Poisson algebras associated to quasi-Hopf algebras

Benjamin Enriquez* and Gilles Halbout

Institut de Recherche Mathématique Avancée de Strasbourg, UMR 7501 de l'Université Louis Pasteur et du CNRS, 7, Rue R. Descartes, F-67084 Strasbourg, France

Received 25 November 2002; accepted 13 August 2003
Communicated by P. Etingof

Abstract

We define admissible quasi-Hopf quantized universal enveloping (QHQUE) algebras by \hbar-adic valuation conditions. We show that any QHQUE algebra is twist-equivalent to an admissible one. We prove a related statement: any associator is twist-equivalent to a Lie associator. We attach a quantized formal series algebra to each admissible QHQUE algebra and study the resulting Poisson algebras. © 2003 Elsevier Inc. All rights reserved.

0. Introduction

In [WX], Weinstein and Xu introduced a geometric counterpart of the R-matrix of a quasi-triangular quantum group: they proved that if (\mathfrak{g}, r) is a finite dimensional quasi-triangular Lie bialgebra, then the dual group G^{*} is equipped with a braiding $\mathscr{R}_{\mathrm{WX}} \in \operatorname{Aut}\left(\left(G^{*}\right)^{2}\right)$ with properties analogous to those of quantum R-matrices (in particular, it is a set-theoretic solution of the quantum Yang-Baxter Equation). An explicit relation to the theory of quantum groups was later given in [GH,EH,EGH]: to a quasi-triangular QUE algebra $\left(U_{\hbar}(\mathfrak{g}), m, R\right)$ quantizing (\mathfrak{g}, r), one associates its quantized formal series algebra $(\mathrm{QFSA}) U_{\hbar}(\mathfrak{g})^{\prime} \subset U_{\hbar}(\mathfrak{g}) ; U_{\hbar}(\mathfrak{g})^{\prime}$ is a flat deformation of the Hopf-Poisson algebra $\mathcal{O}_{G^{*}}=\left(U\left(\mathfrak{g}^{*}\right)\right)^{*}$ of formal functions of G^{*}. Then one proves that $\operatorname{Ad}(R)$ preserves $U_{\hbar}(\mathfrak{g})^{\prime \bar{\otimes} 2}$, and $\left.\operatorname{Ad}(R)\right|_{\hbar=0}$ coincides with the

[^0]automorphism $\mathscr{R}_{\mathrm{WX}}$ of $\mathcal{O}_{G^{*}}^{\otimes}$; moreover, $\rho=\left.\hbar \log (R)\right|_{\hbar=0}$ is a function of $\mathcal{O}_{G^{*}}^{\bar{\otimes} 2}$, independent of a quantization of \mathfrak{g}^{*}, which may be expressed universally in terms of r, and $\mathscr{R}_{\mathrm{WX}}$ coincides with the "time one automorphism" of the Hamiltonian vector field generated by ρ.

In this paper, we study the analogous problem in the case of quasi-quantum groups (quasi-Hopf QUE algebras). The classical limit of a QHQUE algebra is a Lie quasi-bialgebra (LQBA). V. Drinfeld proposed to attach Poisson-Lie "quasigroups" to each LQBA ([Dr4]). Axioms for Poisson-Lie quasi-groups are the quasiHopf analogues of the Weinstein- Xu axioms.

A Poisson-Lie quasi-group is a Poisson manifold X, together with a "product" Poisson map $X^{2} \xrightarrow{m_{X}} X$, a unit for this product $e \in X$, and Poisson automorphisms $\Phi_{X} \in \operatorname{Aut}\left(X^{3}\right), \Phi_{X}^{12,3,4}, \Phi_{X}^{1,23,4}$ and $\Phi_{X}^{1,2,34} \in \operatorname{Aut}\left(X^{4}\right)$, such that

$$
m_{X} \circ\left(\mathrm{id} \times m_{X}\right)=m_{X} \circ\left(m_{X} \times \mathrm{id}\right) \circ \Phi_{X}
$$

$$
\left(m_{X} \times \mathrm{id} \times \mathrm{id}\right) \circ \Phi_{X}^{12,3,4}=\Phi_{X} \circ\left(m_{X} \times \mathrm{id} \times \mathrm{id}\right)
$$

$$
\left(\mathrm{id} \times m_{X} \times \mathrm{id}\right) \circ \Phi_{X}^{1,23,4}=\Phi_{X} \circ\left(\mathrm{id} \times m_{X} \times \mathrm{id}\right), \text { etc. }
$$

$$
\text { and } \Phi_{X}^{1,2,34} \circ \Phi_{X}^{12,3,4}=\left(\mathrm{id} \times \Phi_{X}\right) \circ \Phi_{X}^{1,23,4} \circ\left(\Phi_{X} \times \mathrm{id}\right)
$$

A twistor for the quasi-group $\left(X, m_{X}, \Phi_{X}\right)$ is a collection of Poisson automorphisms $F_{X} \in \operatorname{Aut}\left(X^{2}\right), \quad F_{X}^{12,3}, \quad F_{X}^{1,23} \in \operatorname{Aut}\left(X^{3}\right), \quad F_{X}^{(12) 3,4}, \quad F_{X}^{1(23), 4}, \quad F_{X}^{12,34}, \quad F_{X}^{1(23), 4}, \quad F_{X}^{1,(23) 4} \in$ $\operatorname{Aut}\left(X^{4}\right)$ such that

$$
\begin{gathered}
\left(m_{X} \times \mathrm{id}\right) \circ F_{X}^{12,3}=F_{X} \circ\left(m_{X} \times \mathrm{id}\right), \\
\left(\left(m_{X} \circ\left(\mathrm{id} \times m_{X}\right)\right) \times \mathrm{id}\right) \circ F_{X}^{1(23), 4}=F_{X} \circ\left(\left(m_{X} \circ\left(\mathrm{id} \times m_{X}\right)\right) \times \mathrm{id}\right), \\
F_{X}^{(12) 3,4}=\left(\Phi_{X} \times \mathrm{id}\right) \circ F_{X}^{1(23), 4} \circ\left(\Phi_{X} \times \mathrm{id}\right)^{-1}, \text { etc. }
\end{gathered}
$$

A twistor replaces the quasi-group $\left(X, m_{X}, \Phi_{X}\right)$ by $\left(X, m_{X}^{\prime}, \Phi_{X}^{\prime}\right)$ with $m_{X}^{\prime}=m_{X} \circ F_{X}$ and $\Phi_{X}^{\prime}=\left(F_{X}^{1,23}\right)^{-1} \circ\left(F_{X} \times \mathrm{id}\right)^{-1} \circ \Phi_{X} \circ F_{X}^{1,23} \circ\left(\mathrm{id} \times F_{X}\right)$.

It is useful to further require that the automorphisms Φ_{X}, F_{X} are given by Lagrangian bisections of a Karasev-Weinstein groupoid associated with X^{3}, X^{2}. Other axioms for Poisson-Lie quasi-groups were proposed in a differentialgeometric language in [Ban, KS].

We do not know a "geometric" construction of a twist-equivalence class of $\left(X, m_{X}, \Phi_{X}\right)$ associated to each Lie quasi-bialgebra, in the spirit of [WX]. Instead we generalize the "construction of a QFS algebra and passage to Poisson geometry"
part of the above discussion, and we derive from there a construction of triples (X, m_{X}, Φ_{X}), in the case of Lie quasi-bialgebras with vanishing cobracket.

Let us describe the generalization of the "construction of a QFS algebra" part (precise statements are in Section 1). We introduce the notion of an admissible quasiHopf QUE algebra, and we associate a QFSA to such a QHQUE algebra. Each QHQUE algebra can be made admissible after a suitable twist.

We generalize the "passage to Poisson geometry" part as follows. The reduction modulo \hbar of the obtained QFS algebra is a quintuple $(A, m, P, \Delta, \tilde{\varphi})$ satisfying certain axioms; in particular $\exp \left(V_{\tilde{\varphi}}\right)$ is an automorphism of $A^{\widehat{\otimes} 3}$, and $\left(A, m, \exp \left(V_{\tilde{\varphi}}\right)\right)$ satisfies the axioms dual to those of $\left(X, m_{X}, \Phi_{X}\right)$.

When the Lie quasi-bialgebra arises from a metrized Lie algebra, admissible QHQUE algebras quantizing it are given by Lie associators, and we obtain a quasigroup (X, m_{X}, Φ_{X}) using our construction. We also prove that its twist-equivalence class does not depend on the choice of an associator.

Finally, we prove a related result: any associator is twist-equivalent to a unique Lie associator.

1. Outline of results

Let \mathbb{K} be a field of characteristic 0 . Let (U, m) be a topologically free $\mathbb{K}[[\hbar]]$ algebra equipped with algebra morphisms

$$
\begin{gathered}
\Delta: U \rightarrow U \widehat{\otimes} U, \quad \text { and } \quad \varepsilon: U \rightarrow \mathbb{K}[[\hbar]] \\
\text { with }(\varepsilon \otimes \mathrm{id}) \circ \Delta=(\operatorname{id} \otimes \varepsilon) \circ \Delta=\mathrm{id}
\end{gathered}
$$

such that the reduction of (U, m, Δ) modulo \hbar is a universal enveloping algebra. Set

$$
U^{\prime}=\left\{x \in U \mid \text { for any tree } P, \delta^{(P)}(x) \in \hbar^{|P|} U^{\widehat{\otimes}|P|}\right\}
$$

(see the definitions of a tree, $\delta^{(P)}$, and $|P|$ in Section 2). We prove:
Theorem 1.1. U^{\prime} is a topologically free $\mathbb{K}[[\hbar]]$-algebra. It is equipped with a complete decreasing algebra filtration

$$
\left(U^{\prime}\right)^{(n)}=\left\{x \in U \mid \text { for any tree } P, \delta^{(P)}(x) \in \hbar^{n} U^{\widehat{\otimes}|P|}\right\}
$$

U^{\prime} is stable under the multiplication m and the map $\Delta: U \rightarrow U^{\widehat{\otimes} 2}$ induces a continuous algebra morphism

$$
\Delta_{U^{\prime}}: U^{\prime} \rightarrow U^{\prime} \widehat{\otimes}^{2}=\lim _{\hbar}\left(U^{\prime \widehat{\otimes} 2} / \sum_{p, q \mid p+q=n} U^{\prime(p)} \otimes U^{\prime(q)}\right) .
$$

Set $\mathcal{O}:=U^{\prime} / \hbar U^{\prime}$. Then \mathcal{O} is a complete commutative local ring and the reduction modulo \hbar of $\Delta_{U^{\prime}}$ is a continuous ring morphism

$$
\Delta_{\mathcal{O}}: \mathcal{O} \rightarrow \mathcal{O}^{\bar{\otimes} 2}=\lim _{\leftarrow}\left(\mathcal{O}^{\otimes 2} / \sum_{p, q \mid p+q=n} \mathcal{O}^{(p)} \otimes \mathcal{O}^{(q)}\right)
$$

where $\mathcal{O}^{(p)}=U^{\prime(p)} /\left(\hbar U \cap U^{\prime(p)}\right)$.
Theorem 1.2. Let (U, m, Δ, Φ) be a quasi-Hopf QUE algebra. Let \mathfrak{g} be the Lie algebra of primitive elements of $U / \hbar U$, so $U / \hbar U=U(\mathfrak{g})$. Assume that

$$
\begin{equation*}
\hbar \log (\Phi) \in\left(U^{\prime}\right)^{\bar{\otimes} 3} \tag{1.1}
\end{equation*}
$$

Then there is a noncanonical isomorphism of filtered algebras $U^{\prime} / \hbar U^{\prime} \rightarrow \widehat{S} \cdot(\mathfrak{g})$, where $\widehat{S}(\mathfrak{g})$ is the formal series completion of the symmetric algebra $S(\mathfrak{g})$.

When (U, m, Δ, Φ) satisfies the hypothesis (1.1), we say that it is admissible. In that case, we say that U^{\prime} is the quantized formal series algebra (QFSA) corresponding to (U, m, Δ, Φ). Let us recall the notion of a twist of a quasiHopf QUE algebra (U, m, Δ, Φ). This is an element $F \in\left(U^{\widehat{\otimes} 2}\right)^{\times}$, such that $(\varepsilon \otimes \mathrm{id})(F)=(\mathrm{id} \otimes \varepsilon)(F)=1$. It transforms (U, m, Δ, Φ) into the quasi-Hopf algebra $\left(U, m,{ }^{F} \Delta,{ }^{F} \Phi\right)$, where

$$
{ }^{F} \Delta=\operatorname{Ad}(F) \circ \Delta, \quad \text { and } \quad{ }^{F} \Phi=(1 \otimes F)(\mathrm{id} \otimes \Delta)(F) \Phi(\Delta \otimes \mathrm{id})(F)^{-1}(F \otimes 1)^{-1}
$$

Theorem 1.3.

(1) Let (U, m, Δ, Φ) be an admissible quasi-Hopf QUE algebra. Let us say that a twist F of U is admissible if $\hbar \log (F) \in U^{\prime} \otimes 2$. Then the twisted quasi-Hopf algebra $\left(U, m,{ }^{F} \Delta,{ }^{F} \Phi\right)$ is also admissible, and its QFSA coincides with U^{\prime}.
(2) Let (U, m, Δ, Φ) be an arbitrary quasi-Hopf QUE algebra. There exists a twist F_{0} of U such that the twisted quasi-Hopf algebra $\left(U, m,{ }^{F_{0}} \Delta,{ }^{F_{0}} \Phi\right)$ is admissible.

Theorem 1.3 can be interpreted as follows. Let (U, m) be a formal deformation of a universal enveloping algebra. The set of twists of U is a subgroup \mathscr{T} of $\left(U^{\widehat{\otimes} 2}\right)^{\times}$. Denote by $\mathscr{2}$ the set of all quasi-Hopf structures on (U, m), and by $\mathscr{Q}_{\text {adm }}$ the subset of admissible structures. If $\mathscr{2}$ is nonempty, then $\mathscr{Q}_{\text {adm }}$ is also nonempty, and all its elements give rise to the same subalgebra $U^{\prime} \subset U$ (Theorem 1.3, (1)). Using U^{\prime}, we then define the subgroup $\mathscr{T}_{\text {adm }} \subset \mathscr{T}$ of admissible twists. We have a natural action of \mathscr{T} on \mathscr{Q}, which restricts to an action of $\mathscr{T}_{\text {adm }}$ on $\mathscr{Q}_{\mathrm{adm}}$. Theorem 1.3 (2) says that the natural map

$$
\mathscr{2}_{\mathrm{adm}} / \mathscr{T}_{\mathrm{adm}} \rightarrow \mathscr{Q} / \mathscr{T}
$$

is surjective. Let us explain why it is not injective in general. Any QUE Hopf algebra (U, m, Δ) is admissible as a quasi-Hopf algebra. If $u \in U^{\times}$and $F=(u \otimes u) \Delta(u)^{-1}$, then $\left(U, m,{ }^{F} \Delta\right)$ is a Hopf algebra. So (U, m, Δ) and $\left(U, m,{ }^{F} \Delta\right)$ are in the same class of $\mathscr{2} / \mathscr{T}$. These are also two elements of $\mathscr{V}_{\mathrm{adm}}$; the corresponding QFS algebras are U^{\prime} and $\operatorname{Ad}(u)\left(U^{\prime}\right)$. In general, these algebras do not coincide, so (U, m, Δ) and $\left(U, m,{ }^{F} \Delta\right)$ are not in the same class of $\mathscr{Q}_{\text {adm }} / \mathscr{T}_{\text {adm }}$.

The following result is a refinement of Proposition 3.10 of [Dr2]. Let $(\mathfrak{g}, \mu, \varphi)$ be a pair of a Lie algebra (\mathfrak{g}, μ) and $\varphi \in \bigwedge^{3}(\mathfrak{g})^{\mathfrak{g}}$. Then $(\mathfrak{g}, \delta=0, \varphi)$ is a Lie bialgebra.

Proposition 1.4. There exists a series $\mathscr{E}(\varphi) \in U(\mathfrak{g})^{\otimes 3}[[\hbar]]$, expressed in terms of (μ, φ) by universal acyclic expressions, such that $\left(U(\mathfrak{g})[[\hbar]], m_{0}, \Delta_{0}, \mathscr{E}(\varphi)\right)$ is an admissible quantization of $(\mathfrak{g}, \mu, \delta=0, \varphi)$.

This proposition is proved in Section 6.
Recall that the main axioms for a quasi-Hopf algebra (A, m, Δ, Φ) are that (a) Φ measures the noncoassociativity of Δ, and (b) Φ satisfies the pentagon equation. By analogy, we set:

Definition 1.5. A quasi-Hopf Poisson algebra is a quintuple $\left(A, m_{0}, P, \Delta, \tilde{\varphi}\right)$, where

- $\left(A, m_{0}\right)$ is a formal series algebra,
- P is a Poisson structure on A "vanishing at the origin" (i.e., such that $(P) \subset \mathfrak{m}_{A}$, where m_{A} is the maximal ideal of A),
- $\Delta: A \rightarrow A \widehat{\otimes} A$ is a continuous Poisson algebra morphism, such that $(\varepsilon \otimes \mathrm{id}) \circ \Delta=$ $(\mathrm{id} \otimes \varepsilon) \circ \Delta=\mathrm{id}$, where $\varepsilon: A \rightarrow A / \mathfrak{m}_{A}=\mathbb{K}$ is the natural projection,
- $\tilde{\varphi} \in\left(\mathfrak{m}_{A}\right)^{\widehat{\otimes} 3}$ satisfies

$$
\begin{gathered}
(\operatorname{id} \otimes \Delta)(\Delta(a))=\tilde{\varphi} \star(\Delta \otimes \operatorname{id})(\Delta(a)) \star(-\tilde{\varphi}), a \in A, \\
\tilde{\varphi}^{1,2,34} \star \tilde{\varphi}^{12,3,4}=\tilde{\varphi}^{2,3,4} \star \tilde{\varphi}^{1,23,4} \star \tilde{\varphi}^{1,2,3},
\end{gathered}
$$

where we set $f \star g=f+g+\frac{1}{2} P(f, g)+\cdots$, the Campbell-Baker-Hausdorff (CBH) series of the Lie algebra (A, P).
Such a structure is the function algebra of a "formal Poisson-Lie quasi-group". If $\tilde{f \in} \in \mathfrak{m}_{A}^{\widehat{\otimes} 2}$, we define the twist of the quasi-Hopf Poisson algebra $\left(A, m_{0}, P, \Delta, \tilde{\varphi}\right)$ by \tilde{f} as the algebra $\left(A, m_{0}, P, \tilde{f} \Delta, \tilde{f} \tilde{\varphi}\right)$, where

$$
\begin{gathered}
\tilde{f} \Delta(a)=\tilde{f} \star \Delta(a) \star(-\tilde{f}), \quad \text { and } \\
\tilde{f} \tilde{\varphi}=\tilde{f}^{2,3} \star \tilde{f}^{1,23} \star \tilde{\varphi} \star\left(-\tilde{f}^{12,3}\right) \star\left(-\tilde{f}^{1,2}\right) ;
\end{gathered}
$$

then $\left(A, m_{0}, P, \tilde{f}_{\Delta}, \tilde{f} \tilde{\varphi}\right)$ is again a quasi-Hopf Poisson algebra.

