let us prove (1). We have 67 = (id — 5o &) ®/1 < 6") where n: K[[h]] > U is
the unit map of U, so

5(P> :Ad(@P,Po) 5 5(1)0) + Z Z Z Z Z

klk<n R a k—tree X<{l1,...n}, v=1 o
card(2)=k

(1d —no 8)®n R adh(Fl}?(fOsz) oo adh(FPPqRZV) o (5(R))Z

v,0

Then (1) follows from:

Lemma 3.3. Let X be a subset of {1, ...,n} (we will write || instead of card(X)) and

let Uy be the kernel of the counit of U. Let xehm(Uo)@Z‘ and Fy, ..., F, be elements of
(U")®". Then

(id — 17 8)®" (adp(Fy)--ady (F,) (x5)) € W' (U) ©".

Proof of Lemma. Each element Fe (U’ )®" is uniquely expressed as a sum F =
Yser(1,.. ny) Fx, where Fx belongs to the image of

(Up)®=H - (o,

e,

P({1, ...,n}) is the set of subsets of {1, ...,n}, and Uj is the kernel of the counit of
U'. Then

(id — o) ®" (adp(F1)--ad(F) (x*))

= > (id =2 6)®"(ada((F1)y, ) -+ada((F) 5, )(x%)).

The summands corresponding to (2, ..., 2,) such that X, U --- X, UX#{l, ..., n} are

all zero. Moreover, each (F,); can be expressed as (f,)**, where fzeh‘z"(Uo)@Z".

The lemma then follows from the statement:
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Statement 3.4. If 3, X' {1, ...,n}, xeh™ (U)®", yeh‘zl‘(UO)@Z", then Y[x, 7] can
be expressed as z*°*' | where zeh'zuz"(Uo)@ZUZ’l.

Proof. If XnX" = 0, then [x,y] =0, so the statement holds. If X2’ #0, then the
h-adic valuation of § [x,)] is = — 1 + || + |¥'[>|2Z]| + |2'| = |Zn Y| =|20X]. O

Let us now prove property (2). The above arguments immediately imply that the

(%5(1))()() mod %), |P| = n, are all equal. This defines an element S,(x)e U(g)®".
If |P| =n, we have (id®*®®id®"* 1) 6P (x) e US| so if &y: U(g)—
U(g) ® U(g) is defined by do(x) = 4o(x) —x®1 — 1®x +¢(x)1®1, 4¢ being the

coproduct of U(g), then (id®* ® dp ®id®"*1)(S,(x)) =0, so
Sa(x)eg®”". (3.7)

Let us denote by ;41 the permutation of the factors i and i + 1 in a tensor power.
Fori=1,...,n—1, let us compute (o;;+1 —id)(S,(x)). Let P’ be a (n — 1)-tree and
let P be the n-tree such that 6 = (id®"_1 ®5®id®”‘i_l) o6, Then

(G111 — id)(Su(x)) = %(id@’l@(éz" —8)®id®" 1) o 5 (x) mod h|.

By assumption, 8 (x) e /" U®"~!; moreover, 5> — 8 = A4>! — 4,50 (6> = 6)(U) <
h(UQ U); therefore

(id®i71 ®(52,1 _ (S) ®id®n7i71) o 5(P’)(x)€hn+l U®";

it follows that (o;;41 —id)(S,(x)) =0, therefore S,(x) is a symmetric tensor of

U(g)®". Together with (3.7), this gives S,(x)e(g®")%". This ends the proof of
Proposition 3.2. [

3.3. Flatness of U’ (proof of Theorem 1.2)

Let us set
U"" = {xeU'[6P)(x) e P U@l if |Pl<n—1}.

Then by Proposition 2.4, we have a decreasing algebra filtration

U =0"50"D50"d5 ... 5hU. (3.8)
We have U"" > U™ + hU' (we will see later that this is an equality). We derive
from (3.8) a decreasing filtration

0= 0" 5" 52 5 ...

)
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where ¢ = U'/hU’" and 0"") = U"" /hU'. We have

ﬂ @N(n)

n=0

this means that (0,5, U"" = hU’, which is proved as follows: if x belongs to
Aus0U"™ | then e(x) = O(h), x — &(x)1 = O(h?), so x = hy, where ye U. Moreover,
3IPl(y) = O(?!) for any P, so ye U’

The fact that @ is complete for this filtration will follow from its identification
with the filtration > @) > ... (this will be established in Proposition 3.6), where
0D = U9 /hU' AU and U'Y) is defined in (2.3). We first prove:

Proposition 3.5. Ser & (0) = @ =0 "™ /0" Then there is a unique linear map
In: gtl(O)—S™(g), taking the class of x to the common value of all

LGk 8P (x) mod h), where P is a n-tree. The resulting map i:gAr”(@)ﬁS'\‘(g) is an
isomorphism of graded complete algebras.

Proof. In Proposition 3.2, we constructed a map U”") - S"(g), by x+> common
value of L(:5 8" (x) mod #) for all n-trees P. The subspace U"¢"*!
contained in the kernel of this map, so we obtain a map

)= U"™ is clearly

}vn . U//(n)/U//(n+]) — mll(n)/(pu(n-o-]) —>S”(g).