Remark 1.6. If Λ is any Artinian local \mathbb{K}-ring with residue field \mathbb{K}, set $X=$ $\operatorname{Hom}_{\S}(A, \Lambda)$. Then X is the "Poisson-Lie quasi-group", in the sense of the Introduction. Namely, Δ induces a product $m_{X}: X \times X \rightarrow X$, and $\exp \left(V_{\tilde{p}}\right)$, $\exp \left(V_{\tilde{\varphi}^{12,3,4}}\right)$, etc., induce automorphisms $\Phi_{X}, \Phi_{X}^{12,3,4}$, etc., of X, that satisfy the quasi-group axioms (we denote by V_{f} the Hamiltonian derivation of $A^{\widehat{\otimes} k}$ induced by $\left.f \in A^{\widehat{\otimes} k}\right)$. Moreover, if \tilde{f} is a twist of A, then $\exp \left(V_{\tilde{f}}\right), \exp \left(V_{\tilde{f} 12,3}\right), \exp \left(V_{\tilde{f}(12), 4}\right)$, etc., define a twistor $\left(F_{X}, F_{X}^{12,3}, F_{X}^{(12) 3,4}, \ldots\right)$ of $\left(X, m_{X}, \Phi_{X}\right)$. Twisting A by \tilde{f} corresponds to twisting $\left(X, m_{X}, \Phi_{X}\right)$ by $\left(F_{X}, F_{X}^{12,3}, \ldots\right)$.

Lemma 1.7. If $\left(A, m_{0}, P, \Delta, \tilde{\varphi}\right)$ is a quasi-Hopf Poisson algebra, set $\mathfrak{g}=\mathfrak{m}_{A} /\left(\mathfrak{m}_{A}\right)^{2}$; then P induces a Lie bracket μ on \mathfrak{g}, the map $\Delta-\Delta^{1,2}$ induces a linear map $\delta: \mathfrak{g} \rightarrow \Lambda^{2}(\mathfrak{g})$, and the reduction of $\operatorname{Alt}(\tilde{\varphi})$ is an element φ of $\Lambda^{3}(\mathfrak{g})$. Then $(\mathfrak{g}, \mu, \delta, \varphi)$ is a Lie quasi-bialgebra. Moreover, twisting $\left(A, m_{0}, P, \Delta, \tilde{\varphi}\right)$ by \tilde{f} corresponds to twisting $(\mathfrak{g}, \mu, \delta, \varphi)$ by

$$
f:=\left(\operatorname{Alt}(\tilde{f}) \bmod \left(\mathfrak{m}_{A}\right)^{2} \otimes \mathfrak{m}_{A}+\mathfrak{m}_{A} \otimes\left(\mathfrak{m}_{A}\right)^{2}\right) \in \Lambda^{2}(\mathfrak{g})
$$

Taking the reduction modulo \hbar of a QUE algebra over \mathfrak{g} induces a natural map

$$
\mathscr{2}_{\mathrm{adm}} / \mathscr{T}_{\mathrm{adm}} \rightarrow\{\text { quasi-Hopf Poisson algebra structures on } \widehat{S}(\mathfrak{g})\} / \text { twists. }
$$

To summarize, we have a diagram

$$
\left.\begin{array}{c}
2 / \mathscr{T} \leftarrow \mathscr{2}_{\text {adm }} / \mathscr{T}_{\text {adm }} \rightarrow \\
\text { class } \downarrow
\end{array} \quad \begin{array}{c}
\text { quasi-Hopf poisson algebra } \\
\text { structures on } \widehat{S}(\mathfrak{g}) \\
\downarrow \text { red }
\end{array}\right\} / \text { twists }
$$

\{Lie quasi-bialgebra structures on $(\mathfrak{g}, \mu)\} /$ twists,
where class is the classical limit map described in [Dr2], and red is the map described in Lemma 1.7. It is easy to see that this diagram commutes.

When U is a Hopf QUE algebra, it can be viewed as a quasi-Hopf algebra with $\Phi=1$, which is then admissible. The corresponding quasi-Hopf Poisson algebra is the Hopf-Poisson structure on $\mathcal{O}_{G^{*}}=\left(U\left(\mathfrak{g}^{*}\right)\right)^{*}$, and $\tilde{\varphi}=0$.

Let $(\mathfrak{g}, \mu, \delta, \varphi)$ be a Lie quasi-bialgebra. A lift of $(\mathfrak{g}, \mu, \delta, \varphi)$ is a quasi-Hopf Poisson algebra, whose reduction is $(\mathfrak{g}, \mu, \delta, \varphi)$. A general problem is to construct a lift for any Lie quasi-bialgebra. We will not solve this problem, but we will give partial existence and uniqueness results.

Assume that $\delta=0$. A Lie quasi-bialgebra is then the same as a triple $(\mathfrak{g}, \mu, \varphi)$ of a Lie algebra (\mathfrak{g}, μ) and $\varphi \in \Lambda^{3}(\mathfrak{g})^{\mathfrak{g}}$.

Theorem 1.8. (1) There exists a lift

$$
\begin{equation*}
\left(\widehat{\boldsymbol{S}}^{\prime}(\mathfrak{g}), m_{0}, P_{\mathfrak{g}^{*}}, \Delta_{0}, \tilde{\varphi}\right) \tag{1.2}
\end{equation*}
$$

of $(\mathfrak{g}, \mu, \delta=0, \varphi)$. Here $P_{\mathfrak{g}^{*}}$ is the Kostant-Kirillov Poisson structure on \mathfrak{g}^{*} and Δ_{0} is the coproduct for which the elements of \mathfrak{g} are primitive.
(2) Any two lifts of $(\mathfrak{g}, \mu, \delta=0, \varphi)$ of the form (1.2) are related by a \mathfrak{g}-invariant twist.

Examples of Lie quasi-bialgebras with $\delta=0$ arise from metrized Lie algebras, i.e., pairs $\left(\mathfrak{g}, t_{\mathfrak{g}}\right)$ of a Lie algebra \mathfrak{g} and $t_{\mathfrak{g}} \in S^{2}(\mathfrak{g})^{\mathfrak{g}}$. Then $\varphi=\left[t_{\mathfrak{g}}^{1,2}, t_{\mathfrak{g}}^{2,3}\right]$. Recall that a Lie associator is a noncommutative formal series $\Phi(A, B)$, such that $\log \Phi(A, B)$ is a Lie series $[A, B]+$ higher degree terms, satisfying the pentagon and hexagon identities (see [Dr3]).

Proposition 1.9. If Φ is a Lie associator, we may set $\varphi=\log (\Phi)\left(\bar{t}_{\mathfrak{g}}^{1,2}, \bar{t}_{\mathfrak{g}}^{2,3}\right)$, where $\bar{t}_{\mathfrak{g}}^{i, j}$ is the image of $t_{\mathfrak{g}}^{i, j}$ in $\widehat{S}(\mathfrak{g})^{\widehat{\otimes} 3}$, and we use the Poisson bracket of $\widehat{S}(\mathfrak{g})^{\widehat{\otimes} 3}$ in the expression of $\log (\Phi)\left(\bar{t}_{\mathfrak{g}}^{1,2}, \bar{t}_{\mathfrak{g}}^{2,3}\right)$.

We prove these results in Section 6. If now Φ is a general (non-Lie) associator, $\left(U(\mathfrak{g})[[\hbar]], m_{0}, \Delta_{0}, \Phi\left(\hbar t_{\mathfrak{g}}^{1,2}, \hbar t_{\mathfrak{g}}^{2,3}\right)\right)$ is a quasi-Hopf QUE algebra, but it is admissible only when Φ is Lie (for general g). According to Theorem 1.3 (2), it is twistequivalent to an admissible quasi-Hopf QUE algebra. We prove

Theorem 1.10. Any (non-Lie) associator is twist-equivalent to a unique Lie associator.
So the "concrete" version of the twist of Theorem 1.10 is an example of the twist F_{0} of Theorem 1.3, (2).

2. Definition and properties of U^{\prime}

In this section, we prove Theorem 1.1. We first introduce the material for the definition of U^{\prime} : trees (a); the map $\delta^{(P)}$ (b); then we prove Theorem 1.1 in (c) and (d).

2.1. Binary complete planar rooted trees

Definition 2.1. An n-binary complete planar rooted tree (n-tree for short) is a set of vertices and oriented edges satisfying the following conditions:

- each edge carries one of the labels $\{l, r\}$.
- if we set:
valency of a vertex $=(\operatorname{card}($ incoming edges $), \operatorname{card}($ outgoing edges $))$,
we have
- there exists exactly one vertex with valency $(0,2)$ (the root)
- there exists exactly n vertices with valency $(1,0)$ (the leaves)
- all other vertices have valency $(1,2)$
- if a vertex has valency ($x, 2$), then one of its outgoing edges has label l and the other has label r.

Let us denote, for $n \geqslant 2$,

$$
\text { Tree }_{n}=\{n \text {-binary complete planar rooted trees }\}
$$

By definition, Tree ${ }_{1}$ consists of one element (the tree with a root and one nonmarked edge) and Tree_{0} consists of one element (the tree with a root and no edge). We will write $|P|=n$ if P is a tree in Tree $_{n}$.

Definition 2.2 (Extracted trees). Let P be a binary complete planar rooted tree. Let L be the set of its leaves and let L^{\prime} be a subset of L. We define the extracted subtree $P_{L^{\prime}}$ as follows:
(1) $\tilde{P}_{L^{\prime}}$ is the set of all edges connecting the root with an element of L^{\prime},
(2) the vertices of $\tilde{P}_{L^{\prime}}$ all have valency $(0,2),(1,0),(1,2)$ or $(1,1)$;
(3) $P_{L^{\prime}}$ is obtained from $\tilde{P}_{L^{\prime}}$ by replacing each maximal sequence of edges related by a $(1,1)$ vertex, by a single edge whose label is the label of the first edge of the sequence.
Then $P_{L^{\prime}}$ is a $\left|L^{\prime}\right|$-binary complete planar rooted tree.
Definition 2.3 (Descendants of a tree). If we cut the tree P by removing its root and the related edges, we get two trees P^{\prime} and $P^{\prime \prime}$, its left and right descendants.

In the same way, we define the left and right descendants of a vertex of P.
If P is a n-tree, there exists a unique bijection of the set of leaves with $\{1, \ldots, n\}$, such that for each vertex, the number attached to any leaf of its left descendant is smaller than the number attached to any leaf of its right descendant.

2.2. Definition of $\Delta^{(P)}, \delta^{(P)}: U \rightarrow U^{\widehat{\otimes} n}$

Let us place ourselves in the hypothesis of Theorem 1.1. For P_{0} (resp., P_{1}, P_{2}) the only tree of Tree ${ }_{0}$ (resp., Tree ${ }_{1}$, Tree 2), we set $\Delta^{\left(P_{0}\right)}=\varepsilon$ (resp., $\Delta^{\left(P_{1}\right)}=\mathrm{id}, \Delta^{\left(P_{2}\right)}=\Delta$). When P is a n-tree with descendants P^{\prime} and $P^{\prime \prime}$, we set

$$
\Delta^{(P)}=\left(\Delta^{\left(P^{\prime}\right)} \otimes \Delta^{\left(P^{\prime \prime}\right)}\right) \circ \Delta,
$$

so $\Delta^{(P)}$ is a linear map $U \rightarrow U^{\widehat{\otimes} n}$.
We set $\delta^{(P)}=(\mathrm{id}-\eta \circ \varepsilon)^{\otimes|P|} \circ \Delta^{(P)}$, so $\delta^{(P)}$ is a linear map $U \rightarrow U^{\widehat{\otimes} n}$.
In particular, $\delta^{\left(P_{0}\right)}(x)=\varepsilon(x), \delta^{\left(P_{1}\right)}(x)=x-\varepsilon(x) 1$, and $\delta^{\left(P_{2}\right)}(x)=\Delta(x)-x \otimes 1-$ $1 \otimes x+\varepsilon(x) 1 \otimes 1$.

We use the notation $\delta^{(i)}=\Delta^{\left(P_{i}\right)}$ for $i=0,1,2$, and $\delta=\delta^{(2)}$.

We have also

$$
\delta^{(P)}=\left(\delta^{\left(P^{\prime}\right)} \otimes \delta^{\left(P^{\prime \prime}\right)}\right) \circ \delta
$$

2.3. Behavior of $\delta^{(P)}$ with respect to multiplication

If $\Sigma=\left\{i_{1}, \ldots, i_{k}\right\}$ is a subset of $\{1, \ldots, n\}$, where $i_{1}<i_{2}<\cdots<i_{k}$, the map $x \mapsto x^{\Sigma}$ is the linear map $U^{\widehat{\otimes} k} \rightarrow U^{\widehat{\otimes} n}$, defined by

$$
x_{1} \otimes \cdots \otimes x_{k} \mapsto 1^{\otimes i_{1}-1} \otimes x_{1} \otimes 1^{\otimes i_{2}-i_{1}-1} \otimes x_{2} \otimes \cdots \otimes 1^{\otimes i_{k}-i_{k-1}-1} \otimes x_{k} \otimes 1^{\otimes n-i_{k}-1}
$$

If $\Sigma=\emptyset, x \mapsto x^{\Sigma}$ is the map $\mathbb{K} \rightarrow U^{\widehat{\otimes} n}, 1 \mapsto 1^{\otimes n}$.

Proposition 2.4. For $P \in \mathrm{Tree}_{n}$, we have the identity

$$
\delta^{(P)}(x y)=\sum_{\substack{\Sigma^{\prime}, \Sigma^{\prime \prime} \subset\{1, \ldots, n\} \mid \\ \Sigma^{\prime} \cup \Sigma^{\prime \prime}=\{1, \ldots, n\}}}\left(\delta^{\left(\Sigma^{\prime}\right)}(x)\right)^{\Sigma^{\prime}}\left(\delta^{\left(\Sigma^{\prime \prime}\right)}(y)\right)^{\Sigma^{\prime \prime}}
$$

for any $x, y \in U$.
This proposition is proved in Section 5.

2.4. Construction of U^{\prime}

Let us set

$$
U^{\prime}=\left\{x \in U \mid \text { for any tree } P, \delta^{(P)}(x) \in \hbar^{|P|} U^{\widehat{\otimes}|P|}\right\}
$$

Then U^{\prime} is a topologically free $\mathbb{K}[[\hbar]]$-submodule of U. Moreover, if $x, y \in U^{\prime}$, and P is a tree, then

$$
\delta^{(P)}([x, y])=\sum_{\substack{\left.\Sigma, \Sigma^{\prime} \subset\{1, \ldots,|P|\} \\ \Sigma \cup \Sigma^{\prime}=\{1, \ldots, \mid P\}\right\}}}\left[\delta^{\left(P_{\Sigma}\right)}(x)^{\Sigma}, \delta^{\left(P_{\Sigma^{\prime}}\right)}(y)^{\Sigma^{\prime}}\right] ;
$$

the summand corresponding to a pair $\left(\Sigma, \Sigma^{\prime}\right)$ with $\Sigma \cap \Sigma^{\prime}=\emptyset$ is zero, and the \hbar-adic valuation of the other summands is $\geqslant|\Sigma|+\left|\Sigma^{\prime}\right| \geqslant|P|+1$; so $\delta^{(P)}([x, y]) \in \hbar^{|P|+1} U^{\widehat{\otimes}|P|}$. On the other hand, there exists $z \in U$ such that $[x, y]=\hbar z$, so $\delta^{(P)}(z) \in \hbar^{|P|} U^{\widehat{\otimes}|P|}$; so $z \in U^{\prime}$ and we get $[x, y] \in \hbar U^{\prime}$. It follows that $U^{\prime} / \hbar U^{\prime}$ is commutative. Let us set

$$
\begin{equation*}
U^{\prime(n)}=U^{\prime} \cap \hbar^{n} U \tag{2.3}
\end{equation*}
$$

We have a decreasing filtration

$$
U^{\prime}=U^{\prime(0)} \supset U^{\prime(1)} \supset U^{\prime(2)} \supset \cdots ;
$$

we have $U^{\prime(n)} \subset \hbar^{n} U$, so U^{\prime} is complete for the topology induced by this filtration. This is an algebra filtration, i.e., $U^{\prime(i)} U^{\prime(j)} \subset U^{\prime(i+j)}$. It induces an algebra filtration on $U^{\prime} / \hbar U^{\prime}$,

$$
U^{\prime} / \hbar U^{\prime} \supset \cdots \supset U^{\prime(i)} /\left(U^{\prime(i)} \cap \hbar U^{\prime}\right) \supset \cdots
$$

for which $U^{\prime} / \hbar U^{\prime}$ is complete. Moreover, the completed tensor product

$$
U^{\prime} \bar{\otimes} U^{\prime}=\lim _{\check{ }}\left(U^{\prime} \widehat{\otimes} U^{\prime} / \sum_{p, q \mid p+q=n} U^{\prime(p)} \widehat{\otimes} U^{\prime(q)}\right)
$$

identifies with

$$
\begin{aligned}
& \lim _{n}\left(\left\{x \in U \widehat{\otimes} U \mid \forall P, \quad Q, \quad\left(\delta^{(P)} \otimes \delta^{(Q)}\right)(x) \in \hbar^{|P|+|Q|} U^{\widehat{\otimes}|P|+|Q|}\right\} /\right. \\
& \left.\quad\left\{x \in U \widehat{\otimes} U \mid \forall P, \quad Q, \quad\left(\delta^{(P)} \otimes \delta^{(Q)}\right)(x) \in \hbar^{\max (n,|P|+|Q|)} U^{\widehat{\otimes}|P|+|Q|}\right\}\right)
\end{aligned}
$$

If $x \in U^{\prime}$, and P, Q are trees, with $|P|,|Q| \neq 0$, then since $\delta^{(P)}(1)=\delta^{(Q)}(1)=0$, we have

$$
\begin{aligned}
\left(\delta^{(P)} \otimes \delta^{(Q)}\right)(\Delta(x)) & =\left(\delta^{(P)} \otimes \delta^{(Q)}\right)(\delta(x))=\delta^{(R)}(x) \in \hbar^{|R|} U^{\widehat{\otimes}|R|} \\
& =\hbar^{|P|+|Q|} U^{\widehat{\otimes}|P|+|Q|}
\end{aligned}
$$

where R is the tree whose left and right descendants are P and Q; so $|R|=|P|+|Q|$. On the other hand,

$$
\begin{aligned}
& \left(\delta^{(P)} \otimes \varepsilon\right)(\Delta(x))=\delta^{(P)}(x) \otimes 1 \in \hbar^{|P|} U^{\otimes|P|} \\
& \left(\varepsilon \otimes \delta^{(P)}\right)(\Delta(x))=1 \otimes \delta^{(P)}(x) \in \hbar^{|P|} U^{\otimes|P|}
\end{aligned}
$$

so $\Delta(x)$ satisfies $\left(\delta^{(P)} \otimes \delta^{(Q)}\right)(\Delta(x)) \in \hbar^{|P|+|Q|} U^{\widehat{\otimes}|P|+|Q|}$ for any pair of trees (P, Q). $\Delta: U \rightarrow U \widehat{\otimes} U$ therefore induces an algebra morphism $\Delta_{U^{\prime}}: U^{\prime} \rightarrow U^{\prime \bar{\otimes} 2}$, whose reduction modulo \hbar is a morphism of complete local rings

$$
\mathcal{O} \rightarrow \mathcal{O}^{\bar{\otimes} 2}=\lim _{\leftarrow}\left(\mathcal{O}^{\otimes 2} / \sum_{p, q \mid p+q=n} \mathcal{O}^{(p)} \otimes \mathcal{O}^{(q)}\right)
$$

where $\mathcal{O}=U^{\prime} / \hbar U^{\prime}$ and $\mathcal{O}^{(p)}=U^{\prime(p)} /\left(U^{\prime(p)} \cap \hbar U^{\prime}\right)$.