Let us prove that 2 = @, 4, is a morphism of algebras. If xe U"™ and ye U"™
Proposition 2.4 implies that if R is any (n + m)-tree, we have

5(P) (xy) — Z 5(Rz/)(x)):/é(RZ//)(y)Z”.
232 e{l,.. ntm}
2or'={1,...,n+m}

The h-adic valuation of the term corresponding to (X', 2") is =|¥'| + |2”] if |2'|=n
and |2’|=m, and >|2'|+|2"|+ 1 otherwise, so the only contributions to
(7 0 (xy) mod h) are those of the pairs (X', 2") such that '~ 3" = . Then:

<hl+m OB (xy) mod h>

<hl %) (x) mod h) (hl 5%") () mod h)
23], ntm)|
12 |=n,|2" |=m,
Z/mz//zw

=Y AP m0))

22" {1, ntm}|
|2 |=n,|2" |=m,
2 n2"=0

(n+m)! 2, (x)Am(y),
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because the map
S(g)—(T(g), shuffle product),

Xp e Xp > Z Xs(1) ® - @ Xg(n)
ceS,
is an algebra morphism. Therefore A, (xy) = 4,(x)2n(y). Let us prove that 4, is
injective. If xe U"™ is such that ( 3P (x)mod h) =0 for any n-tree P, then
xe U"D soits class in ¢ /@""1) = ") /U"(+1) is zero. So each 4, is injective,
so A is in]ectlve.

To prove that 1 is surjective, it suffices to prove that 4, is surjective. Let us fix xeg.
We will construct a sequence x,€ U, n>0 such that &(x,) =0, (; x, mod h) = x,
Xpi1€xy + WU for any n>=1, and if P is any tree such that |P|<n,
0P (x,) e U®IP! (this last condition implies that 69 (x,)eh"U®I2! for |Q|=n).
Then the limit £ =lim,_ o (x,) exists, belongs to U’, satisfies &(X) =0 and
(161 (%) mod h) = x, so its class in U"()/U"? is a preimage of x.

Let us now construct the sequence (x,),,. We fix a linear map g— {ye Ule(y) =
0}, y+— 7, such that for any yeg, ( mod #) = y. We set x| = Ax. Let us construct
Xny1 knowing x,. By Proposition 3.2, if Qis any (1 + 1)-tree, 69 (x,) e " U®"+! and
G 09 (x,) mod h) is an element of §"*!(g), independent of Q. Let us write this
element as

Z Zyr; “Voms1), Wwhere Zyi‘@...®yz+leg®n+1.
o

0eCyi
Then we set

hn

erl:xn_(n—i—l Z Z yon+l O

We now prove:

Proposition 3.6. (1) For any n>0, U"") = U'"™ 4 hU’;
(2) The filtrations © = ") 50"V > ... and 0 = 0" 50" > ... coincide, and O is
complete and separated for this filtration.

Proof. Let us prove (1). We have to show that U"" c U™ + hU’. Let xe U"™",
We have 0P (x)enPH'U®IPl for |Pl[<n—1, and for P an n-tree,
(G 0P)(x) mod h) e §”(g) and is independent of P. Write this element of S”(g) as
Do, 2aVo)® Vo)

In Proposition 3.5, we construct a linear map g— U’ nhU, x— X, such that ¢(¥) = 0
and (} Xmod h) =
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Set fu =112 0ce, 2on Vo) Viy- Then each 77 belongs to U'nhU, so
f,eU' nh"U = U'™. Moreover, x — f, belongs to U""*)_ Iterating this procedure,
we construct elements fy,1,fni2, ..., where each f; belongs to U'®). The series
> k=nfk converges in U’; denote by f its sum, then x — f belongs to (5, Uk =
hU'. So U"™ < U™ + hU'. The inverse inclusion is obvious. This proves (1). Then
(1) immediately implies that for any n, (') = ¢""). We already know that C is
complete and separated for ¢ = ¢'©) 5 ¢V 5 ... which proves (2). O

Proof of Theorem 1.2 (End). O is a complete local ring, and we have a ring
isomorphism gr(0) - S (g). Then any lift g— ') of @'V - @' /0" = g yields a
continuous ring morphism u : §(g) — (. The associated graded of y is the identity, so
u is an isomorphism. So ¢ is noncanonically isomorphic to §(q) ]

Remark 3.7. When U is Hopf and g is finite-dimensional, U’'/hU’ identifies
canonically with Og = (U(g*))", where g* is the dual Lie bialgebra of g
(see [Dr1,Ga)). The natural projection T'(g*) - U(g*) and the identification 7'(g*)" =
T (g) (where T (g) means the degree completion) induce an injection U’'/hU’' =
Og = (U(g"))" < T(g). The map U'/hU'<T(g) can be interpreted simply as
follows. For any xe U’, we have (3 ,(x) mod h)eg®”. Then U'/hU’' < TA"(q) takes
the class of xe U’ to the sequence (3 6,(x) mod h),,- .

On the quasi-Hopf case, we have no canonical embedding U’ /hU’ < T(g) because
the various (s 0P)(x) mod ) do not necessarily coincide for all the n-trees P. This is
related to the fact that one cannot expect a Hopf pairing U(g*) ® (U’ /hU’) — [K since
g* is no longer a Lie algebra, so U(g*) does not make sense.

On the other hand, Theorem 1.2 can be interpreted as follows: in the Hopf case,
the exponential induces an isomorphism of formal schemes g*— G*, so U'/hU’

identifies noncanonically with O = §(g) In the quasi-Hopf case, although there is
no formal group G*, we still have an isomorphism U’'/hU’ ;g‘(g).
4. Twists

4.1. Admissible twists

If (U,m,A,®) is an arbitrary QHQUE algebra, we will call a twist Fe(U®?)*
admissible if hlog(F)e(U')®?.

Proposition 4.1. Let (U,m, A, ®) be an admissible quasi-Hopf algebra and F an
admissible twist. Then the twisted quasi-Hopf algebra (U,m,* A, ®) is admissible.
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mod A

Proof. Let ¢ : U' — K be the composed map U’ 5 K[[h]] ==K, where ¢ is the counit

map. Let my, = Ker(g). We set m, = Ker(¢®?). We have mf) =my, ®(U’)®2 +
Udm®@ U + (U’)®2®mh

When a, b are in (mh )?, the CBH series ak b = a + b + [a, b], + -+ converges in
(U")®3, where [—, -], = +[—,—]. Indeed, P mP, emtY, so
() L (07 Dy ()2,
where n is the number of [—, -], involved. Finally, a series ) _,f,, where

Ju€ (mh )", converges in (U’)®3: indeed, mf)ch(U’)&)}, ) (mf))”ch”(U’)@.
Both f == hlog(F) and flog(®) belong to (m;3>)2. Then we have
hlog("®) = 12 K f12% Sk (hlog(@)) k (—f 1) % (=f>7).

Since U'®3 is stable under %, we have hlog(*®)eU'®3. So (U,m,"4,F®) is
admissible. [

Let us now prove

Proposition 4.2. Under the hypothesis of Proposition 4.1, the QFS algebra Uy

corresponding to (U,m,* A, ¥ ®) coincides with the QFS algebra U’ corresponding to
(U,m, 4, D).

We will first prove the following lemma:

Lemma 4.3. Let P be an n-tree. Then

ERDDED DS

k<n R a k—tree Xc{l,...n}|
card(X)=k

SN ad(fih) e e cadn(£57) 2 (3)F, (4.9)

v=l o

where for each v, ¥, f7F ® - ® E&PE(U/®")®

Remark 4.4. One can prove that in the right hand side of (4.9), the contribution of

all terms with k = n is (Ad(F®)) —id) - ") where F(®) is the product of FI/ (I,J
subsets of {1, ...,n}, such that max(/)<min(J)) and thelr inverses such that

AP — Ad(FP) o 4P,
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Proof of the Lemma. Eq. (4.9) may be proved by induction on |P|. Let us prove it for
the unique tree P such that |P| = 2:

D+ Z —ad;(f )" (0@ (x) + 0V (x)" + oW (x)%),

v>1

where (1) and (2) are the 1- and 2-trees. Assume that (4.9) is proved when |P| = n.
Let P’ be an (n + 1)-tree. Then for some ie{l,...,n}, we have

55;)) _ (id®i—1 ®55§) ®id®n—i> R 557P'>7
where |P'| = n. Then:

5;_ _ ( d®l 1®AF®1d®n 1) 05571’/) B (5%”))1,..4,1' ..... n+l (55;’))1 ..... i+1,... n+1

= (@ @ar@id® ) |0 13T 3T 3T
k<n R a k—tree Xc{l,..., n}|
card(2)=k

<3S adn(f57) o e cada(£57) 0 (00

v>1 o

~ —

. (_”)IH-I'.,.A..VH»I o (”')l,“.,i+1.’4..‘n+l

:Ad(Fi,iJrl) 5 (5(P) + (5(P’))l‘...,i,....,n+1 + (5(P’))l,4,..,1+1,,..,n+1

+Z Z Z Z Z adh ZP, Lo {1y, n+1)

k<n R a k—tree YXc{l,...n}| v=1 «
card(X)=k

cady((£57)H U (19 @A @197 < (6F))

~ —

_ (_..)l....,i,...,}’H*l _ (.“)1,...,l+l ..... n+1,

this has the desired form because:

~ —

(Ad(Fi,iJrl) _ 1) o (5(P) + (5(P’))1 ,,,,, i...on+1 | (PN, i+1,...,n+l)

l:
+
+
—
<,
~
=

! ' /l\ n d i+1,....n
Z_' fll+1 ( _~_(5(P))I,...H...,+1+(5(P)> 7.;_1 ,+1).

v=1

This proves (4.9). O
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Proof of Proposition 4.2 (End). One repeats the proof of Proposition 3.2 to prove
that if xe U’, then we have 5(FP>(x)eh|P‘U§|P| for any tree P. So U' < Uy. Since
(U,m,4,®) is the twist by F~' of (UmF4,®), and hlog(F') =
—hlog(F)e(U)®*<(U})®2, F~! is admissible for (U,m," 4,7 ®), so we have also
UpcU,so Up=U. O

4.2. Twisting any algebra into an admissible algebra

Proposition 4.5. Let (U, m, A, @) be a quasi-Hopf algebra. There exists a twist Fy such
that the twisted quasi-Hopf algebra (U, m,fo A, " ®) is admissible.

Proof. We construct F as a convergent infinite product Fy = ---F,---F,, where
F,el+ K" 'U®2, and the F,’s have the following property: if F, = F,F,_---F», if

@, =, and 5213) : U— U®M?l is the map corresponding to a tree P and to 4, =
Ad(F,) o A, then we have

(5i<1P>®5E1Q)®52R))(h10g((pn))eh\PHIQH\R\UélPH\QIHRI
for any trees P, Q, R such that |P| + |Q| + |R|<n.
Assume that we have constructed Fj,...,F,, and let us construct F,;.