3. Classical limit of U^{\prime}

We will prove Theorem 1.2 as follows. We first compare the various $\delta^{(P)}$, where P is a n-tree (Proposition 3.1). Relations found between the $\delta^{(P)}$ imply that they have \hbar-adic valuation properties close to those of the Hopf case (Proposition 3.2). We then prove Theorem 1.2.

3.1. Comparison of the various $\delta^{(P)}$

Let P and P_{0} be n-trees. There exists an element $\Phi^{P, P_{0}} \in U^{\widehat{\otimes} n}$, such that $\Delta^{(P)}=$ $\operatorname{Ad}\left(\Phi^{P, P_{0}}\right) \circ \Delta^{\left(P_{0}\right)}$. The element $\Phi^{P, P_{0}}$ is a product of images of Φ and Φ^{-1} by the various maps $U^{\widehat{\otimes} 3} \rightarrow U^{\widehat{\otimes} n}$ obtained by iteration of Δ. We have

$$
\begin{equation*}
\Phi^{P^{\prime}, P_{0}}=\Phi^{P^{\prime}, P} \Phi^{P, P_{0}} \tag{3.4}
\end{equation*}
$$

for any n-trees P_{0}, P, P^{\prime}. For example,

$$
\begin{gathered}
(\mathrm{id} \otimes \Delta) \circ \Delta=\operatorname{Ad}(\Phi) \circ((\Delta \otimes \mathrm{id}) \circ \Delta), \\
(\Delta \otimes \Delta) \circ \Delta=\operatorname{Ad}\left(\Phi^{12,3,4}\right) \circ\left(\left(\Delta \otimes \mathrm{id}^{\otimes 2}\right) \circ(\Delta \otimes \mathrm{id}) \circ \Delta\right), \text { etc. }
\end{gathered}
$$

Proposition 3.1. Assume that $\hbar \log (\Phi) \in\left(U^{\prime}\right)^{\bar{\otimes} 3}$. Then there exists a sequence of elements

$$
F^{P P_{0} R \Sigma v}=\sum_{\alpha} F_{1, \alpha}^{P P_{0} R \Sigma v} \otimes \cdots \otimes F_{v, \alpha}^{P P_{0} R \Sigma v} \in\left(U^{\prime \bar{\otimes} n}\right)^{\bar{\otimes} v}
$$

indexed by the triples (R, Σ, v), where R is a tree such that $|R|<n, \Sigma$ is a subset of $\{1, \ldots, n\}$ with $\operatorname{card}(\Sigma)=|R|$, and v is an integer $\geqslant 1$, such that the equality

$$
\begin{align*}
\delta^{(P)}= & \operatorname{Ad}\left(\Phi^{P, P_{0}}\right) \circ \delta^{\left(P_{0}\right)}+\sum_{k \mid k<n} \sum_{R \text { a } k \text {-tree }} \sum_{\substack{\Sigma \subset\{1, \ldots, n\}, \\
\text { card }(\Sigma)=k}} \\
& \sum_{v \geqslant 1} \sum_{\alpha} \operatorname{ad}_{\hbar}\left(F_{1, \alpha}^{P P_{0} R \Sigma v}\right) \circ \cdots \circ \operatorname{ad}_{\hbar}\left(F_{v, \alpha}^{P P_{0} R \Sigma v}\right) \circ\left(\delta^{(R)}\right)^{\Sigma} \tag{3.5}
\end{align*}
$$

holds. Here $\operatorname{ad}_{\hbar}(x)(y)=\frac{1}{\hbar}[x, y]$.
Proof. Let us prove this statement by induction on n. When $n=3$, we find

$$
\delta^{(1(23))}=\operatorname{Ad}(\Phi) \delta^{((12) 3)}+(\operatorname{Ad}(\Phi)-1)\left(\delta^{1,2}+\delta^{1,3}+\delta^{2,3}+\delta^{(1) 1}+\delta^{(1) 2}+\delta^{(1) 3}\right)
$$

so the identity holds with $F^{P P_{0} R \Sigma v}=\frac{1}{v!}(\hbar \log \Phi)^{\bar{\otimes} v}$ for all choices of (R, Σ, v), except when $|R|=0$, in which case $F^{P P_{0} R \Sigma v}=0$. Assume that the statement holds for any
pair of k-trees, $k \leqslant n$, and let us prove it for a pair $\left(P, P_{0}\right)$ of $(n+1)$-trees. For k any integer, let $P_{\text {left }}(k)$ be the k-tree corresponding to

$$
\delta^{\left(P_{\mathrm{left}}(k)\right)}=\left(\delta \otimes \mathrm{id}^{\otimes k-2}\right) \circ \cdots \circ \delta
$$

Thanks to (3.4), we may assume that $P_{0}=P_{\text {left }}(n+1)$ and P is arbitrary. Let P^{\prime} and $P^{\prime \prime}$ be the subtrees of P, such that $\left|P^{\prime}\right|+\left|P^{\prime \prime}\right|=n+1$, and $\delta^{(P)}=\left(\delta^{\left(P^{\prime}\right)} \otimes \delta^{\left(P^{\prime \prime}\right)}\right) \circ \delta$. Let P_{1} and P_{2} be the n-trees such that

$$
\delta^{\left(P_{1}\right)}=\left(\delta^{\left(P_{\text {left }}\left(k^{\prime}\right)\right)} \otimes \delta^{\left(P^{\prime \prime}\right)}\right) \circ \delta \text { and } \delta^{\left(P_{2}\right)}=\left(\delta^{\left(P_{\text {left }}\left(k^{\prime}\right)\right)} \otimes \delta^{\left(P_{\text {left }}\left(k^{\prime \prime}\right)\right)}\right) \circ \delta
$$

Assume that $\left|P_{1}\right| \neq 1$. Using (3.4), we reduce the proof of (3.5) to the case of the pairs $\left(P, P_{1}\right),\left(P_{1}, P_{2}\right)$ and $\left(P_{2}, P_{0}\right)$. Then the induction hypothesis applied to the pair $\left(P^{\prime}, P_{\text {left }}\left(k^{\prime}\right)\right)$, together with $\Phi^{P, P_{1}}=\Phi^{P^{\prime}, P_{\text {left }}\left(k^{\prime}\right)} \otimes 1^{\otimes k^{\prime \prime}}$, implies

$$
\begin{aligned}
\delta^{(P)}= & \operatorname{Ad}\left(\Phi^{P, P_{1}}\right) \circ \delta^{\left(P_{1}\right)}+\sum_{k \mid k<k^{\prime}} \sum_{R \text { a }} \sum_{k-\operatorname{tree}} \sum_{\substack{\Sigma \subset\left\{1, \ldots, k^{\prime}\right\}, \operatorname{card}(\Sigma,=k}} \\
& \sum_{v \geqslant 1} \sum_{\alpha} \operatorname{Ad}\left(\Phi^{P, P_{1}}\right) \circ \operatorname{ad}_{\hbar}\left(F_{1, \alpha}^{P P_{\text {left }}\left(k^{\prime}\right) \Sigma v} \otimes 1^{\otimes k^{\prime \prime}}\right) \cdots \operatorname{ad}_{\hbar}\left(F_{v, \alpha}^{P^{\prime} P_{\text {left }}\left(k^{\prime}\right) \Sigma v} \otimes 1^{\otimes k^{\prime \prime}}\right) \\
& \circ\left(\left(\delta^{(R)} \otimes \delta^{\left(P^{\prime \prime}\right)}\right) \circ \delta\right)^{\Sigma, k^{\prime}+1, \ldots, n+1},
\end{aligned}
$$

which is (3.5) for $\left(P, P_{1}\right)$. In the same way, one proves a similar identity relating P_{1} and P_{2}. Let us now prove the identity relating P_{2} and P_{0}. We have $\delta^{\left(P_{2}\right)}=$ $\left(\delta \otimes \mathrm{id}^{\otimes n-1}\right) \circ \delta^{\left(P_{2}^{\prime}\right)}$ and $\delta^{\left(P_{0}\right)}=\left(\delta \otimes \mathrm{id}^{\otimes n-1}\right) \circ \delta^{\left(P_{0}^{\prime}\right)}$, where P_{2}^{\prime} and P_{0}^{\prime} are n-trees. We have

$$
\Phi^{P_{2}, P_{0}}=\left(\Delta \otimes \mathrm{id}^{\otimes n-2}\right) \circ \Phi^{P_{2}^{\prime}, P_{0}^{\prime}}
$$

so we get

$$
\begin{aligned}
\delta^{\left(P_{2}\right)}= & \operatorname{Ad}\left(\Phi^{P_{2}, P_{0}}\right) \circ \delta^{\left(P_{0}\right)} \\
& +\left(\operatorname{Ad}\left(\Phi^{P_{2}, P_{0}}\right)-\operatorname{Ad}\left(\left(\Phi^{P_{2}^{\prime}, P_{0}^{\prime}}\right)^{1,3, \ldots, n+1}\right)\right) \circ\left(\delta^{\left(P_{0}^{\prime}\right)}\right)^{1,3, \ldots, n+1} \\
& +\left(\operatorname{Ad}\left(\Phi^{P_{2}, P_{0}}\right)-\operatorname{Ad}\left(\left(\Phi^{P^{\prime}, P_{0}^{\prime}}\right)^{2,3, \ldots, n+1}\right)\right) \circ\left(\delta^{\left(P_{0}^{\prime}\right)}\right)^{2,3, \ldots, n+1} \\
& +\left(\delta \otimes \mathrm{id}^{\otimes n-1}\right)\left(\sum_{k \leqslant n} \sum_{R} \sum_{k-\text { tree }} \sum_{\substack{\Sigma \subset\{1, \ldots, n\}, \operatorname{card}(\Sigma)=k}} \sum_{v \geqslant 1}\right. \\
& \left.\times \sum_{\alpha} \operatorname{ad}_{\hbar}\left(F_{1, \alpha}^{P_{2}^{\prime} P_{0}^{\prime} \Sigma v}\right) \cdots \operatorname{ad}_{\hbar}\left(F_{v, \alpha}^{P_{2}^{\prime} P_{0}^{\prime} \Sigma v}\right) \circ\left(\delta^{(R)}\right)^{\Sigma}\right) .
\end{aligned}
$$

We have $\hbar \log \Phi^{P_{2}, P_{0}} \in U^{\prime \otimes} n+1$ and $\hbar \log \Phi^{P_{2}^{\prime}, P_{0}^{\prime}} \in U^{\prime \otimes n}$; this fact and the relations

$$
\begin{aligned}
(\delta & \left.\otimes \mathrm{id}^{\otimes n-1}\right)\left(\operatorname{ad}_{\hbar}\left(x_{1}\right) \cdots \operatorname{ad}_{\hbar}\left(x_{v}\right) \circ\left(\delta^{(R)}\right)^{\Sigma}\right) \\
& =\left(\operatorname{ad}_{\hbar}\left(x_{1}^{12, \ldots, n+1}\right) \circ \cdots \circ \operatorname{ad}_{\hbar}\left(x_{v}^{12, \ldots, n+1}\right)-\operatorname{ad}_{\hbar}\left(x_{1}^{1,3, \ldots, n+1}\right) \circ \cdots \circ \operatorname{ad}_{\hbar}\left(x_{v}^{1,3, \ldots, n+1}\right)\right. \\
& \left.-\operatorname{ad}_{\hbar}\left(x_{1}^{2,3, \ldots, n+1}\right) \circ \cdots \circ \operatorname{ad}_{\hbar}\left(x_{v}^{2,3, \ldots, n+1}\right)\right) \circ\left(\delta^{(R)}\right)^{\Sigma+1}
\end{aligned}
$$

if $1 \notin \Sigma$, and

$$
\left(\delta \otimes \mathrm{id}^{\otimes n-1}\right)\left(\operatorname{ad}_{\hbar}\left(x_{1}\right) \cdots \operatorname{ad}_{\hbar}\left(x_{v}\right) \circ\left(\delta^{(R)}\right)^{\Sigma}\right)
$$

$$
\begin{aligned}
= & \operatorname{ad}_{\hbar}\left(x_{1}^{12, \ldots, n+1}\right) \circ \cdots \circ \operatorname{ad}_{\hbar}\left(x_{v}^{12, \ldots, n+1}\right) \circ\left(\left(\delta \otimes \operatorname{id}^{\otimes n-1}\right) \circ \delta^{(R)}\right)^{1,2, \Sigma^{\prime}+1} \\
& +\left(\operatorname{ad}_{\hbar}\left(x_{1}^{12, \ldots, n+1}\right) \circ \cdots \circ \operatorname{ad}_{\hbar}\left(x_{v}^{12, \ldots, n+1}\right)-\operatorname{ad}_{\hbar}\left(x_{1}^{1,3, \ldots, n+1}\right) \circ \cdots \circ \operatorname{ad}_{\hbar}\left(x_{v}^{1,3, \ldots, n+1}\right)\right) \\
& \circ\left(\delta^{(R)}\right)^{1, \Sigma^{\prime}+1}+\left(\operatorname{ad}_{\hbar}\left(x_{1}^{12, \ldots, n+1}\right) \circ \cdots \circ \operatorname{ad}_{\hbar}\left(x_{v}^{12, \ldots, n+1}\right)-\operatorname{ad}_{\hbar}\left(x_{1}^{2,3, \ldots, n+1}\right) \circ \cdots \circ \operatorname{ad}_{\hbar}\left(x_{v}^{2,3, \ldots, n+1}\right)\right) \\
& \circ\left(\delta^{(R)}\right)^{2, \Sigma^{\prime}+1}
\end{aligned}
$$

if $\Sigma=\Sigma^{\prime} \cup\{1\}$, where $1 \notin \Sigma^{\prime}$, imply that $\delta^{\left(P_{2}\right)}-\operatorname{Ad}\left(\Phi^{P_{2}, P_{0}}\right) \circ \delta^{\left(P_{0}\right)}$ has the desired form.
Let us now treat the case $\left|P_{1}\right|=1$. For this, we introduce the trees P_{3} and P_{4}, such that:

$$
\begin{gathered}
\delta^{\left(P_{3}\right)}=\left(\mathrm{id}^{\otimes n-1} \otimes \delta\right) \circ\left(\mathrm{id}^{\otimes n-2} \otimes \delta\right) \circ \cdots \circ \delta, \\
\delta^{\left(P_{4}\right)}=\left(\mathrm{id}^{\otimes n-1} \otimes \delta\right) \circ\left(\delta \otimes \mathrm{id}^{\otimes n-2}\right) \circ\left(\delta \otimes \mathrm{id}^{\otimes n-3}\right) \circ \cdots \circ(\delta \otimes \mathrm{id}) \circ \delta .
\end{gathered}
$$

We then prove the relation for the pair $\left(P, P_{3}\right)$ in the same way as for $\left(P_{1}, P_{2}\right)$ (only the right branch of the tree is changed); the relation for $\left(P_{3}, P_{4}\right)$ in the same way as for $\left(P_{2}, P_{3}\right)$ (instead of composing a known relation by $\delta \otimes \mathrm{id}^{\otimes n-1}$, we compose it with id ${ }^{\otimes n-1} \otimes \delta$); and using the identity

$$
\delta^{\left(P_{4}\right)}=\left(\delta \otimes \mathrm{id}^{\otimes n-1}\right) \circ\left(\mathrm{id}^{\otimes n-2} \otimes \delta\right) \circ\left(\delta \otimes \mathrm{id}^{\otimes n-3}\right) \circ \cdots \circ \delta,
$$

we prove the relation for $\left(P_{4}, P\right)$ in the same way as for $\left(P_{2}, P_{3}\right)$ (composing a known relation by $\delta \otimes \mathrm{id}^{\otimes n-1}$).

3.2. Properties of $\delta^{(P)}$

Proposition 3.2. Let n be an integer and $x \in U$.
(1) Assume that for any tree R, such that $|R|<n$, we have $\delta^{(R)}(x) \in \hbar^{|R|} U^{\widehat{\otimes}|R|}$. Then the conditions

$$
\begin{equation*}
\delta^{(P)}(x) \in \hbar^{n} U^{\widehat{\otimes} n} \tag{3.6}
\end{equation*}
$$

where P is an n-tree, are all equivalent.
(2) Assume that for any tree R, such that $|R|<n$, we have $\delta^{(R)}(x) \in \hbar^{|R|+1} U^{\widehat{\otimes}|R|}$. Then the elements

$$
\left(\frac{1}{\hbar^{n}} \delta^{(P)}(x) \bmod \hbar\right) \in U(\mathfrak{g})^{\otimes n}
$$

where P is an n-tree, are all equal and belong to $\left(\mathfrak{g}^{\otimes n}\right)^{\Xi_{n}}=S^{n}(\mathfrak{g})$.

Proof. Let us prove (1). We have $\delta^{(P)}=(\mathrm{id}-\eta \circ \varepsilon)^{\otimes|P|} \circ \delta^{(P)}$, where $\eta: \mathbb{K}[[\hbar]] \rightarrow U$ is the unit map of U, so

$$
\begin{aligned}
\delta^{(P)}= & \operatorname{Ad}\left(\Phi^{P, P_{0}}\right) \circ \delta^{\left(P_{0}\right)}+\sum_{k \mid k<n} \sum_{R \text { a }} \sum_{k-\operatorname{tree}} \sum_{\substack{\Sigma \subset\{1, \ldots, n\}, \operatorname{card}(\Sigma)=k}} \sum_{v \geqslant 1} \\
& (\mathrm{id}-\eta \circ \varepsilon)^{\otimes n} \circ \operatorname{ad}_{\hbar}\left(F_{1, \alpha}^{P P_{0} R \Sigma v}\right) \circ \cdots \circ \operatorname{ad}_{\hbar}\left(F_{v, \alpha}^{P P_{0} R \Sigma v}\right) \circ\left(\delta^{(R)}\right)^{\Sigma} .
\end{aligned}
$$

Then (1) follows from:
Lemma 3.3. Let Σ be a subset of $\{1, \ldots, n\}$ (we will write $|\Sigma|$ instead of $\operatorname{card}(\Sigma)$) and let U_{0} be the kernel of the counit of U. Let $x \in \hbar^{|\Sigma|}\left(U_{0}\right)^{\widehat{\otimes}|\Sigma|}$ and F_{1}, \ldots, F_{v} be elements of $\left(U^{\prime}\right)^{\bar{\otimes} n}$. Then

$$
(\mathrm{id}-\eta \circ \varepsilon)^{\otimes n}\left(\operatorname{ad}_{\hbar}\left(F_{1}\right) \cdots \operatorname{ad}_{\hbar}\left(F_{v}\right)\left(x^{\Sigma}\right)\right) \in \hbar^{n}\left(U_{0}\right)^{\widehat{\otimes} n} .
$$

Proof of Lemma. Each element $F \in\left(U^{\prime}\right)^{\bar{\otimes} n}$ is uniquely expressed as a sum $F=$ $\sum_{\Sigma \in \mathscr{P}(\{1, \ldots, n\})} F_{\Sigma}$, where F_{Σ} belongs to the image of

$$
\begin{gathered}
\left(U_{0}^{\prime}\right)^{\bar{\otimes}|\Sigma|} \rightarrow\left(U^{\prime}\right)^{\bar{\otimes} n}, \\
f \mapsto f^{\Sigma}
\end{gathered}
$$

$\mathscr{P}(\{1, \ldots, n\})$ is the set of subsets of $\{1, \ldots, n\}$, and U_{0}^{\prime} is the kernel of the counit of U^{\prime}. Then

$$
\begin{aligned}
& (\mathrm{id}-\eta \circ \varepsilon)^{\otimes n}\left(\operatorname{ad}_{\hbar}\left(F_{1}\right) \cdots \operatorname{ad}_{\hbar}\left(F_{v}\right)\left(x^{\Sigma}\right)\right) \\
& \quad=\sum_{\Sigma_{1}, \ldots, \Sigma_{v} \in \mathscr{P}(\{1, \ldots, n\})}(\mathrm{id}-\eta \circ \varepsilon)^{\otimes n}\left(\operatorname{ad}_{\hbar}\left(\left(F_{1}\right)_{\Sigma_{1}}\right) \cdots \operatorname{ad}_{\hbar}\left(\left(F_{v}\right)_{\Sigma_{v}}\right)\left(x^{\Sigma}\right)\right) .
\end{aligned}
$$

The summands corresponding to $\left(\Sigma_{1}, \ldots, \Sigma_{v}\right)$ such that $\Sigma_{1} \cup \cdots \Sigma_{v} \cup \Sigma \neq\{1, \ldots, n\}$ are all zero. Moreover, each $\left(F_{\alpha}\right)_{\Sigma_{\alpha}}$ can be expressed as $\left(f_{\alpha}\right)^{\Sigma_{\alpha}}$, where $f_{\alpha} \in \hbar^{\left|\Sigma_{\alpha}\right|}\left(U_{0}\right)^{\widehat{\otimes}\left|\Sigma_{\alpha}\right|}$. The lemma then follows from the statement:

Statement 3.4. If $\Sigma, \Sigma^{\prime} \subset\{1, \ldots, n\}, x \in \hbar^{|\Sigma|}\left(U_{0}\right)^{\widehat{\otimes}|\Sigma|}, y \in \hbar^{\left|\Sigma^{\prime}\right|}\left(U_{0}\right)^{\widehat{\otimes}\left|\Sigma^{\prime}\right|}$, then $\frac{1}{\hbar}[x, y]$ can be expressed as $z^{\Sigma \cup \Sigma^{\prime}}$, where $z \in \hbar^{\left|\Sigma \cup \Sigma^{\prime}\right|}\left(U_{0}\right)^{\widehat{\otimes}\left|\Sigma \cup \Sigma^{\prime}\right|}$.

Proof. If $\Sigma \cap \Sigma^{\prime}=\emptyset$, then $[x, y]=0$, so the statement holds. If $\Sigma \cap \Sigma^{\prime} \neq \emptyset$, then the \hbar-adic valuation of $\frac{1}{\hbar}[x, y]$ is $\geqslant-1+|\Sigma|+\left|\Sigma^{\prime}\right| \geqslant|\Sigma|+\left|\Sigma^{\prime}\right|-\left|\Sigma \cap \Sigma^{\prime}\right|=\left|\Sigma \cup \Sigma^{\prime}\right|$.

Let us now prove property (2). The above arguments immediately imply that the $\left(\frac{1}{\hbar^{n}}{ }^{(P)}(x) \bmod \hbar\right),|P|=n$, are all equal. This defines an element $S_{n}(x) \in U(\mathfrak{g})^{\otimes n}$. If $|P|=n$, we have $\left(\mathrm{id}^{\otimes k} \otimes \delta \otimes \mathrm{id}^{\otimes n-k-1}\right) \circ \delta^{(P)}(x) \in \hbar^{n+1} U^{\otimes} n+1$, so if $\delta_{0}: U(\mathfrak{g}) \rightarrow$ $U(\mathfrak{g}) \otimes U(\mathfrak{g})$ is defined by $\delta_{0}(x)=\Delta_{0}(x)-x \otimes 1-1 \otimes x+\varepsilon(x) 1 \otimes 1, \Delta_{0}$ being the coproduct of $U(\mathfrak{g})$, then $\left(\mathrm{id}^{\otimes k} \otimes \delta_{0} \otimes \mathrm{id}^{\otimes n-k-1}\right)\left(S_{n}(x)\right)=0$, so

$$
\begin{equation*}
S_{n}(x) \in \mathfrak{g}^{\otimes n} \tag{3.7}
\end{equation*}
$$

Let us denote by $\sigma_{i, i+1}$ the permutation of the factors i and $i+1$ in a tensor power. For $i=1, \ldots, n-1$, let us compute $\left(\sigma_{i, i+1}-\mathrm{id}\right)\left(S_{n}(x)\right)$. Let P^{\prime} be a $(n-1)$-tree and let P be the n-tree such that $\delta^{(P)}=\left(\mathrm{id}^{\otimes i-1} \otimes \delta \otimes \mathrm{id}^{\otimes n-i-1}\right) \circ \delta^{\left(P^{\prime}\right)}$. Then

$$
\left(\sigma_{i, i+1}-\mathrm{id}\right)\left(S_{n}(x)\right)=\left[\frac{1}{\hbar}\left(\mathrm{id}^{\otimes i-1} \otimes\left(\delta^{2,1}-\delta\right) \otimes \mathrm{id}^{\otimes n-i-1}\right) \circ \delta^{\left(P^{\prime}\right)}(x) \bmod \hbar\right]
$$

By assumption, $\delta^{\left(P^{\prime}\right)}(x) \in \hbar^{n} U^{\widehat{\otimes} n-1} ;$ moreover, $\delta^{2,1}-\delta=\Delta^{2,1}-\Delta$, so $\left(\delta^{2,1}-\delta\right)(U) \subset$ $\hbar(U \widehat{\otimes} U)$; therefore

$$
\left(\mathrm{id}^{\otimes i-1} \otimes\left(\delta^{2,1}-\delta\right) \otimes \mathrm{id}^{\otimes n-i-1}\right) \circ \delta^{\left(P^{\prime}\right)}(x) \in \hbar^{n+1} U^{\widehat{\otimes} n}
$$

it follows that $\left(\sigma_{i, i+1}-\mathrm{id}\right)\left(S_{n}(x)\right)=0$, therefore $S_{n}(x)$ is a symmetric tensor of $U(\mathfrak{g})^{\otimes n}$. Together with (3.7), this gives $S_{n}(x) \in\left(\mathfrak{g}^{\otimes n}\right)^{\Xi_{n}}$. This ends the proof of Proposition 3.2.

3.3. Flatness of U^{\prime} (proof of Theorem 1.2)

Let us set

$$
U^{\prime \prime(n)}=\left\{x \in U^{\prime} \mid \delta^{(P)}(x) \in \hbar^{|P|+1} U^{\widehat{\otimes}|P|} \quad \text { if }|P| \leqslant n-1\right\}
$$

Then by Proposition 2.4, we have a decreasing algebra filtration

$$
\begin{equation*}
U^{\prime}=U^{\prime \prime(0)} \supset U^{\prime \prime(1)} \supset U^{\prime \prime(2)} \supset \cdots \supset \hbar U^{\prime} \tag{3.8}
\end{equation*}
$$

We have $U^{\prime \prime(n)} \supset U^{\prime(n)}+\hbar U^{\prime}$ (we will see later that this is an equality). We derive from (3.8) a decreasing filtration

$$
\mathcal{O}=\mathcal{O}^{\prime \prime(0)} \supset \mathcal{O}^{\prime \prime(1)} \supset \mathcal{O}^{\prime \prime(2)} \supset \cdots
$$

where $\mathcal{O}=U^{\prime} / \hbar U^{\prime}$ and $\mathcal{O}^{\prime \prime(n)}=U^{\prime \prime(n)} / \hbar U^{\prime}$. We have

$$
\bigcap_{n \geqslant 0} \mathcal{O}^{\prime \prime(n)}=\{0\}
$$

this means that $\bigcap_{n \geqslant 0} U^{\prime \prime(n)}=\hbar U^{\prime}$, which is proved as follows: if x belongs to $\cap_{n \geqslant 0} U^{\prime \prime(n)}$, then $\varepsilon(x)=O(\hbar), x-\varepsilon(x) 1=O\left(\hbar^{2}\right)$, so $x=\hbar y$, where $y \in U$. Moreover, $\delta^{|P|}(y)=O\left(\hbar^{|P|}\right)$ for any P, so $y \in U^{\prime}$.

The fact that \mathcal{O} is complete for this filtration will follow from its identification with the filtration $\mathcal{O} \supset \mathcal{O}^{\prime(1)} \supset \cdots$ (this will be established in Proposition 3.6), where $\mathcal{O}^{\prime(i)}=U^{\prime(i)} / \hbar U^{\prime} \cap U^{\prime(i)}$ and $U^{\prime(i)}$ is defined in (2.3). We first prove:

Proposition 3.5. Set $\widehat{\operatorname{gr}}^{\prime \prime}(\mathcal{O})=\widehat{\oplus}_{n \geqslant 0} \mathcal{O}^{\prime \prime(n)} / \mathcal{O}^{\prime \prime(n+1)}$. Then there is a unique linear map $\lambda_{n}: \operatorname{gr}_{n}^{\prime \prime}(\mathcal{O}) \rightarrow S^{n}(\mathfrak{g})$, taking the class of x to the common value of all $\frac{1}{n!}\left(\frac{1}{\hbar^{n}} \delta^{(P)}(x) \bmod \hbar\right)$, where P is a n-tree. The resulting map $\lambda: \widehat{\mathfrak{g r}}^{\prime \prime}(\mathcal{O}) \rightarrow \widehat{S}(\mathfrak{g})$ is an isomorphism of graded complete algebras.

Proof. In Proposition 3.2, we constructed a map $U^{\prime \prime(n)} \rightarrow S^{n}(\mathfrak{g})$, by $x \mapsto$ common value of $\frac{1}{n!}\left(\frac{1}{\hbar^{n}} \delta^{(P)}(x) \bmod \hbar\right)$ for all n-trees P. The subspace $U^{\prime \prime(n+1)} \subset U^{\prime \prime(n)}$ is clearly contained in the kernel of this map, so we obtain a map

$$
\lambda_{n}: U^{\prime \prime(n)} / U^{\prime \prime(n+1)}=\mathcal{O}^{\prime \prime(n)} / \mathcal{O}^{\prime \prime(n+1)} \rightarrow S^{n}(\mathfrak{g})
$$

Let us prove that $\lambda=\widehat{\oplus}_{n \geqslant 1} \lambda_{n}$ is a morphism of algebras. If $x \in U^{\prime \prime(n)}$ and $y \in U^{\prime \prime(m)}$, Proposition 2.4 implies that if R is any $(n+m)$-tree, we have

$$
\delta^{(P)}(x y)=\sum_{\substack{\Sigma^{\prime}, \Sigma^{\prime \prime} \subset\{1, \ldots, n+m\} \mid \\ \Sigma^{\prime} \cup \Sigma^{\prime \prime}=\{1, \ldots, n+m\}}} \delta^{\left(R_{\Sigma^{\prime}}\right)}(x)^{\Sigma^{\prime}} \delta^{\left(R_{\Sigma^{\prime \prime}}\right)}(y)^{\Sigma^{\prime \prime}}
$$

The \hbar-adic valuation of the term corresponding to $\left(\Sigma^{\prime}, \Sigma^{\prime \prime}\right)$ is $\geqslant\left|\Sigma^{\prime}\right|+\left|\Sigma^{\prime \prime}\right|$ if $\left|\Sigma^{\prime}\right| \geqslant n$ and $\left|\Sigma^{\prime \prime}\right| \geqslant m$, and $\geqslant\left|\Sigma^{\prime}\right|+\left|\Sigma^{\prime \prime}\right|+1$ otherwise, so the only contributions to $\left(\frac{1}{\hbar^{n+m}} \delta^{(R)}(x y) \bmod \hbar\right)$ are those of the pairs $\left(\Sigma^{\prime}, \Sigma^{\prime \prime}\right)$ such that $\Sigma^{\prime} \cap \Sigma^{\prime \prime}=\emptyset$. Then:

$$
\begin{aligned}
& \left(\frac{1}{\hbar^{n+m}} \delta^{(R)}(x y) \bmod \hbar\right) \\
& =\sum_{\substack{\Sigma^{\prime}, \Sigma^{\prime \prime} \subset\{1, \ldots, n+m\}| \\
| \Sigma^{\prime}|=n,| \Sigma^{\prime \prime}=m, \Sigma^{\prime} \cap \Sigma^{\prime \prime}=\emptyset}}\left(\frac{1}{\hbar^{n}} \delta^{\left(R_{\Sigma^{\prime}}\right)}(x) \bmod \hbar\right)\left(\frac{1}{\hbar^{m}} \delta^{\left(R_{\Sigma^{\prime \prime}}\right)}(y) \bmod \hbar\right) \\
& =\sum_{\substack{\Sigma^{\prime}, \Sigma^{\prime \prime},\{1, \ldots, n+m\}| \\
| \Sigma^{\prime}\left|=n,\left|\Sigma^{\prime \prime}\right|=m, \Sigma^{\prime} \cap \Sigma^{\prime \prime}=\emptyset\right.}}\left(n!\lambda_{n}(x)^{\Sigma^{\prime}}\right)\left(m!\lambda_{m}(y)^{\Sigma^{\prime \prime}}\right) \\
& =(n+m)!\lambda_{n}(x) \lambda_{m}(y),
\end{aligned}
$$

because the map

$$
\begin{aligned}
& S(\mathfrak{g}) \rightarrow(T(\mathfrak{g}), \text { shuffle product }), \\
& x_{1} \cdots x_{n} \mapsto \sum_{\sigma \in \bigoplus_{n}} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)}
\end{aligned}
$$

is an algebra morphism. Therefore $\lambda_{n+m}(x y)=\lambda_{n}(x) \lambda_{m}(y)$. Let us prove that λ_{n} is injective. If $x \in U^{\prime \prime(n)}$ is such that $\left(\frac{1}{\hbar^{n}} \delta^{(P)}(x) \bmod \hbar\right)=0$ for any n-tree P, then $x \in U^{\prime \prime(n+1)}$, so its class in $\mathcal{O}^{\prime \prime(n)} / \mathcal{O}^{\prime \prime(n+1)}=U^{\prime \prime(n)} / U^{\prime \prime(n+1)}$ is zero. So each λ_{n} is injective, so λ is injective.