The argument of Proposition 3.2 shows that for any integers (n,n,,n3) such that
ni +ny +n3 =n+ 1, and any trees P, Q, R such that |P| = ny, |Q| = ny, |R| = n3,

(i 0" ®312 @) hoe(r)) mod ) 5 (5) @ 5™ (0) @ 5" ().

and is independent of the trees P, O, R. The direct sum of these elements is an

element @, of S '(g)®3, homogeneous of degree n + 1. Since @, satisfies the pentagon
equation

(d®id® 4,)(P,) ' (1@ ®,)(id® 4, ®id)(D,) (P, ®1)(4, ®id®id)(P,) " =1,
@ = hlog(®,) satisfies the equation
(—(i[d®id®4,) (o)) * (1@ ¢}) * (([d® 4, ®id)(¢})) *
(Ph®1)* (—(4,®id®id)(g})) =0, (4.10)

where we set

akb=a+b+1%ab],+
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(the CBH series for the Lie bracket [—, —],). The left-hand side of (4.10) is equal to
(-4,®id®id +id® 4, ®id — id®id® 4,)(¢")

+(1®¢") + (p"®1) + brackets. (4.11)

Let (n1,my,n3,n4) be integers such that n; + -+ +ng =n+ 1. Let P, Q, R, S be trees
such that |P| = ny, ..., |S| = ns. Let us apply 5£1P)® ®5,<1$) to (4.11). On the one
hand,

0P ®0Q @0F ®6)(4,®id®@id)(ph) = (3“2 @ @ (%)) (o),

where Pu Q is the tree with left descendant P and right descendant Q. Therefore

1 . . . .
(W (0" ®3,2 @0, ®0,%)(4, ®id ®id) (¢) mod h) = (A0 @id®id)(Pn)y, 1y,

where the index (7, ...,7n4) means the component in ®% ;5" (g). In the same way,
(0P @69 @R ®06%))((4.11) without brackets) = d(@,)

ny,ny,n3,ng’

where d : 5(g)®? - 5 (g)®? is the co-Hochschild cohomology differential.
On the other hand, if @; and a, e U®* are such that

(6P ® - @6 (a;) ehin P+ 15l U®4

for any trees (P, ..., S), then if (P, ...,S) are such that |P| + --- + |S| = n, we have

1 o~
0P ® - @) (% [al,a2]> e U,

one proves this in the same way as the commutativity of U'/hU’ (see Theorem 1.1).
Then the relation % (6 ® - ®.Y)(4.11)|,_, = 0 yields d(@,) = 0.
This relation implies that

Q_Dn == d(ﬁ1) + ;Lna

where f, €5 (g)®? and 4, e A%(g). Moreover, f, and 4, both have degree 1 + 1. This
implies that 4, = 0. Let f, € (U(g)®2)<n+1 be a preimage of f, by the projection

(U©)®) <1 = (V@) %) <t (U©) ) oy = (S ()71

(where the indices n and <n mean “homogeneous part of degree n” and “part of
degree <n”). Let f"eU®2 be a preimage of f, by the projection U®2—
U®2/hU®2 = U(g)®?. Set F,u =exp(h"'f,). We may assume that h'f,c
(U(F,))®?%, where U(F,) = {xeU[6D(x)eh™™MPIy®IF} Then &,,, =F1d,.
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If P, O, R are such that |P| + |Q| + |R| = n+ 1, then
(34 © 312 @611 (hlog(@,..1)) e U®".
Then according to Lemma 4.3,
(0 ®3,2 ®8%) — 3 ©52 ®5\") (hog(@,:1))

has h-adic valuation >|P|+ |Q|+ |R| when |P|+|Q|+|R|<n+1. So (5}(1}?1 ®

02 @01, ) (h1og(®yi1)) ehPHIOHIR G OIPIHEHIRL  whenever  |P|+]0| + |R| <
n+1. O

5. Proof of Proposition 2.4

We work by induction on n. The statement is obvious when n =0, 1. For n = 2,
we get

3 (xy) =@ (x)0@ (y) + 6D () (6D () + M (1) + 80 (»)")
+ (00 400"+ ()
+0()'82 ()2 + 60 (x)26@ ()", (5.12)

so the statement also holds.

Assume that the statement is proved when P is a n-tree. Let P be a (n + 1)-tree.
There exists an integer ke {0, ..., n — 1}, such that P may be viewed as the glueing of
the 2-tree on the kth leaf of a n-tree P. Then we have

5P — (id®k®5(2) ®id®"_k_l) 0 5P
Let us assume, for instance, that k =n — 1. If v is an integer, set
S, ={(2")2 2 <={1,....,v} and 2'0X'"={l,...,v}}.
Then
Sy Zf{”}’g)(Sn,l) Uf(})_{n}(Snfl) uf{n},{,,}(Sn,l)(disjoint union),

where f, (2, 2") = (2’ Ua, 2" U f). By hypothesis, we have

SMy)y = D 8P ()R (p)%,
(Z1,22)€eS,
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therefore

5(P) (xy) _ Z 5(Pl’u{u})(X)Z/U{n}é(PL'”)(y)ZN
(Z,2") € Sy-1
+ 5(sz)(X)Z/(;(Pzw(n})(y)f”u{n}

+ 5(Pz'u(n)) (X)Z/U{”}5(Pz"u{;z))(y)z//u {”}_

Applying id®""' @6 to this identity and using (5.12) and the identities
(id®* @6V @id @171 1) o 6P = (P,