To prove that λ is surjective, it suffices to prove that λ_{1} is surjective. Let us fix $x \in \mathfrak{g}$. We will construct a sequence $x_{n} \in U, n \geqslant 0$ such that $\varepsilon\left(x_{n}\right)=0,\left(\frac{1}{\hbar} x_{n} \bmod \hbar\right)=x$, $x_{n+1} \in x_{n}+\hbar^{n} U$ for any $n \geqslant 1$, and if P is any tree such that $|P| \leqslant n$, $\delta^{(P)}\left(x_{n}\right) \in \hbar^{|P|} U^{\widehat{\otimes}|P|}$ (this last condition implies that $\delta^{(Q)}\left(x_{n}\right) \in \hbar^{n} U^{\widehat{\otimes}|Q|}$ for $|Q| \geqslant n$). Then the limit $\tilde{x}=\lim _{n \rightarrow \infty}\left(x_{n}\right)$ exists, belongs to U^{\prime}, satisfies $\varepsilon(\tilde{x})=0$ and $\left(\frac{1}{\hbar} \delta_{1}(\tilde{x}) \bmod \hbar\right)=x$, so its class in $U^{\prime \prime(1)} / U^{\prime \prime \prime}(2)$ is a preimage of x.

Let us now construct the sequence $\left(x_{n}\right)_{n \geqslant 0}$. We fix a linear map $\mathfrak{g} \rightarrow\{y \in U \mid \varepsilon(y)=$ $0\}, y \mapsto \bar{y}$, such that for any $y \in \mathfrak{g},(\bar{y} \bmod \hbar)=y$. We set $x_{1}=\hbar \bar{x}$. Let us construct x_{n+1} knowing x_{n}. By Proposition 3.2, if Q is any $(n+1)$-tree, $\delta^{(Q)}\left(x_{n}\right) \in \hbar^{n} U^{\widehat{\otimes} n+1}$, and $\left(\frac{1}{h^{n}} \delta^{(Q)}\left(x_{n}\right) \bmod \hbar\right)$ is an element of $S^{n+1}(\mathfrak{g})$, independent of Q. Let us write this element as

$$
\sum_{\sigma \in \mathbb{S}_{n+1}} \sum_{\alpha} y_{\sigma(1)}^{\alpha} \cdots y_{\sigma(n+1)}^{\alpha}, \quad \text { where } \quad \sum_{\alpha} y_{1}^{\alpha} \otimes \cdots \otimes y_{n+1}^{\alpha} \in \mathfrak{g}^{\otimes n+1}
$$

Then we set

$$
x_{n+1}=x_{n}-\frac{\hbar^{n}}{(n+1)!} \sum_{\sigma \in \mathbb{\Xi}_{n+1}} \sum_{\alpha} \bar{y}_{\sigma(1)}^{\alpha} \cdots \bar{y}_{\sigma(n+1)}^{\alpha}
$$

We now prove:
Proposition 3.6. (1) For any $n \geqslant 0, U^{\prime \prime(n)}=U^{\prime(n)}+\hbar U^{\prime}$;
(2) The filtrations $\mathcal{O}=\mathcal{O}^{\prime(0)} \supset \mathcal{O}^{\prime(1)} \supset \cdots$ and $\mathcal{O}=\mathcal{O}^{\prime \prime(0)} \supset \mathcal{O}^{\prime \prime(1)} \supset \cdots$ coincide, and \mathcal{O} is complete and separated for this filtration.

Proof. Let us prove (1). We have to show that $U^{\prime \prime(n)} \subset U^{\prime(n)}+\hbar U^{\prime}$. Let $x \in U^{\prime \prime(n)}$. We have $\delta^{(P)}(x) \in \hbar^{|P|+1} U^{\widehat{\otimes}|P|}$ for $|P| \leqslant n-1$, and for P an n-tree, $\left(\frac{1}{h^{n}} \delta^{(P)}(x) \bmod \hbar\right) \in S^{n}(\mathfrak{g})$ and is independent of P. Write this element of $S^{n}(\mathfrak{g})$ as $\sum_{\sigma \in ؟_{n}} \sum_{\alpha} y_{\sigma(1)}^{\alpha} \otimes \cdots y_{\sigma(n)}^{\alpha}$.

In Proposition 3.5, we construct a linear map $\mathfrak{g} \rightarrow U^{\prime} \cap \hbar U, x \mapsto \tilde{x}$, such that $\varepsilon(\tilde{x})=0$ and $\left(\frac{1}{\hbar} \tilde{x} \bmod \hbar\right)=x$.

Set $f_{n}=\frac{1}{n!} \sum_{\sigma \in \mathbb{E}_{n}} \sum_{\alpha} \tilde{y}_{\sigma(1)}^{\alpha} \cdots \tilde{y}_{\sigma(n)}^{\alpha}$. Then each \tilde{y}_{i}^{α} belongs to $U^{\prime} \cap \hbar U$, so $f_{n} \in U^{\prime} \cap \hbar^{n} U=U^{\prime(n)}$. Moreover, $x-f_{n}$ belongs to $U^{\prime \prime(n+1)}$. Iterating this procedure, we construct elements f_{n+1}, f_{n+2}, \ldots, where each f_{k} belongs to $U^{\prime(k)}$. The series $\sum_{k \geqslant n} f_{k}$ converges in U^{\prime}; denote by f its sum, then $x-f$ belongs to $\bigcap_{k \geqslant n} U^{\prime \prime(k)}=$ $\hbar U^{\prime}$. So $U^{\prime \prime(n)} \subset U^{\prime(n)}+\hbar U^{\prime}$. The inverse inclusion is obvious. This proves (1). Then (1) immediately implies that for any $n, \mathcal{O}^{\prime(n)}=\mathcal{O}^{\prime \prime(n)}$. We already know that \mathcal{O} is complete and separated for $\mathcal{O}=\mathcal{O}^{\prime(0)} \supset \mathcal{O}^{\prime(1)} \supset \cdots$, which proves (2).

Proof of Theorem 1.2 (End). \mathcal{O} is a complete local ring, and we have a ring isomorphism $\widehat{\mathrm{gr}}(\mathcal{O}) \rightarrow \widehat{S}(\mathfrak{g})$. Then any lift $\mathfrak{g} \rightarrow \mathcal{O}^{(1)}$ of $\mathcal{O}^{\prime(1)} \rightarrow \mathcal{O}^{\prime(1)} / \mathcal{O}^{\prime(2)}=\mathfrak{g}$ yields a continuous ring morphism $\mu: \widehat{S}(\mathfrak{g}) \rightarrow \mathcal{O}$. The associated graded of μ is the identity, so μ is an isomorphism. So \mathcal{O} is noncanonically isomorphic to $\widehat{S}(\mathfrak{g})$.

Remark 3.7. When U is Hopf and \mathfrak{g} is finite-dimensional, $U^{\prime} / \hbar U^{\prime}$ identifies canonically with $\mathcal{O}_{G^{*}}=\left(U\left(\mathfrak{g}^{*}\right)\right)^{*}$, where \mathfrak{g}^{*} is the dual Lie bialgebra of \mathfrak{g} (see [Drl,Ga]). The natural projection $T\left(\mathfrak{g}^{*}\right) \rightarrow U\left(\mathfrak{g}^{*}\right)$ and the identification $T\left(\mathfrak{g}^{*}\right)^{*}=$ $\widehat{T}(\mathfrak{g})$ (where $\widehat{T}(\mathfrak{g})$ means the degree completion) induce an injection $U^{\prime} / \hbar U^{\prime}=$ $\mathcal{O}_{G^{*}}=\left(U\left(\mathfrak{g}^{*}\right)\right)^{*} \hookrightarrow \widehat{T}(\mathfrak{g})$. The map $U^{\prime} / \hbar U^{\prime} \hookrightarrow \widehat{T}(\mathfrak{g})$ can be interpreted simply as follows. For any $x \in U^{\prime}$, we have $\left(\frac{1}{\hbar^{n}} \delta_{n}(x) \bmod \hbar\right) \in \mathfrak{g}^{\otimes n}$. Then $U^{\prime} / \hbar U^{\prime} \hookrightarrow \widehat{T}(\mathfrak{g})$ takes the class of $x \in U^{\prime}$ to the sequence $\left(\frac{1}{\hbar^{n}} \delta_{n}(x) \bmod \hbar\right)_{n \geqslant 0}$.

On the quasi-Hopf case, we have no canonical embedding $U^{\prime} / \hbar U^{\prime} \hookrightarrow \widehat{T}(\mathfrak{g})$ because the various $\left(\frac{1}{\hbar^{n}} \delta^{(P)}(x) \bmod \hbar\right)$ do not necessarily coincide for all the n-trees P. This is related to the fact that one cannot expect a Hopf pairing $U\left(\mathfrak{g}^{*}\right) \otimes\left(U^{\prime} / \hbar U^{\prime}\right) \rightarrow \mathbb{K}$ since \mathfrak{g}^{*} is no longer a Lie algebra, so $U\left(\mathfrak{g}^{*}\right)$ does not make sense.

On the other hand, Theorem 1.2 can be interpreted as follows: in the Hopf case, the exponential induces an isomorphism of formal schemes $\mathfrak{g}^{*} \rightarrow G^{*}$, so $U^{\prime} / \hbar U^{\prime}$ identifies noncanonically with $\mathcal{O}_{\mathfrak{g}^{*}}=\widehat{S}(\mathfrak{g})$. In the quasi-Hopf case, although there is no formal group G^{*}, we still have an isomorphism $U^{\prime} / \hbar U^{\prime} \xrightarrow{\sim} \widehat{S}(\mathfrak{g})$.

4. Twists

4.1. Admissible twists

If (U, m, Δ, Φ) is an arbitrary QHQUE algebra, we will call a twist $F \in\left(U^{\widehat{\otimes} 2}\right)^{\times}$ admissible if $\hbar \log (F) \in\left(U^{\prime}\right)^{\bar{\otimes} 2}$.

Proposition 4.1. Let (U, m, Δ, Φ) be an admissible quasi-Hopf algebra and F an admissible twist. Then the twisted quasi-Hopf algebra $\left(U, m,{ }^{F} \Delta,{ }^{F} \Phi\right)$ is admissible.

Proof. Let $\varepsilon_{0}: U^{\prime} \rightarrow \mathbb{K}$ be the composed map $U^{\prime} \xrightarrow{\varepsilon} \mathbb{K}[[\hbar]] \xrightarrow{\bmod \hbar} \mathbb{K}$, where ε is the counit map. Let $\mathfrak{m}_{\hbar}=\operatorname{Ker}\left(\varepsilon_{0}\right)$. We set $\mathfrak{m}_{\hbar}^{(3)}=\operatorname{Ker}\left(\varepsilon^{\otimes 3}\right)$. We have $\mathfrak{m}_{\hbar}^{(3)}=\mathfrak{m}_{\hbar} \bar{\otimes}\left(U^{\prime}\right)^{\bar{\otimes} 2}+$ $U^{\prime} \bar{\otimes} \mathfrak{m}_{h} \bar{\otimes} U^{\prime}+\left(U^{\prime}\right)^{\bar{\otimes} 2} \bar{\otimes} \mathfrak{m}_{h}$.

When a, b are in $\left(\mathfrak{m}_{\hbar}^{(3)}\right)^{2}$, the CBH series $a \star b=a+b+[a, b]_{\hbar}+\cdots$ converges in $\left(U^{\prime}\right)^{\bar{\otimes} 3}$, where $[-,-]_{\hbar}=\frac{1}{\hbar}[-,-]$. Indeed, $\left[\mathfrak{m}_{\hbar}^{(3)}, \mathfrak{m}_{\hbar}^{(3)}\right]_{\hbar} \subset \mathfrak{m}_{\hbar}^{(3)}$, so

$$
\left[\left(\mathfrak{m}_{\hbar}^{(3)}\right)^{2},\left[\ldots,\left(\mathfrak{m}_{\hbar}^{(3)}\right)^{2}\right]_{\hbar},\right]_{\hbar} \subset\left(\mathfrak{m}_{\hbar}^{(3)}\right)^{n+2},
$$

where n is the number of $[-,-]_{\hbar}$ involved. Finally, a series $\sum_{n \geqslant 0} f_{n}$, where $f_{n} \in\left(\mathfrak{m}_{\hbar}^{(3)}\right)^{n}$, converges in $\left(U^{\prime}\right)^{\bar{\otimes} 3}$: indeed, $\mathfrak{m}_{\hbar}^{(3)} \subset \hbar\left(U^{\prime}\right)^{\bar{\otimes} 3}$, so $\left(\mathfrak{m}_{\hbar}^{(3)}\right)^{n} \subset \hbar^{n}\left(U^{\prime}\right)^{\bar{\otimes} 3}$.

Both $f:=\hbar \log (F)$ and $\hbar \log (\Phi)$ belong to $\left(\mathfrak{m}_{\hbar}^{(3)}\right)^{2}$. Then we have

$$
\hbar \log \left({ }^{F} \Phi\right)=f^{1,2} \star f^{12,3} \star(\hbar \log (\Phi)) \star\left(-f^{1,23}\right) \star\left(-f^{2,3}\right) .
$$

Since $U^{\prime \bar{\otimes} 3}$ is stable under \star, we have $\hbar \log \left({ }^{F} \Phi\right) \in U^{\prime \otimes}{ }^{\overline{3}}$. So $\left(U, m,{ }^{F} \Delta,{ }^{F} \Phi\right)$ is admissible.

Let us now prove

Proposition 4.2. Under the hypothesis of Proposition 4.1, the $Q F S$ algebra U_{F}^{\prime} corresponding to $\left(U, m,{ }^{F} \Delta,{ }^{F} \Phi\right)$ coincides with the QFS algebra U^{\prime} corresponding to (U, m, Δ, Φ).

We will first prove the following lemma:

Lemma 4.3. Let P be an n-tree. Then

$$
\begin{align*}
\delta_{F}^{(P)}= & \delta^{(P)}+\sum_{k \leqslant n} \sum_{R \text { a }} \sum_{k-\operatorname{tree}} \sum_{\substack{\Sigma \subset\{1, \ldots, n\} \mid \\
\operatorname{card}(\Sigma)=k}} \\
& \sum_{v \geqslant 1} \sum_{\alpha} \operatorname{ad}_{\hbar}\left(f_{1, \alpha}^{\Sigma, P}\right) \circ \cdots \circ \operatorname{ad}_{\hbar}\left(f_{v, \alpha}^{\Sigma, P}\right) \circ\left(\delta^{(R)}\right)^{\Sigma}, \tag{4.9}
\end{align*}
$$

where for each $v, \sum_{\alpha} f_{1, \alpha}^{\Sigma, P} \otimes \cdots \otimes f_{v, \alpha}^{\Sigma, P} \in\left(U^{\prime \bar{\otimes} n}\right)^{\bar{\otimes} v}$.
Remark 4.4. One can prove that in the right-hand side of (4.9), the contribution of all terms with $k=n$ is $\left(\operatorname{Ad}\left(F^{(P)}\right)-\mathrm{id}\right) \circ \delta^{(P)}$ where $F^{(P)}$ is the product of $F^{I, J}(I, J$ subsets of $\{1, \ldots, n\}$, such that $\max (I)<\min (J))$ and their inverses such that

$$
\Delta_{F}^{(P)}=\operatorname{Ad}\left(F^{(P)}\right) \circ \Delta^{(P)} .
$$

Proof of the Lemma. Eq. (4.9) may be proved by induction on $|P|$. Let us prove it for the unique tree P such that $|P|=2$:

$$
\delta_{F}^{(2)}=\delta^{(2)}+\sum_{v \geqslant 1} \frac{1}{v!} \operatorname{ad}_{\hbar}(f)^{v}\left(\delta^{(2)}(x)+\delta^{(1)}(x)^{1}+\delta^{(1)}(x)^{2}\right)
$$

where (1) and (2) are the 1- and 2-trees. Assume that (4.9) is proved when $|P|=n$. Let P^{\prime} be an $(n+1)$-tree. Then for some $i \in\{1, \ldots, n\}$, we have

$$
\delta_{F}^{(P)}=\left(\mathrm{id}^{\otimes i-1} \otimes \delta_{F}^{(2)} \otimes \mathrm{id}^{\otimes n-i}\right) \circ \delta_{F}^{\left(P^{\prime}\right)}
$$

where $\left|P^{\prime}\right|=n$. Then:

$$
\begin{aligned}
& \delta_{F}^{(P)}=\left(\mathrm{id}^{\otimes i-1} \otimes \Delta_{F} \otimes \mathrm{id}^{\otimes n-i}\right) \circ \delta_{F}^{\left(P^{\prime}\right)}-\left(\delta_{F}^{\left(P^{\prime}\right)}\right)^{1, \ldots,,_{i} \ldots, n+1}-\left(\delta_{F}^{\left(P^{\prime}\right)}\right)^{1, \ldots, \widehat{i+1}, \ldots, n+1} \\
& =\left(\mathrm{id}^{\otimes i-1} \otimes \Delta_{F} \otimes \mathrm{id}^{\otimes n-i}\right) \circ\left(\delta^{\left(P^{\prime}\right)}+\sum_{k \leqslant n} \sum_{R \text { a } k-\operatorname{tree}} \sum_{\substack{\Sigma \subset\{1, \ldots, n\} \mid \\
\operatorname{card}(\Sigma)=k}}\right. \\
& \left.\times \sum_{v \geqslant 1} \sum_{\alpha} \operatorname{ad}_{\hbar}\left(f_{1, \alpha}^{\Sigma, P^{\prime}}\right) \circ \cdots \circ \operatorname{ad}_{\hbar}\left(f_{v, \alpha}^{\Sigma, P^{\prime}}\right) \circ\left(\delta^{(R)}\right)^{\Sigma}\right) \\
& -(\cdots)^{1 \ldots \widehat{i, \ldots, n+1}-(\ldots)^{1, \ldots, \widehat{i+1}, \ldots, n+1}, ~} \\
& =\operatorname{Ad}\left(F^{i, i+1}\right) \circ\left(\delta^{(P)}+\left(\delta^{\left(P^{\prime}\right)}\right)^{1, \ldots, \widehat{i}, \ldots, n+1}+\left(\delta^{\left(P^{\prime}\right)}\right)^{1, \ldots, \widehat{i+1}, \ldots, n+1}\right. \\
& +\sum_{k \leqslant n} \sum_{R} \sum_{\text {a }} \sum_{k-\operatorname{tree}} \sum_{\substack{\sum \subset\{1, \ldots, n\} \mid \\
\operatorname{card}(\Sigma)=k}} \sum_{\alpha \geqslant 1} \operatorname{ad}_{\hbar}\left(\left(f_{1, \alpha}^{\Sigma, P^{\prime}}\right)^{1, \ldots,\{i, i+1\}, \ldots, n+1}\right) \\
& \left.\circ \operatorname{ad}_{\hbar}\left(\left(f_{v, \alpha}^{\Sigma, P^{\prime}}\right)^{1, \ldots,\{i, i+1\}, \ldots, n+1}\right) \circ\left(1^{\otimes i-1} \otimes \Delta \otimes 1^{\otimes n-i}\right) \circ\left(\delta^{(R)}\right)^{\Sigma}\right) \\
& -(\cdots)^{1, \ldots, \widehat{i}, \ldots, n+1}-(\ldots)^{1, \ldots, \widehat{i+1}, \ldots, n+1} \text {; }
\end{aligned}
$$

this has the desired form because:

$$
\begin{aligned}
& \left(\operatorname{Ad}\left(F^{i, i+1}\right)-1\right) \circ\left(\delta^{(P)}+\left(\delta^{\left(P^{\prime}\right)}\right)^{1, \ldots, \widehat{i}, \ldots, n+1}+\left(\delta^{\left(P^{\prime}\right)}\right)^{1, \ldots, \hat{i+1}, \ldots, n+1}\right) \\
& \quad=\sum_{v \geqslant 1} \frac{1}{v!} \operatorname{ad}_{\hbar}\left(f^{i, i+1}\right)^{v}\left(\delta^{(P)}+\left(\delta^{\left(P^{\prime}\right)}\right)^{1, \ldots, \widehat{i}, \ldots, n+1}+\left(\delta^{\left(P^{\prime}\right)}\right)^{1, \ldots, \hat{i+1}, \ldots, n+1}\right)
\end{aligned}
$$

This proves (4.9).

Proof of Proposition 4.2 (End). One repeats the proof of Proposition 3.2 to prove that if $x \in U^{\prime}$, then we have $\delta_{F}^{(P)}(x) \in \hbar^{|P|} U^{\widehat{\otimes}|P|}$ for any tree P. So $U^{\prime} \subset U_{F}^{\prime}$. Since $(U, m, \Delta, \Phi) \quad$ is the twist by $F^{-1} \quad$ of $\left(U, m,{ }^{F} \Delta,{ }^{F} \Phi\right)$, and $\hbar \log \left(F^{-1}\right)=$ $-\hbar \log (F) \in\left(U^{\prime}\right)^{\bar{\otimes} 2} \subset\left(U_{F}^{\prime}\right)^{\bar{\otimes} 2}, F^{-1}$ is admissible for $\left(U, m,{ }^{F} \Delta,{ }^{F} \Phi\right)$, so we have also $U_{F}^{\prime} \subset U^{\prime}$, so $U_{F}^{\prime}=U^{\prime}$.

4.2. Twisting any algebra into an admissible algebra

Proposition 4.5. Let (U, m, Δ, Φ) be a quasi-Hopf algebra. There exists a twist F_{0} such that the twisted quasi-Hopf algebra $\left(U, m,{ }^{F_{0}} \Delta,{ }^{F_{0}} \Phi\right)$ is admissible.

Proof. We construct F_{0} as a convergent infinite product $F_{0}=\cdots F_{n} \cdots F_{2}$, where $F_{n} \in 1+\hbar^{n-1} U^{\widehat{\otimes} 2}$, and the F_{n} 's have the following property: if $\bar{F}_{n}=F_{n} F_{n-1} \cdots F_{2}$, if $\Phi_{n}=\bar{F}_{n} \Phi$, and $\delta_{n}^{(P)}: U \rightarrow U^{\widehat{\otimes}|P|}$ is the map corresponding to a tree P and to $\Delta_{n}=$ $\operatorname{Ad}\left(\bar{F}_{n}\right) \circ \Delta$, then we have

$$
\left(\delta_{n}^{(P)} \otimes \delta_{n}^{(Q)} \otimes \delta_{n}^{(R)}\right)\left(\hbar \log \left(\Phi_{n}\right)\right) \in \hbar^{|P|+|Q|+|R|} U^{\widehat{\otimes}|P|+|Q|+|R|}
$$

for any trees P, Q, R such that $|P|+|Q|+|R| \leqslant n$.
Assume that we have constructed F_{1}, \ldots, F_{n}, and let us construct F_{n+1}. The argument of Proposition 3.2 shows that for any integers (n_{1}, n_{2}, n_{3}) such that $n_{1}+n_{2}+n_{3}=n+1$, and any trees P, Q, R such that $|P|=n_{1},|Q|=n_{2},|R|=n_{3}$,

$$
\left(\frac{1}{\hbar^{n}}\left(\delta_{n}^{(P)} \otimes \delta_{n}^{(Q)} \otimes \delta_{n}^{(R)}\right)\left(\hbar \log \left(\Phi_{n}\right)\right) \bmod \hbar\right) \in S^{n_{1}}(\mathfrak{g}) \otimes S^{n_{2}}(\mathfrak{g}) \otimes S^{n_{3}}(\mathfrak{g})
$$

and is independent of the trees P, Q, R. The direct sum of these elements is an element $\bar{\varphi}_{n}$ of $S(\mathfrak{g}){ }^{\otimes 3}$, homogeneous of degree $n+1$. Since Φ_{n} satisfies the pentagon equation

$$
\left(\mathrm{id} \otimes \mathrm{id} \otimes \Delta_{n}\right)\left(\Phi_{n}\right)^{-1}\left(1 \otimes \Phi_{n}\right)\left(\mathrm{id} \otimes \Delta_{n} \otimes \mathrm{id}\right)\left(\Phi_{n}\right)\left(\Phi_{n} \otimes 1\right)\left(\Delta_{n} \otimes \mathrm{id} \otimes \mathrm{id}\right)\left(\Phi_{n}\right)^{-1}=1
$$

$\varphi_{n}^{\hbar}:=\hbar \log \left(\Phi_{n}\right)$ satisfies the equation

$$
\begin{align*}
& \left(-\left(\mathrm{id} \otimes \mathrm{id} \otimes \Delta_{n}\right)\left(\varphi_{n}^{\hbar}\right)\right) \star\left(1 \otimes \varphi_{n}^{\hbar}\right) \star\left(\left(\mathrm{id} \otimes \Delta_{n} \otimes \mathrm{id}\right)\left(\varphi_{n}^{\hbar}\right)\right) \star \\
& \left(\varphi_{n}^{\hbar} \otimes 1\right) \star\left(-\left(\Delta_{n} \otimes \mathrm{id} \otimes \mathrm{id}\right)\left(\varphi_{n}^{\hbar}\right)\right)=0, \tag{4.10}
\end{align*}
$$

where we set

$$
a \star b=a+b+\frac{1}{2}[a, b]_{\hbar}+\cdots
$$

(the CBH series for the Lie bracket $[-,-]_{\hbar}$). The left-hand side of (4.10) is equal to

$$
\begin{align*}
& \left(-\Delta_{n} \otimes \mathrm{id} \otimes \mathrm{id}+\mathrm{id} \otimes \Delta_{n} \otimes \mathrm{id}-\mathrm{id} \otimes \mathrm{id} \otimes \Delta_{n}\right)\left(\varphi_{n}^{\hbar}\right) \\
& \quad+\left(1 \otimes \varphi_{n}^{\hbar}\right)+\left(\varphi_{n}^{\hbar} \otimes 1\right)+\text { brackets } . \tag{4.11}
\end{align*}
$$

Let $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ be integers such that $n_{1}+\cdots+n_{4}=n+1$. Let P, Q, R, S be trees such that $|P|=n_{1}, \ldots,|S|=n_{4}$. Let us apply $\delta_{n}^{(P)} \otimes \cdots \otimes \delta_{n}^{(S)}$ to (4.11). On the one hand,

$$
\left(\delta_{n}^{(P)} \otimes \delta_{n}^{(Q)} \otimes \delta_{n}^{(R)} \otimes \delta_{n}^{(S)}\right)\left(\Delta_{n} \otimes \mathrm{id} \otimes \operatorname{id}\right)\left(\varphi_{n}^{\hbar}\right)=\left(\delta_{n}^{(P \cup Q)} \otimes \delta_{n}^{(R)} \otimes \delta_{n}^{(S)}\right)\left(\varphi_{n}^{\hbar}\right)
$$

where $P \cup Q$ is the tree with left descendant P and right descendant Q. Therefore $\left(\frac{1}{\hbar^{n}}\left(\delta_{n}^{(P)} \otimes \delta_{n}^{(Q)} \otimes \delta_{n}^{(R)} \otimes \delta_{n}^{(S)}\right)\left(\Delta_{n} \otimes \mathrm{id} \otimes \mathrm{id}\right)\left(\varphi_{n}^{\hbar}\right) \bmod \hbar\right)=\left(\Delta_{0} \otimes \mathrm{id} \otimes \mathrm{id}\right)\left(\bar{\varphi}_{n}\right)_{n_{1}, n_{2}, n_{3}, n_{4}}$,
where the index $\left(n_{1}, \ldots, n_{4}\right)$ means the component in $\otimes_{i=1}^{4} S^{n_{i}}(\mathfrak{g})$. In the same way,

$$
\left(\delta_{n}^{(P)} \otimes \delta_{n}^{(Q)} \otimes \delta_{n}^{(R)} \otimes \delta_{n}^{(S)}\right)((4.11) \text { without brackets })=\mathrm{d}\left(\bar{\varphi}_{n}\right)_{n_{1}, n_{2}, n_{3}, n_{4}}
$$

where d : $S(\mathfrak{g})^{\otimes 2} \rightarrow S(\mathfrak{g})^{\otimes 3}$ is the co-Hochschild cohomology differential.
On the other hand, if a_{1} and $a_{2} \in U^{\widehat{\otimes} 4}$ are such that

$$
\left(\delta_{n}^{(P)} \otimes \cdots \otimes \delta_{n}^{(S)}\right)\left(a_{i}\right) \in \hbar^{\inf (|P|+\cdots+|S|, n)} U^{\widehat{\otimes} 4}
$$

for any trees (P, \ldots, S), then if (P, \ldots, S) are such that $|P|+\cdots+|S|=n$, we have

$$
\left(\delta_{n}^{(P)} \otimes \cdots \otimes \delta_{n}^{(S)}\right)\left(\frac{1}{\hbar}\left[a_{1}, a_{2}\right]\right) \in \hbar^{n+1} U^{\widehat{\otimes} n}
$$

one proves this in the same way as the commutativity of $U^{\prime} / \hbar U^{\prime}$ (see Theorem 1.1). Then the relation $\left.\frac{1}{\hbar^{n}}\left(\delta_{n}^{(P)} \otimes \cdots \otimes \delta_{n}^{(S)}\right)(4.11)\right|_{\hbar=0}=0$ yields $\mathrm{d}\left(\bar{\varphi}_{n}\right)=0$.

This relation implies that

$$
\bar{\varphi}_{n}=\mathrm{d}\left(\bar{f}_{n}\right)+\lambda_{n}
$$

where $\bar{f}_{n} \in S(\mathfrak{g})^{\otimes 2}$ and $\lambda_{n} \in \Lambda^{3}(\mathfrak{g})$. Moreover, f_{n} and λ_{n} both have degree $n+1$. This implies that $\lambda_{n}=0$. Let $f_{n} \in\left(U(\mathfrak{g})^{\otimes 2}\right)_{\leqslant n+1}$ be a preimage of \bar{f}_{n} by the projection

$$
\left(U(\mathfrak{g})^{\otimes 2}\right)_{\leqslant n+1} \rightarrow\left(U(\mathfrak{g})^{\otimes 2}\right)_{\leqslant n+1} /\left(U(\mathfrak{g})^{\otimes 2}\right)_{\leqslant n}=\left(S^{\cdot}(\mathfrak{g})^{\otimes 2}\right)_{n+1}
$$

(where the indices n and $\leqslant n$ mean "homogeneous part of degree n " and "part of degree $\leqslant n$ '). Let $f_{n}^{\hbar} \in U^{\widehat{\otimes} 2}$ be a preimage of f_{n} by the projection $U^{\widehat{\otimes} 2} \rightarrow$ $U^{\widehat{\otimes} 2} / \hbar U^{\widehat{\otimes} 2}=U(\mathfrak{g})^{\otimes 2}$. Set $F_{n+1}=\exp \left(\hbar^{n-1} f_{n}\right)$. We may assume that $\hbar^{n} f_{n} \in$ $\left(U\left(\bar{F}_{n}\right)^{\prime}\right)^{\otimes \otimes 2}$, where $U\left(\bar{F}_{n}\right)^{\prime}=\left\{x \in U \mid \delta_{n}^{(P)}(x) \in \hbar^{\inf (n,|P|)} U^{\widehat{\otimes}|P|}\right\}$. Then $\Phi_{n+1}={ }^{F_{n+1}} \Phi_{n}$.

If P, Q, R are such that $|P|+|Q|+|R|=n+1$, then

$$
\left(\delta_{n}^{(P)} \otimes \delta_{n}^{(Q)} \otimes \delta_{n}^{(R)}\right)\left(\hbar \log \left(\Phi_{n+1}\right)\right) \in \hbar^{n+1} U^{\widehat{\otimes} n+1}
$$

Then according to Lemma 4.3,

$$
\left(\delta_{n+1}^{(P)} \otimes \delta_{n+1}^{(Q)} \otimes \delta_{n+1}^{(R)}-\delta_{n}^{(P)} \otimes \delta_{n}^{(Q)} \otimes \delta_{n}^{(R)}\right)\left(\hbar \log \left(\Phi_{n+1}\right)\right)
$$

has \hbar-adic valuation $>|P|+|Q|+|R|$ when $|P|+|Q|+|R| \leqslant n+1$. So $\left(\delta_{n+1}^{(P)} \otimes\right.$ $\left.\delta_{n+1}^{(Q)} \otimes \delta_{n+1}^{(R)}\right)\left(\hbar \log \left(\Phi_{n+1}\right)\right) \in \hbar^{|P|+|Q|+|R|} U^{\widehat{\otimes}|P|+|Q|+|R|} \quad$ whenever $\quad|P|+|Q|+|R| \leqslant$ $n+1$.

5. Proof of Proposition 2.4

We work by induction on n. The statement is obvious when $n=0,1$. For $n=2$, we get

$$
\begin{align*}
\delta^{(2)}(x y)= & \delta^{(2)}(x) \delta^{(2)}(y)+\delta^{(2)}(x)\left(\delta^{(1)}(y)^{1}+\delta^{(1)}(y)^{2}+\delta^{(0)}(y)^{\emptyset}\right) \\
& +\left(\delta^{(1)}(x)^{1}+\delta^{(1)}(y)^{1}+\delta^{(0)}(y)^{\emptyset}\right) \delta^{(2)}(y) \\
& +\delta^{(1)}(x)^{1} \delta^{(2)}(y)^{2}+\delta^{(1)}(x)^{2} \delta^{(2)}(y)^{1} \tag{5.12}
\end{align*}
$$

so the statement also holds.
Assume that the statement is proved when P is a n-tree. Let \bar{P} be a $(n+1)$-tree. There exists an integer $k \in\{0, \ldots, n-1\}$, such that \bar{P} may be viewed as the glueing of the 2 -tree on the k th leaf of a n-tree P. Then we have

$$
\delta^{(\bar{P})}=\left(\mathrm{id}^{\otimes k} \otimes \delta^{(2)} \otimes \mathrm{id}^{\otimes n-k-1}\right) \circ \delta^{(P)}
$$

Let us assume, for instance, that $k=n-1$. If v is an integer, set

$$
S_{v}=\left\{\left(\Sigma^{\prime}, \Sigma^{\prime \prime}\right) \mid \Sigma^{\prime}, \Sigma^{\prime \prime} \subset\{1, \ldots, v\} \quad \text { and } \quad \Sigma^{\prime} \cup \Sigma^{\prime \prime}=\{1, \ldots, v\}\right\} .
$$

Then

$$
S_{n}=f_{\{n\}, \emptyset}\left(S_{n-1}\right) \cup f_{\emptyset,\{n\}}\left(S_{n-1}\right) \cup f_{\{n\},\{n\}}\left(S_{n-1}\right) \text { (disjoint union) }
$$

where $f_{\alpha, \beta}\left(\Sigma^{\prime}, \Sigma^{\prime \prime}\right)=\left(\Sigma^{\prime} \cup \alpha, \Sigma^{\prime \prime} \cup \beta\right)$. By hypothesis, we have

$$
\delta^{(P)}(x y)=\sum_{\left(\Sigma_{1}, \Sigma_{2}\right) \in S_{n}} \delta^{\left(P_{\Sigma_{1}}\right)}(x)^{\Sigma_{1}} \delta^{\left(P_{\Sigma_{2}}\right)}(y)^{\Sigma_{2}}
$$

therefore

$$
\begin{aligned}
\delta^{(P)}(x y)= & \sum_{\left(\Sigma^{\prime}, \Sigma^{\prime \prime}\right) \in S_{n-1}} \delta^{\left(P_{\Sigma^{\prime}} \cup\{n\}\right.}(x)^{\Sigma^{\prime} \cup\{n\}} \delta^{\left(P_{\Sigma^{\prime \prime}}\right)}(y)^{\Sigma^{\prime \prime}} \\
& \left.+\delta^{\left(P_{\Sigma^{\prime}}\right)}(x)^{\Sigma^{\prime}} \delta^{\left(P_{\Sigma^{\prime \prime}} \cup\{n\}\right.}\right)(y)^{\Sigma^{\prime \prime} \cup\{n\}} \\
& \left.+\delta^{\left(P_{\Sigma^{\prime} \cup\{n\}}\right)}(x)^{\Sigma^{\prime} \cup\{n\}} \delta^{\left(P_{\Sigma^{\prime \prime}} \cup\{n\}\right.}\right)(y)^{\Sigma^{\prime \prime} \cup\{n\} .} .
\end{aligned}
$$