(1d®k®5(0) ®id®\P|fk7]) o 5(P) _ 0’

we get 5P (xy)

_ Z (((1d®\2'\ ®5(2)) o 5(PZ/UM))(X)Z’U{n,n+l}5(PZu)(y)Z”

<Z/7Z//)€Sn—l
+ 5(P£r)(x)2/((id®|2”\ ®5(2)) 5 5(quv{n)))(y)).‘”u{n,nJrl}

+ ((1d®\2'\ ®5(2)) 5 5(Pzzu(n}))(x)2'u{n,n+1}((id®\f"\ ®5(2)) o 5(PZ//UM))(y)Z"u{n,nJrl}
Jr((id@\):’l ®5(2)) R 5(szu(n}))(x)f'u{"-n+1}(5(f’z~u{n})(y)f”u{"} + 5(PZ”u{n)>(y)ZHu{n+l})
+(5(P);/U{n))(x)2’u{n} + 5(leu{n))(x)z/u{rl+l})((id®‘2”| ®5<2)) o 5(P)_—//u{”}))(y)Z”u{l’l,rH»l}

+ 5(P£ru(n})(x)Z/U{n}é(quu(n))(y)Z”U{n+1} + 5(Pzru(n))(x)Z/U{VH—l}é(PEuU(n))(y)Z”u{n}).

So we get st (xy)

(5(szu(n,n+l}) (X)Z/U{n’n-’»l}é(}_)z”) (y)Z”
(22" eSu-1
N 5(1_’;-') (x)f'é(f’z”u(n,n—lﬂ (y)zn u{nn+l1}

+ 5(P2’u(n,fz+l})(X)Z/U{n7n+l}5(13):”u(/1,n+1))(y)zwu{nvn+l}
+ 5(Pl’u{rl,n+l})(x)z/u{”7n+l}(5<P2”u{n)>(y)z//u{n} + 5(Pz"u(n+1))(y)Z”U{”H})
+ (5(P2’u{n})(x)zlu{n} + 5(Pz'u{n+1))(X)Z/U{”+1}>5(Pz”u{u.n+1})(y)ZNU{”JlH}

+5<Isl’u{n})(X)Z/U{n}é(}_))j/u{rﬂl))(y)z/lu{n+l} + 5(PL"U{H> 1})(X)Z/U{"“}(s(f’;.,/u(n})(y)Z"U{"}).
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We have
Sut =finnrt) fnne1y (Sn—1) U tnans1y gny (Sn—1) U tnansry i1y (Sn-1)
U S 13.0(Sn=1) Oy fnn 1y (Sn—1) U f n 1y fnnt 1y (Sn-1)
U o gnn13 (Sn=1) O () g1y (Sn1) U {us1y,{ny (Sn—1) (disjoint union),

where we recall that f, s(2', 2") = (2" Ua, 2" U ). So we get

5P) (xy) = Z 5(Pf/>(x)\f’\5(1’f~)(y)\f”l.

(2.57) € Sut

The proof is the same for a general k€ {0, ...,n — 1}. This establishes the induction.

6. Proofs of Proposition 1.4, Theorem 1.8 and Proposition 1.9

Proof of Proposition 1.4. According to [Dr2], Proposition 3.10, there exists a series
&' () e U(g)®?[[]], expressed in terms of (u, ¢) by universal acyclic expressions (and
therefore invariant), such that &’(¢) = 1 + O(h*), and &’(¢) satisfies the pentagon
identity. Then (U(g)[[h]], mo, 40, & (¢)) is a quasi-Hopf algebra. By Theorem 1.3(2),
there exists a twist FeU(g)®?[[h]]*, such that (U(q)[[h]],mo, % 0,5 & (@) is
admissible.

&'(¢p) gives rise to a collection of invariant elements &'(¢),, ,, . ,€ ®2_,5%(g),
defined by the condition that the image of &'(¢) by the symmetrization map
U(g)®?[[h)] - S (g)[[A]] is S ous0pprps 50 W' E (@), py py e F is then expressed using
only the g;hpzﬁs-ﬁ’ the Lie bracket and the symmetric group operations on the g®”.
So F is invariant and defined by universal acyclic expressions. Therefore ¥4, = 4.
&(p) =& (9) is then expressed by universal acyclic expressions, and defines an
admissible quantization of (g,u,0 =0,¢). O

Proof of Theorem 1.8(1). We have then 6’(<p)e(U(g)[[h]]/)®3. Since the coproduct
is 4g, U(g)[[A]]" is the complete subalgebra of U(g)[[A]] generated by #g, so it is

a flat deformation of §(q) with Kostant—Kirillov Poisson structure. We then set
o = &(p) modulo h. O

Proof of Theorem 1.8(2). Let ¢, ¢, be the elements of §‘(g)®3 such that

(5‘\'(9),”’10, Pg‘7 AO) (7)1)

are quasi-Hopf Poisson algebras. Let C be the lowest degree component of ¢; — @».
Then the degree k of C is >4. Taking the degree k part of the difference of the
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pentagon identities for @; and @, we find d(C) = 0, where d : S'(g)®3 —>S'(g)®4 is

the co-Hochschild differential. So Alt(C)e A3(g), and since Alt(C) also has degree
>4, Alt(C) = 0. If Cp, , p, is the component of Cin ®@3_, SP(g) then we may define

inductively Be (S (g)®?)?, homogeneous of degree k, such that d(B) = C, as follows.
We set BO,k = Bl,kfl =0, Byj02= %(id@m)(cl‘uﬁz), and