Applying id ${ }^{\otimes n-1} \otimes \delta^{(2)}$ to this identity and using (5.12) and the identities

$$
\begin{aligned}
& \left(\mathrm{id}^{\otimes k} \otimes \delta^{(1)} \otimes \mathrm{id}^{\otimes|P|-k-1}\right) \circ \delta^{(P)}=\delta^{(P)} \\
& \left(\mathrm{id}^{\otimes k} \otimes \delta^{(0)} \otimes \mathrm{id}^{\otimes|P|-k-1}\right) \circ \delta^{(P)}=0,
\end{aligned}
$$

we get $\delta^{(\bar{P})}(x y)$

$$
\begin{aligned}
= & \sum_{\left(\Sigma^{\prime}, \Sigma^{\prime \prime}\right) \in S_{n-1}}\left(\left(\left(\mathrm{id}^{\otimes\left|\Sigma^{\prime}\right|} \otimes \delta^{(2)}\right) \circ \delta^{\left(P_{\Sigma^{\prime} \cup\{n\}}\right)}\right)(x)^{\Sigma^{\prime} \cup\{n, n+1\}} \delta^{\left(P_{\Sigma^{\prime \prime}}\right)}(y)^{\Sigma^{\prime \prime}}\right. \\
& \left.+\delta^{\left(P_{\Sigma^{\prime}}\right.}(x)^{\Sigma^{\prime}}\left(\left(\mathrm{id}^{\otimes\left|\Sigma^{\prime \prime}\right|} \otimes \delta^{(2)}\right) \circ \delta^{\left(P_{\Sigma^{\prime \prime}} \cup\{n\}\right.}\right)\right)(y)^{\Sigma^{\prime \prime} \cup\{n, n+1\}} \\
& +\left(\left(\mathrm{id}^{\otimes\left|\Sigma^{\prime}\right|} \otimes \delta^{(2)}\right) \circ \delta^{\left(P_{\Sigma^{\prime}} \cup\{n\}\right.}\right)(x)^{\Sigma^{\prime} \cup\{n, n+1\}}\left(\left(\mathrm{id}^{\otimes\left|\Sigma^{\prime \prime}\right|} \otimes \delta^{(2)}\right) \circ \delta^{\left(P_{\Sigma^{\prime \prime}} \cup\{n\}\right.}\right)(y)^{\Sigma^{\prime \prime} \cup\{n, n+1\}} \\
& \left.+\left(\left(\mathrm{id}^{\otimes\left|\Sigma^{\prime}\right|} \otimes \delta^{(2)}\right) \circ \delta^{\left(P_{\Sigma^{\prime} \cup\{n\}}\right)}\right)(x)^{\Sigma^{\prime} \cup\{n, n+1\}}\left(\delta^{\left(P_{\Sigma^{\prime \prime}} \cup\{n\}\right.}\right)(y)^{\Sigma^{\prime \prime} \cup\{n\}}+\delta^{\left(P_{\Sigma^{\prime \prime} \cup\{n\}}\right)}(y)^{\Sigma^{\prime \prime} \cup\{n+1\}}\right) \\
& +\left(\delta^{\left(P_{\Sigma^{\prime} \cup\{n\}}\right)}(x)^{\Sigma^{\prime} \cup\{n\}}+\delta^{\left(P_{\Sigma^{\prime} \cup\{n\}}\right)}(x)^{\Sigma^{\prime} \cup\{n+1\}}\right)\left(\left(\mathrm{id}^{\otimes\left|\Sigma^{\prime \prime}\right|} \otimes \delta^{(2)}\right) \circ \delta^{\left(P_{\Sigma^{\prime \prime}} \cup\{n\}\right)}\right)(y)^{\Sigma^{\prime \prime} \cup\{n, n+1\}} \\
& \left.+\delta^{\left(P_{\Sigma^{\prime} \cup\{n\}}\right)}(x)^{\Sigma^{\prime} \cup\{n\}} \delta^{\left(P_{\Sigma^{\prime \prime} \cup\{n\}}\right)}(y)^{\Sigma^{\prime \prime} \cup\{n+1\}}+\delta^{\left(P_{\Sigma^{\prime} \cup\{n\}}\right)}(x)^{\Sigma^{\prime} \cup\{n+1\}} \delta^{\left(P_{\Sigma^{\prime \prime} \cup\{n\}}\right)}(y)^{\Sigma^{\prime \prime} \cup\{n\}}\right) .
\end{aligned}
$$

So we get $\delta^{(\bar{P})}(x y)$

$$
\begin{aligned}
= & \sum_{\left(\Sigma^{\prime}, \Sigma^{\prime \prime}\right) \in S_{n-1}}\left(\delta^{\left(\bar{P}_{\Sigma^{\prime} \cup\{n, n+1\}}\right)}(x)^{\Sigma^{\prime} \cup\{n, n+1\}} \delta^{\left(\bar{P}_{\Sigma^{\prime \prime}}\right)}(y)^{\Sigma^{\prime \prime}}\right. \\
& \left.+\delta^{\left(\bar{P}_{\Sigma^{\prime}}\right)}(x)^{\Sigma^{\prime}} \delta^{\left(\bar{P}_{\Sigma^{\prime \prime}} \cup\{n, n+1\}\right.}\right)(y)^{\Sigma^{\prime \prime} \cup\{n, n+1\}} \\
& \left.\left.+\delta^{\left(\bar{P}_{\Sigma^{\prime}} \cup\{n, n+1\}\right.}\right)(x)^{\Sigma^{\prime} \cup\{n, n+1\}} \delta^{\left(\bar{P}_{\Sigma^{\prime \prime}} \cup\{n, n+1\}\right.}\right)(y)^{\Sigma^{\prime \prime} \cup\{n, n+1\}} \\
& \left.\left.\left.+\delta^{\left(\bar{P}_{\Sigma^{\prime}} \cup\{n, n+1\}\right.}\right)(x)^{\Sigma^{\prime} \cup\{n, n+1\}}\left(\delta^{\left(\bar{P}_{\Sigma^{\prime \prime}} \cup\{n\}\right.}\right)(y)^{\Sigma^{\prime \prime} \cup\{n\}}+\delta^{\left(\bar{P}_{\Sigma^{\prime \prime}} \cup\{n+1\}\right.}\right)(y)^{\Sigma^{\prime \prime} \cup\{n+1\}}\right) \\
& \left.\left.+\left(\delta^{\left(\bar{P}_{\Sigma^{\prime}} \cup\{n\}\right.}(x)^{\Sigma^{\prime} \cup\{n\}}+\delta^{\left(\bar{P}_{\Sigma^{\prime}} \cup\{n+1\}\right.}\right)(x)^{\Sigma^{\prime} \cup\{n+1\}}\right) \delta^{\left(\bar{P}_{\Sigma^{\prime \prime}} \cup\{n, n+1\}\right.}\right)(y)^{\Sigma^{\prime \prime} \cup\{n, n+1\}} \\
& \left.\left.\left.+\delta^{\left(\bar{P}_{\Sigma^{\prime}} \cup\{n\}\right.}\right)(x)^{\Sigma^{\prime} \cup\{n\}} \delta^{\left(\bar{P}_{\Sigma^{\prime \prime}} \cup\{n+1\}\right.}\right)(y)^{\Sigma^{\prime \prime} \cup\{n+1\}}+\delta^{\left(\bar{P}_{\Sigma^{\prime} \cup\{n+1\}}\right)}(x)^{\Sigma^{\prime} \cup\{n+1\}} \delta^{\left(\bar{P}_{\Sigma^{\prime \prime} \cup\{n\}}\right)}(y)^{\Sigma^{\prime \prime} \cup\{n\}}\right) .
\end{aligned}
$$

We have

$$
\begin{aligned}
S_{n+1} & =f_{\{n, n+1\},\{n, n+1\}}\left(S_{n-1}\right) \cup f_{\{n, n+1\},\{n\}}\left(S_{n-1}\right) \cup f_{\{n, n+1\},\{n+1\}}\left(S_{n-1}\right) \\
& \cup f_{\{n, n+1\}, \emptyset}\left(S_{n-1}\right) \cup f_{\{n\},\{n, n+1\}}\left(S_{n-1}\right) \cup f_{\{n+1\},\{n, n+1\}}\left(S_{n-1}\right) \\
& \cup f_{\emptyset,\{n, n+1\}}\left(S_{n-1}\right) \cup f_{\{n\},\{n+1\}}\left(S_{n-1}\right) \cup f_{\{n+1\},\{n\}}\left(S_{n-1}\right) \text { (disjoint union), }
\end{aligned}
$$

where we recall that $f_{\alpha, \beta}\left(\Sigma^{\prime}, \Sigma^{\prime \prime}\right)=\left(\Sigma^{\prime} \cup \alpha, \Sigma^{\prime \prime} \cup \beta\right)$. So we get

$$
\delta^{(\bar{P})}(x y)=\sum_{\left(\bar{\Sigma}^{\prime}, \bar{\Sigma}^{\prime \prime}\right) \in S_{n+1}} \delta^{\left(P_{\bar{\Sigma}^{\prime}}\right)}(x)^{\left|\bar{\Sigma}^{\prime}\right|} \delta^{\left(P_{\bar{\Sigma}^{\prime \prime}}\right)}(y)^{\left|\bar{\Sigma}^{\prime \prime}\right|}
$$

The proof is the same for a general $k \in\{0, \ldots, n-1\}$. This establishes the induction.

6. Proofs of Proposition 1.4, Theorem 1.8 and Proposition 1.9

Proof of Proposition 1.4. According to [Dr2], Proposition 3.10, there exists a series $\mathscr{E}^{\prime}(\varphi) \in U(\mathfrak{g})^{\otimes 3}[[\hbar]]$, expressed in terms of (μ, φ) by universal acyclic expressions (and therefore invariant), such that $\mathscr{E}^{\prime}(\varphi)=1+O\left(\hbar^{2}\right)$, and $\mathscr{E}^{\prime}(\varphi)$ satisfies the pentagon identity. Then $\left(U(\mathfrak{g})[[\hbar]], m_{0}, \Delta_{0}, \mathscr{E}^{\prime}(\varphi)\right)$ is a quasi-Hopf algebra. By Theorem 1.3(2), there exists a twist $F \in U(\mathfrak{g})^{\otimes 2}[[\hbar]]^{\times}$, such that $\left(U(\mathfrak{g})[[\hbar]], m_{0},{ }^{F} \Delta_{0},{ }^{F} \mathscr{E}^{\prime}(\varphi)\right)$ is admissible.
$\mathscr{E}^{\prime}(\varphi)$ gives rise to a collection of invariant elements $\mathscr{E}^{\prime \prime}(\varphi)_{p_{1}, p_{2}, p_{3}, n} \in \otimes_{i=1}^{2} S^{p_{i}}(\mathfrak{g})$, defined by the condition that the image of $\mathscr{E}^{\prime}(\varphi)$ by the symmetrization map $U(\mathfrak{g})^{\otimes 3}[[\hbar]] \rightarrow S(\mathfrak{g})[[\hbar]]$ is $\sum_{n \geqslant 0, p_{1}, p_{2}, p_{3} \geqslant 0} \hbar^{n} \mathscr{E}^{\prime}(\varphi)_{p_{1}, p_{2}, p_{3}, n} . F$ is then expressed using only the $\mathscr{E}_{p_{1}, p_{2}, p_{3}, n}^{\prime}$, the Lie bracket and the symmetric group operations on the $\mathfrak{g}^{\otimes n}$. So F is invariant and defined by universal acyclic expressions. Therefore ${ }^{F} \Delta_{0}=\Delta_{0}$. $\mathscr{E}(\varphi):={ }^{F} \mathscr{E}^{\prime}(\varphi)$ is then expressed by universal acyclic expressions, and defines an admissible quantization of $(\mathfrak{g}, \mu, \delta=0, \varphi)$.

Proof of Theorem 1.8(1). We have then $\mathscr{E}(\varphi) \in\left(U(\mathfrak{g})[[\hbar]]^{\prime}\right)^{\otimes} 3$. Since the coproduct is $\Delta_{0}, U(\mathfrak{g})[[\hbar]]^{\prime}$ is the complete subalgebra of $U(\mathfrak{g})[[\hbar]]$ generated by $\hbar \mathfrak{g}$, so it is a flat deformation of $\widehat{S}(\mathfrak{g})$ with Kostant-Kirillov Poisson structure. We then set $\tilde{\varphi}:=\mathscr{E}(\varphi)$ modulo \hbar.

Proof of Theorem 1.8(2). Let $\tilde{\varphi}_{1}, \tilde{\varphi}_{2}$ be the elements of $\widehat{S}(\mathfrak{g})^{\bar{\otimes} 3}$ such that

$$
\left(\widehat{S}(\mathfrak{g}), m_{0}, P_{\mathfrak{g}^{*}}, \Delta_{0}, \tilde{\varphi}_{i}\right)
$$

are quasi-Hopf Poisson algebras. Let C be the lowest degree component of $\tilde{\varphi}_{1}-\tilde{\varphi}_{2}$. Then the degree k of C is $\geqslant 4$. Taking the degree k part of the difference of the
pentagon identities for $\tilde{\varphi}_{1}$ and $\tilde{\varphi}_{2}$, we find $\mathrm{d}(C)=0$, where d : $S(\mathfrak{g})^{\otimes 3} \rightarrow S(\mathfrak{g})^{\otimes 4}$ is the co-Hochschild differential. So $\operatorname{Alt}(C) \in \Lambda^{3}(\mathfrak{g})$, and since $\operatorname{Alt}(C)$ also has degree $\geqslant 4, \operatorname{Alt}(C)=0$. If $C_{p_{1}, p_{2}, p_{3}}$ is the component of C in $\otimes_{i=1}^{3} S^{p_{i}}(\mathfrak{g})$ then we may define inductively $B \in\left(S^{\rho}(\mathfrak{g})^{\otimes 2}\right)^{\mathfrak{g}}$, homogeneous of degree k, such that $\mathrm{d}(B)=C$, as follows. We set $B_{0, k}=B_{1, k-1}=0, B_{2, k-2}=\frac{1}{2}(\mathrm{id} \otimes m)\left(C_{1,1, k-2}\right)$, and

$$
B_{i+1, k-i-1}=\frac{1}{i+1}(\mathrm{id} \otimes m)\left[C_{i, 1, k-i-1}+\left((\mathrm{id} \otimes \mathrm{~d})\left(B_{i, k-i}\right)\right)_{i, 1, k-i-1}\right]
$$

where $B_{i, j}$ is the component of B in $S^{i}(\mathfrak{g}) \otimes S^{j}(\mathfrak{g})$ and m is the product of $S(\mathfrak{g})$. Applying the twist B to the quasi-Hopf Poisson algebra $\left(\widehat{S}(\mathfrak{g}), m_{0}, P_{\mathfrak{g}^{*}}, \Delta_{0}, \tilde{\varphi}_{1}\right)$ amounts to replacing $\tilde{\varphi}_{1}$ by $\tilde{\varphi}_{1}^{\prime}$, such that $\tilde{\varphi}_{1}^{\prime}-\tilde{\varphi}_{2}$ has valuation $\geqslant k+1$. Applying successive twists, we obtain the result.

Proof of Proposition 1.9. According to [Dr3],

$$
\left(U(\mathfrak{g})[[\hbar]], m_{0}, \Delta_{0}, e^{\hbar t_{\mathfrak{g}} / 2}, \Phi\left(\hbar t_{\mathfrak{g}}^{1,2}, \hbar t_{\mathfrak{g}}^{2,3}\right)\right)
$$

is a quasi-triangular quasi-Hopf algebra. One checks that since Φ is Lie, it is admissible; then the reduction modulo \hbar of the corresponding QFS algebra is the quasi-Hopf Poisson algebra of Proposition 1.9.

Remark 6.1. In the proof of Theorem 1.8(2), we cannot use Theorem A of [Dr2] because we do not know that the twist constructed there is admissible.

7. Associators and Lie associators

In this section, we state precisely and prove Theorem 1.10.

7.1. Statement of the result

Let $\mathscr{T}_{n}, n \geqslant 2$, be the algebra with generators $t^{i, j}, 1 \leqslant 1 \neq j \leqslant n$, and relations $t^{j, i}=t^{i, j}$,

$$
\begin{aligned}
& {\left[t^{i, j}+t^{i, k}, t^{j, k}\right]=0 \quad \text { when } i, j, k \text { are all distinct, }} \\
& {\left[t^{i, j}, t^{k, l}\right]=0 \quad \text { when } i, j, k, l \text { are all distinct. }}
\end{aligned}
$$

t_{n} is defined as the Lie algebra with the same generators and relations. Then $\mathscr{T}_{n}=$ $U\left(\mathrm{t}_{n}\right)$. $\left(\mathrm{t}_{n}\right.$ is introduced in [Dr3]; \mathscr{T}_{n} is called the "algebra of infinitesimal chord diagrams" in [BN].)