1 . .
Bijij—ic1 = m(1d®m)[ci,lﬁk—i—l + (([d®d)(Bisk—i)i1 i1

where B; ; is the component of B in S'(g) ® S/(g) and m is the product of S'(g).
Applying the twist B to the quasi-Hopf Poisson algebra (§‘(g),m0,Pg¥,A0,(7)1)
amounts to replacing ¢, by @}, such that ¢} — @, has valuation >k + 1. Applying
successive twists, we obtain the result. [

Proof of Proposition 1.9. According to [Dr3],

(U(9)[H]], mo, Ao, €, @(hiy?, hiy?))
is a quasi-triangular quasi-Hopf algebra. One checks that since @ is Lie, it is
admissible; then the reduction modulo # of the corresponding QFS algebra is the

quasi-Hopf Poisson algebra of Proposition 1.9. [J

Remark 6.1. In the proof of Theorem 1.8(2), we cannot use Theorem A of [Dr2]
because we do not know that the twist constructed there is admissible.

7. Associators and Lie associators
In this section, we state precisely and prove Theorem 1.10.

7.1. Statement of the result

Let 7 ,, n=2, be the algebra with generators r»/, 1<1#j<n, and relations
1 = Zi’j,

("] ¢ /%] =0 when i,j, k are all distinct,
[ti’-/,tk"/] =0 when i,j,k,[ are all distinct.

t, is defined as the Lie algebra with the same generators and relations. Then 7, =
U(t,). (t, is introduced in [Dr3]; 7, is called the “algebra of infinitesimal chord
diagrams” in [BN].)

When n<m and (Iy, ..., I,) is a collection of disjoint subsets of {1, ...,m}, there is
a unique algebra morphism 7 ,— 7, taking ¢/ to Zoce[,-.[}elj P, We call it an
I,...,

insertion-coproduct morphism and denote it by x> x/>% In particular, we have
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an action of €, on .7 ,,. Let us attribute degree 1 to each generator #+/; this defines
gradings on the algebra .7, and on the Lie algebra t,,. We denote by 3“:,1 and 1, their
completions for this grading. Then (3":,,)X is the preimage of [K* by the natural

projection ;0:,1—>K, and the exponential is a bijection (/J”\'n)o—ﬂ + (7 ), (Where

(;”:,1)0 = Ker(;az,,a [K)). We have an exact sequence
-1+ (;":,1)0—>(.//d:,,)X >K*-1.

An associator is an element @ of 1 + (Jf:,,)07 satisfying the pentagon equation
PL23HPI234 _ §234pl 2345123 (7.13)

the hexagon equations

[1A3+IZ.3 ,1.3 1 ,2.3
e T = 327 @1,3,2)— eT i3

and

e—’”f” _ ((pz,3,1)7le§¢2,1.3e¥(¢1,2ﬁ3)71
and Alt(®) =L [1'2,*]+ terms of degree >2. We denote by Assoc the set of
associators. If @ satisfies the duality condition ®*>' = @~! then both hexagon
equations are equivalent. We denote by Assoc” the subset of all ¢ e Assoc satisfying
the duality condition. If Fel + (/e/;z)o and Pel + (?3)0, the twist of @ by Fis

F@ — F2,3F1,23¢(F172F12,3)71'

This defines an action of 1 + (?2)0 on 1+ (3”:3)0, which preserves Pent = {®el +
(3“:3)0|<I) satisfies (7.13)}, Assoc and Assoc’ (Pent and Assoc are preserved because F
has the form f(¢'?), fel +tK[[f]], so the “twisted R-matrix” YR = F>'RF~! =
F(2Ne 2 f(112) 7 = e"/2. Assoc is preserved because each F is such that
F = F*') We denote by Assoc! ie» Assocy ;. and Penty ;. the subsets of all @ in Assoc,
Assoc” and Pent, such that log(®) ets.

Theorem 7.1. There is exactly one element of Pent,;, (resp., Assoc;,, Assoc!. ) in
each orbit of the action of 1+ (9/-\2)0 on Pent (resp., Assoc, Assoc’). The isotropy
group of each element of Pent is {e*"’|le K} =1+ (72)o-

7.2. Proof of Theorem 7.1

The arguments are the same in all three cases, so we treat the case of Assoc.
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Let @ belong to Assoc. Set ® =1+ )., ®;, where @; is the degree i component
of @. Let d be the co-Hochschild differential,

d:7,->T
1
X = § : z+ 1 ..... {i,i+1},...,n+1 _x2‘3,“..,n+1 + (—1)"x1‘2 ,,,,, n

Then d(®,) =0, and Alt(®,) = 1['2,2%]. Computation shows that this implies
that for some Ael, we have @, =1[r'2, 23] + 2d((1'?)*). We construct Fel +
(e//\)07 such that @ e Assoc ., as an infinite product F = ---F,---F,, where F;el +
(72)-, (the index >i means the part of degree >i). If we set F> = 1 + A(r"?)?, then
log("2®)et; + (?3)23. Assume that we have found Fi, ..., F,_ 1 such that
log(F"*1q§)et3 + (/./“:3)>n, where F,_; = F,_;---F>. Then ¢ log( 1) satisfies

=

(go(n—l))l,2.34*((p(n—l))lz,3,4 _ (@(n 1 )2’54*( )1234*(q0(n—1))l,2‘3’

where % is the CBH product in (J 3)o- Let (p,, ) be the degree n part of ¢~

Then we get d((pﬁln_l)) ets. We now use the following statement, which will be proved
in the next subsection.

Proposition 7.2. If ye 5 is such that d(y)€ety, then there exists €T ,, such that
v+ d(pB) ets. If y has degree n, one can choose f3 of degree n.

It follows that there exists fe.7, of degree n, such that (p(" D d([f)et3. Set
F, =1+, then ¢ =log(**®) is such that ™ ep® " —d(f) + (3'3)2,1+l7 SO
e ety + (3”:3)2,1“. Moreover, the product F = ---F,---F, is convergent, and ©'®
then satisfies log(¥ @) et;. This proves the existence of F, such that Fde AssoCy .-

Let us now prove the uniqueness of an element of Assoc;;., twist-equivalent to
@ e Assoc. This follows from:

Proposition 7.3. Let @' and ®" be elements of Assoc, ., and let F belong to 1 + (30:2)0.
Then &' = &" if and only if there exists i€ K such that F = " and ¢" = @'

Proof of Proposition 7.3. Since ¢! + '3 + 23 is central in 7 3, we have F'®' = ¢/
when F; = ¢/, for any Ael<. Conversely, let F; be the degree i part of F. Then for
some g€, we have F; = Jot. Replacing F by F' = FF_;,, we get '@’ = ¢" and
F’ — 1 has valuation >2 (for the degree in ). Assume that F’ — 1#£0 and let v be its
valuation. Let F, be the degree v part of F'. Then d(F))et;. On the other hand,
F' = pu(t"?)", where pelK —{0}. Now d((1'?)")eJ; = U(t;) has degree <v
for the filtration of U(t;), and its symbol in S'(t3) =gr,(U(t;)) is
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S (YA (23 = () () (13) ™ this is the image of a nonzero
element in S*(K7'? @ K1'3 @ Kr>?) under the injection S"(@®1<;<j<3 Ki'/) & S¥(13),
so it is nonzero. So F'#1 leads to a contradiction. So F = F; , therefore

' =¢. O

07

Note that we have proved the analogue of Proposition 7.2, where the indices of
T 3,14, etc., are shifted by —1.

7.3. Decomposition of t3 and proof of Proposition 7.2

To end the proof of the first part of Theorem 7.1, it remains to prove Proposition
7.2. For this, we construct a decomposition of t,. For i =1, ..., n, there is a unique
algebra morphism ¢;:.9,—7 ,_1, taking ¢; ; to 0 for any j#i, and taking #;; to
i )yk—i(k) i j,k#1, where 4;(j ) = 0 if j<iand = 1 if j>i. Then ¢; induces a Lie
algebra morphism & :t, >t,_;. Set T, = N, Ker(Z;). Then we have

Lemma 7.4.

where 2, ({1, ...,n}) is the set of subsets of {1, ...,n} of cardinal k, and (},)" is the
image of Y under t, —>t,, x+—x"k where I = {iy, ..., ir}.

Proof. Let § be the free Lie algebra with generators 7; ;, where 1<i<j<n. It is
graded by I' := N{WIISI</<n}: the degree of 7;; is the vector d;;, whose (7, )
coordinate is d;;) - For keI, we denote by §, the part of & of degree k. Let
7 : §—1, be the canonical projection. Since the deﬁriing ideal of t, is graded, we have

t, =P n(F)- (7.14)

kel’ B

On the other hand, one checks that f, = D7 m(Fy), where I is the set of maps
k:{(i.j)[1<i<j<n}—>N, such that for each i, 37, . k(i.j) +>5; ;< k(j, i) #0.
Define a map A:I'->2({l, ...,n}) as follows (2({1, ...,n}) is the set of subsets of
{1,....n}): 2 takes the map k:{(ij)|l<i<jsn}->N to {il> ;. k(i,j)+
2j1j<ik(j,i)#0}. Then for each IeZ({l,...,n}), (fm)l identifies with
Drer ) (). Comparing with (7.14), we get

th= @ . O
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When n = 3, we get t; = Ki'2@ Kr'? @ K23 @1;. On the other hand, the fact that
the insertion-coproduct maps take t, to t,, implies thatd : 7 ,— .7, is compatible
with the filtrations induced by the identification 7, = U(t,), 7 ,+1 = U(t,41). The
associated graded map is

gr(d): S (t,) =S (tuy1).
Proposition 7.2 now follows from:
Lemma 7.5. When k=2, the cohomology of the complex

grf(d)

k
SF (1) Y % (1) Y sk ()
vanishes.
Proof. We have
k L ~
Sy =@ s P K |esHh). (7.15)
4=0 1<i<j<3

Let xeS*(t3), and let (X),—p,...x be its components in the decomposition (7.15).
We have

4
St)=sl)e & sk")e @ sh)es ™).
2<i<j<4 i=2
We denote by p the projection
piS (1)~ @S (6

which is the tensor product of: the identity on the last factor, the projection to degree
1 on the factor § (T;’“), and the projection to degree 0 in all other factors. We also
denote by m: ﬂ’“ ®S'(t§’3’4) —S'(t3) the map induced by the identifications
f;’3’4ct;'3’4:t3, t§'3’4:t3 followed by the product map in S'(t3). We denote by
d;,d,,d; the maps 7 3 —».7 4 defined by

di(x) = x1234 — 134 _ 3234
dz(x) = x1723v4 _ xl«,2,4 _ xl,374’
ds(x) = X2 23 124

so d=d; —d; +d;. The maps d; are compatible with the filtrations of 73
and 74 we denote by grf(d;) the corresponding graded maps, so
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k _ ok k k :
gr(d) = gr®(d;) — gr(ds) + gr(ds). Then if we set

x| = Z (11’2) (ZIS) ( ) ®€up,es

a,b.cla+b+c=k—1

where e, €t3, we have

mopogrf(d;)( (Z ‘Xxoc)_ 23 _1€0,0Ak71-

On the other hand, let us define the i-degree of an element of (f|1|)1 tobe l ifiel and
0 if i¢ /. Then the i-degree of &y, S“f((ﬂl‘)l)cS'(tn) is Z,‘ie,oq. If x is

homogeneous for the 1-degree, then so is grf(d,)(x), and 1-degree(gr®(d,)(x)) =
I-degree(x). On the other hand, the elements of S'(t4) whose 1-degree is #1 are in
the kernel of p. It follows that

mopogrf(dy)(x,) =0 if a1,
and p o gr(da)(x1) = (eo0u—1) (124 + 24 — (£, s0
mopogr(dy)(x1) = eqopt (£ + 23— (A3,

Finally, pogrf(d;)(x)=0. If x is such that grf(d)(x)=0, we have
mopogrk(d)(x) =0, so

2 : _ 1,3 2,3\k—1
430 X, = Eovoﬁkfl(l 4+t )

Looking at degrees in the decomposition (7.15), we get x, = 0 for «>2, and x; =
e.04—1 (112 + 231 Using the projection p' : S (ts) —>t1’24 ®S'(t;"2’3), we get in the
same way x; = ex_100(f" 2+ ") Now e 00(r"2 4+ 13 = egopi (11 +
2351 implies er-100 = €0k—1 =0 so x; = 0. Therefore xeS¥(@®|<icj<3 Ki*).
Let us set x = S(¢'2, '3, 1*3), where S is a homogeneous polynomial of degree k of
0<[u, v, w]. Since d(x) = 0, we have

S(t"3 L3 PP ) S(tl,2 P R R et 13,4)
i S(th7 R t2’4) _ S(tz,s,tzﬁ4,[3,4) 4 S([1,2,[173,[2,3)

(equality in S (@ 1<i<j<4a KIHY)).
Applying % ° % to this equality, we get

(0,0,8) ("2 + 113 4 24 1 P =0,
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therefore 0,0,,S = 0. We have therefore
S(u,v,w) = P(u,v) + Q(v,w),
where P and Q are homogeneous polynomials of degree k. Moreover, d(x) = 0, so
[P(1'2, 113 4 114) = P(e"2 4+ 113,14 — P12, 113)]

FIO( + 24, 8% — 0(M 24+ £ — 024, 8]

FIP(S 4 23,04 4 29 1 0313 + 14, 23 4 24

— P(*, %) — (", )] = 0. (7.16)
Write this as an identity

B("2, 193, A 1 O, 24 5% 1 A(23, 014,03, 2% = o,

Then A4 (resp., B, C) is independent of >3 (resp., ', £**). Let us now determine P
and Q. Since B(t'2,1'3, %) = B(0,113,¢'*), we have P(u,v+w)— P(u+v,w) —
P(u,v) = P(0,v+w) — P(v,w) — P(0,v). Therefore (dP)(u,v,w) =0, where
P(u,v) = P(u,v) — P(0,v) and d is the co-Hochschild differential of polynomials in
one variable. The corresponding cohomology is zero, so there exists a polynomial P,
such that

P(u,v) — P(0,v) = P(u+v) — P(u) — P(v).
We conclude that P(u,v) has the form
P(u,v) = P(u+v) — P(u) — R(v) (7.17)

where P and R are polynomials in one variable of degree k; since P(u,v) is
homogeneous of degree k, we can assume that P and R are monomials of degree k.
In the same way, since C(t'# >* %) = C(1'*4, 24,0), we have Q(u+v,w) —
Q(u,v+w) — Q(v,w) = Q(u+v,0) — O(u,v) — O(v,0), so (dQ)(u,v,w) =0, where
O(u,v) = O(u,v) — Q(u,0). So Q(u, v) has the form

Q(u,v) = Qu+v) — Q(v) — S(u), (7.18)

where Q and S are polynomials in one variable of degree k, which can be assumed to
be monomials of degree k. We have therefore

x =P34 le,s _pl2_ Qz,s _Tl3
where P = P(1'2), 0 = O(r'?) and T = (R + S)(¢"?). So x =d(0) + (P + 0)"* —

(P+ Q)7 —T'3. Set a= P+ Q; we have d(y) =0, where y = a'? —¢'2 — T3,
applying ¢ to d(y) =0, we get T3 — T?>* =0, so T =0. We then get a'>** —
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a'>? — a>¥* 4+ a>3 = 0. Applying &3 o ¢, to this identity, we get a'* = 0. Finally P =
—0, so x = d(Q), which proves the lemma. [

7.4. Isotropy groups

Proposition 7.3 can be generalized to the case of a pair of elements of Pent; ;., and
it implies that the isotropy group of each element of Pent;;, is the additive group

{e’"l'z, /.€K}. Let @ be an element of Pent. There exists an element @1 of Pent; ;. in
the orbit of @. So the isotropy groups of @ and @ ;. are conjugate. Since 1 + (322)0 is
commutative, the isotropy group of @ is {e’"l'z, e}
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