When $n \leqslant m$ and $\left(I_{1}, \ldots, I_{n}\right)$ is a collection of disjoint subsets of $\{1, \ldots, m\}$, there is a unique algebra morphism $\mathscr{T}_{n} \rightarrow \mathscr{T}_{m}$ taking $t^{i, j}$ to $\sum_{\alpha \in I_{i}, \beta \in I_{j}} t^{\alpha, \beta}$. We call it an insertion-coproduct morphism and denote it by $x \mapsto x^{I_{1}, \ldots, I_{n}}$. In particular, we have
an action of $\mathfrak{\Im}_{n}$ on \mathscr{T}_{n}. Let us attribute degree 1 to each generator $t^{i, j}$; this defines gradings on the algebra \mathscr{T}_{n} and on the Lie algebra t_{n}. We denote by $\widehat{\mathscr{T}}_{n}$ and $\widehat{\mathfrak{t}}_{n}$ their completions for this grading. Then $\left(\widehat{\mathscr{T}}_{n}\right)^{\times}$is the preimage of \mathbb{K}^{\times}by the natural projection $\widehat{\mathscr{T}}_{n} \rightarrow \mathbb{K}$, and the exponential is a bijection $\left(\widehat{\mathscr{T}}_{n}\right)_{0} \rightarrow 1+\left(\widehat{\mathscr{T}}_{n}\right)_{0}$ (where $\left(\widehat{\mathscr{T}}_{n}\right)_{0}=\operatorname{Ker}\left(\widehat{\mathscr{T}}_{n} \rightarrow \mathbb{K}\right)$). We have an exact sequence

$$
1 \rightarrow 1+\left(\widehat{\mathscr{T}}_{n}\right)_{0} \rightarrow\left(\widehat{\mathscr{T}}_{n}\right)^{\times} \rightarrow \mathbb{K}^{\times} \rightarrow 1
$$

An associator is an element Φ of $1+\left(\widehat{\mathscr{T}}_{n}\right)_{0}$, satisfying the pentagon equation

$$
\begin{equation*}
\Phi^{1,2,34} \Phi^{12,3,4}=\Phi^{2,3,4} \Phi^{1,23,4} \Phi^{1,2,3} \tag{7.13}
\end{equation*}
$$

the hexagon equations

$$
e^{\frac{t^{1,3}+t^{2,3}}{2}}=\Phi^{3,1,2} e^{\frac{t^{1,3}}{2}}\left(\Phi^{1,3,2}\right)^{-1} e^{\frac{t^{2,3}}{2}} \Phi^{1,2,3}
$$

and

$$
e^{\frac{t^{\frac{1,2}{2}+l^{1,3}}}{2}}=\left(\Phi^{2,3,1}\right)^{-1} e^{\frac{t^{\frac{1}{3}}}{2}} \Phi^{2,1,3} e^{\frac{t^{1,2}}{2}}\left(\Phi^{1,2,3}\right)^{-1}
$$

and $\operatorname{Alt}(\Phi)=\frac{1}{8}\left[t^{1,2}, t^{2,3}\right]+$ terms of degree >2. We denote by Assoc the set of associators. If Φ satisfies the duality condition $\Phi^{3,2,1}=\Phi^{-1}$, then both hexagon equations are equivalent. We denote by Assoc 0 the subset of all $\Phi \in \underline{\text { Assoc satisfying }}$ the duality condition. If $F \in 1+\left(\widehat{\mathscr{T}}_{2}\right)_{0}$ and $\Phi \in 1+\left(\widehat{\mathscr{T}}_{3}\right)_{0}$, the t wist of Φ by F is

$$
{ }^{F} \Phi=F^{2,3} F^{1,23} \Phi\left(F^{1,2} F^{12,3}\right)^{-1}
$$

This defines an action of $1+\left(\widehat{\mathscr{T}}_{2}\right)_{0}$ on $1+\left(\widehat{\mathscr{T}}_{3}\right)_{0}$, which preserves Pent $=\{\Phi \in 1+$ $\left(\widehat{\mathscr{T}}_{3}\right)_{0} \mid \Phi$ satisfies (7.13) $\}$, Assoc and Assoc ${ }^{0}$ (Pent and Assoc are preserved because F has the form $f\left(t^{1,2}\right), f \in 1+t \mathbb{K}[[t]]$, so the "twisted R-matrix" ${ }^{F} R=F^{2,1} R F^{-1}=$ $f\left(t^{2,1}\right) e^{t^{1,2} / 2} f\left(t^{1,2}\right)^{-1}=e^{t^{1,2} / 2}$. Assoc ${ }^{0}$ is preserved because each F is such that $F=F^{2,1}$.) We denote by $\underline{\text { Assoc }}_{\mathrm{Lie}}^{0}$, $\underline{\text { Assoc }}_{\text {Lie }}$ and $\underline{\text { Pent }}_{\text {Lie }}$ the subsets of all Φ in $\underline{\text { Assoc }}$, Assoc 0 and Pent, such that $\log (\Phi) \in \widehat{\mathfrak{t}}_{3}$.

Theorem 7.1. There is exactly one element of $\underline{\operatorname{Pent}}_{\text {Lie }}$ (resp., $\mathrm{Assoc}_{\text {Lie }}$, Assoc $_{\text {Lie }}^{0}$) in each orbit of the action of $1+\left(\widehat{\mathscr{T}}_{2}\right)_{0}$ on Pent (resp., Assoc, Assoc ${ }^{0}$). The isotropy group of each element of Pent is $\left\{e^{\lambda t^{1,2}} \mid \lambda \in \mathbb{K}\right\} \subset 1+\left(\widehat{\mathscr{T}_{2}}\right)_{0}$.

7.2. Proof of Theorem 7.1

The arguments are the same in all three cases, so we treat the case of Assoc.

Let Φ belong to Assoc. Set $\Phi=1+\sum_{i>0} \Phi_{i}$, where Φ_{i} is the degree i component of Φ. Let d be the co-Hochschild differential,

$$
\begin{aligned}
\mathrm{d} & : \mathscr{T}_{n} \rightarrow \mathscr{T}_{n+1} \\
& x \mapsto \sum_{i=1}^{n}(-1)^{i+1} x^{1, \ldots,\{i, i+1\}, \ldots, n+1}-x^{2,3, \ldots, n+1}+(-1)^{n} x^{1,2, \ldots, n} .
\end{aligned}
$$

Then $\mathrm{d}\left(\Phi_{2}\right)=0$, and $\operatorname{Alt}\left(\Phi_{2}\right)=\frac{1}{8}\left[t^{1,2}, t^{2,3}\right]$. Computation shows that this implies that for some $\lambda \in \mathbb{K}$, we have $\Phi_{2}=\frac{1}{8}\left[t^{1,2}, t^{2,3}\right]+\lambda \mathrm{d}\left(\left(t^{1,2}\right)^{2}\right)$. We construct $F \in 1+$ $(\widehat{\mathscr{T}})_{0}$, such that ${ }^{F} \Phi \in{\underline{\operatorname{Assoc}_{\text {Lie }}}}$, as an infinite product $F=\cdots F_{n} \cdots F_{2}$, where $F_{i} \in 1+$ $\left(\widehat{\mathscr{T}}_{2}\right)_{\geqslant i}$ (the index $\geqslant i$ means the part of degree $\left.\geqslant i\right)$. If we set $F_{2}=1+\lambda\left(t^{1,2}\right)^{2}$, then $\log \left(F_{2} \Phi\right) \in \mathfrak{t}_{3}+\left(\widehat{\mathscr{T}}_{3}\right)_{\geqslant 3}$. Assume that we have found F_{3}, \ldots, F_{n-1}, such that $\log \left(\bar{F}_{n-1} \Phi\right) \in \mathrm{t}_{3}+\left(\widehat{\mathscr{T}}_{3}\right)_{\geqslant n}$, where $\bar{F}_{n-1}=F_{n-1} \cdots F_{2}$. Then $\varphi^{(n-1)}:=\log \left(\bar{F}_{n-1} \Phi\right)$ satisfies

$$
\left(\varphi^{(n-1)}\right)^{1,2,34} \star\left(\varphi^{(n-1)}\right)^{12,3,4}=\left(\varphi^{(n-1)}\right)^{2,3,4} \star\left(\varphi^{(n-1)}\right)^{1,23,4} \star\left(\varphi^{(n-1)}\right)^{1,2,3}
$$

where \star is the CBH product in $\left(\widehat{\mathscr{T}}_{3}\right)_{0}$. Let $\varphi_{n}^{(n-1)}$ be the degree n part of $\varphi^{(n-1)}$. Then we get $\mathrm{d}\left(\varphi_{n}^{(n-1)}\right) \in \mathrm{t}_{4}$. We now use the following statement, which will be proved in the next subsection.

Proposition 7.2. If $\gamma \in \mathscr{T}_{3}$ is such that $\mathrm{d}(\gamma) \in \mathfrak{t}_{4}$, then there exists $\beta \in \mathscr{T}_{2}$, such that $\gamma+\mathrm{d}(\beta) \in \mathrm{t}_{3}$. If γ has degree n, one can choose β of degree n.

It follows that there exists $\beta \in \mathscr{T}_{2}$ of degree n, such that $\varphi_{n}^{(n-1)}-\mathrm{d}(\beta) \in \mathrm{t}_{3}$. Set $F_{n}=1+\beta$, then $\varphi^{(n)}=\log \left(\bar{F}_{n} \Phi\right)$ is such that $\varphi^{(n)} \in \varphi^{(n-1)}-\mathrm{d}(\beta)+\left(\widehat{\mathscr{T}}_{3}\right)_{\geqslant n+1}$, so $\varphi^{(n)} \in \mathfrak{t}_{3}+\left(\widehat{\mathscr{T}}_{3}\right)_{\geqslant n+1}$. Moreover, the product $F=\cdots F_{n} \cdots F_{2}$ is convergent, and ${ }^{F} \Phi$ then satisfies $\log \left({ }^{F} \Phi\right) \in \widehat{\mathfrak{t}}_{3}$. This proves the existence of F, such that ${ }^{F} \Phi \in$ Assoc $_{\text {Lie }}$.

Let us now prove the uniqueness of an element of $\underline{\text { Assoc }}_{\text {Lie }}$, twist-equivalent to $\Phi \in$ Assoc. This follows from:

Proposition 7.3. Let Φ^{\prime} and $\Phi^{\prime \prime}$ be elements of Assoc $_{\text {Lie }}$, and let F belong to $1+\left(\widehat{\mathscr{T}}_{2}\right)_{0}$. Then ${ }^{F} \Phi^{\prime}=\Phi^{\prime \prime}$ if and only if there exists $\lambda \in \mathbb{K}$ such that $F=e^{\lambda t^{1,2}}$ and $\Phi^{\prime \prime}=\Phi^{\prime}$.

Proof of Proposition 7.3. Since $t^{1,2}+t^{1,3}+t^{2,3}$ is central in $\widehat{\mathscr{T}}_{3}$, we have ${ }^{F_{\lambda}} \Phi^{\prime}=\Phi^{\prime}$ when $F_{\lambda}=e^{\lambda t}$, for any $\lambda \in \mathbb{K}$. Conversely, let F_{i} be the degree i part of F. Then for some $\lambda_{0} \in \mathbb{K}$, we have $F_{1}=\lambda_{0} t$. Replacing F by $F^{\prime}=F F_{-\lambda_{0}}$, we get $F^{\prime} \Phi^{\prime}=\Phi^{\prime \prime}$, and $F^{\prime}-1$ has valuation $\geqslant 2$ (for the degree in t). Assume that $F^{\prime}-1 \neq 0$ and let v be its valuation. Let F_{v}^{\prime} be the degree v part of F^{\prime}. Then $\mathrm{d}\left(F_{v}^{\prime}\right) \in \mathrm{t}_{3}$. On the other hand, $F_{v}^{\prime}=\mu\left(t^{1,2}\right)^{v}$, where $\mu \in \mathbb{K}-\{0\}$. Now $\mathrm{d}\left(\left(t^{1,2}\right)^{v}\right) \in \mathscr{T}_{3}=U\left(\mathrm{t}_{3}\right)$ has degree $\leqslant v$ for the filtration of $U\left(\mathrm{t}_{3}\right)$, and its symbol in $S^{v}\left(\mathrm{t}_{3}\right)=\operatorname{gr}_{v}\left(U\left(\mathrm{t}_{3}\right)\right)$ is
$\sum_{v^{\prime}=1}^{v-1}\binom{v}{v^{\prime}}\left(t^{1,3}\right)^{v^{\prime}}\left(t^{2,3}\right)^{v-v^{\prime}}-\sum_{v^{\prime \prime}=1}^{v-1}\binom{v}{v^{\prime \prime}}\left(t^{1,2}\right)^{v^{\prime \prime}}\left(t^{1,3}\right)^{v-v^{\prime \prime}}$: this is the image of a nonzero element in $S^{v}\left(\mathbb{K} t^{1,2} \oplus \mathbb{K} t^{1,3} \oplus \mathbb{K} t^{2,3}\right)$ under the injection $S^{v}\left(\oplus_{1 \leqslant i<j \leqslant 3} \mathbb{K} t^{i, j}\right) \hookrightarrow S^{v}\left(\mathrm{t}_{3}\right)$, so it is nonzero. So $F^{\prime} \neq 1$ leads to a contradiction. So $F=F_{\lambda_{0}}$, therefore $\Phi^{\prime \prime}=\Phi^{\prime}$.

Note that we have proved the analogue of Proposition 7.2, where the indices of $\mathscr{T}_{3}, \mathrm{t}_{4}$, etc., are shifted by -1 .

7.3. Decomposition of t_{3} and proof of Proposition 7.2

To end the proof of the first part of Theorem 7.1, it remains to prove Proposition 7.2. For this, we construct a decomposition of t_{n}. For $i=1, \ldots, n$, there is a unique algebra morphism $\varepsilon_{i}: \mathscr{T}_{n} \rightarrow \mathscr{T}_{n-1}$, taking $t_{i, j}$ to 0 for any $j \neq i$, and taking $t_{j, k}$ to $t_{j-\lambda_{i}(j), k-\lambda_{i}(k)}$ if $j, k \neq i$, where $\lambda_{i}(j)=0$ if $j<i$ and $=1$ if $j>i$. Then ε_{i} induces a Lie algebra morphism $\tilde{\varepsilon}_{i}: \mathrm{t}_{n} \rightarrow \mathrm{t}_{n-1}$. Set $\tilde{\mathfrak{t}}_{n}=\bigcap_{i=1}^{n} \operatorname{Ker}\left(\tilde{\varepsilon}_{i}\right)$. Then we have

Lemma 7.4.

$$
\mathrm{t}_{n}=\bigoplus_{k=0}^{n} \bigoplus_{I \in \mathscr{P}_{k}(\{1, \ldots, n\})}\left(\tilde{\mathfrak{t}}_{k}\right)^{I}
$$

where $\mathscr{P}_{k}(\{1, \ldots, n\})$ is the set of subsets of $\{1, \ldots, n\}$ of cardinal k, and $\left(\tilde{\mathfrak{t}}_{k}\right)^{I}$ is the image of $\tilde{\mathfrak{t}}_{k}$ under $\mathrm{t}_{k} \rightarrow \mathrm{t}_{n}, x \mapsto x^{i_{1}, \ldots, i_{k}}$, where $I=\left\{i_{1}, \ldots, i_{k}\right\}$.

Proof. Let \mathfrak{F} be the free Lie algebra with generators $\tilde{i}_{i, j}$, where $1 \leqslant i<j \leqslant n$. It is graded by $\Gamma:=\mathbb{N}^{\{(i, j) \mid 1 \leqslant i<j \leqslant n\}}$: the degree of $\tilde{t}_{i, j}$ is the vector $\mathbf{d}_{i, j}$, whose $\left(i^{\prime}, j^{\prime}\right)$ coordinate is $\delta_{(i, j),\left(i^{\prime}, j^{\prime}\right)}$. For $\underline{k} \in \Gamma$, we denote by $\tilde{F}_{\underline{k}}$ the part of \mathscr{F} of degree \underline{k}. Let $\pi: \mathscr{F} \rightarrow \mathrm{t}_{n}$ be the canonical projection. Since the defining ideal of t_{n} is graded, we have

$$
\begin{equation*}
\mathrm{t}_{n}=\bigoplus_{\underline{\underline{k}} \in \Gamma} \pi\left(\mathfrak{F}_{\underline{\underline{k}}}\right) \tag{7.14}
\end{equation*}
$$

On the other hand, one checks that $\tilde{\mathrm{t}}_{n}=\oplus_{\underline{k} \in \tilde{\Gamma}} \pi\left(\mathfrak{F}_{\underline{k}}\right)$, where $\tilde{\Gamma}$ is the set of maps $k:\{(i, j) \mid 1 \leqslant i<j \leqslant n\} \rightarrow \mathbb{N}$, such that for each $i, \sum_{j \mid j>i} k(i, j)+\sum_{j \mid j<i} k(j, i) \neq 0$. Define a map $\lambda: \Gamma \rightarrow \mathscr{P}(\{1, \ldots, n\})$ as follows $(\mathscr{P}(\{1, \ldots, n\})$ is the set of subsets of $\{1, \ldots, n\}): \lambda$ takes the map $k:\{(i, j) \mid 1 \leqslant i<j \leqslant n\} \rightarrow \mathbb{N}$ to $\left\{i \mid \sum_{j \mid j>i} k(i, j)+\right.$ $\left.\sum_{j \mid j<i} k(j, i) \neq 0\right\}$. Then for each $I \in \mathscr{P}(\{1, \ldots, n\}), \quad\left(\tilde{\mathfrak{t}}_{|I|}\right)^{I}$ identifies with $\oplus_{\underline{k} \in \lambda^{-1}(I)} \pi\left(\mathfrak{F}_{\underline{k}}\right)$. Comparing with (7.14), we get

$$
\mathrm{t}_{n}=\bigoplus_{I \in \mathscr{P}(\{1, \ldots, n\})}\left(\tilde{\mathfrak{t}}_{|I|}\right)^{I}
$$

When $n=3$, we get $\mathrm{t}_{3}=\mathbb{K} t^{1,2} \oplus \mathbb{K} t^{1,3} \oplus \mathbb{K} t^{2,3} \oplus \tilde{\mathrm{t}}_{3}$. On the other hand, the fact that the insertion-coproduct maps take t_{n} to t_{m} implies that $\mathrm{d}: \mathscr{T}_{n} \rightarrow \mathscr{T}_{n+1}$ is compatible with the filtrations induced by the identification $\mathscr{T}_{n}=U\left(\mathrm{t}_{n}\right), \mathscr{T}_{n+1}=U\left(\mathrm{t}_{n+1}\right)$. The associated graded map is

$$
\operatorname{gr}(\mathrm{d}): S\left(\mathrm{t}_{n}\right) \rightarrow S \cdot\left(\mathrm{t}_{n+1}\right)
$$

Proposition 7.2 now follows from:
Lemma 7.5. When $k \geqslant 2$, the cohomology of the complex

$$
S^{k}\left(\mathrm{t}_{2}\right) \xrightarrow{\mathrm{gr}^{k}(\mathrm{~d})} S^{k}\left(\mathrm{t}_{3}\right) \xrightarrow{\mathrm{gr}^{k}(\mathrm{~d})} S^{k}\left(\mathrm{t}_{4}\right)
$$

vanishes.
Proof. We have

$$
\begin{equation*}
S^{k}\left(\mathrm{t}_{3}\right)=\bigoplus_{\alpha=0}^{k} S^{k-\alpha}\left(\bigoplus_{1 \leqslant i<j \leqslant 3} \mathbb{K} t^{i, j}\right) \otimes S^{\alpha}\left(\tilde{\mathfrak{f}}_{3}\right) \tag{7.15}
\end{equation*}
$$

Let $x \in S^{k}\left(\mathrm{t}_{3}\right)$, and let $\left(x_{\alpha}\right)_{\alpha=0, \ldots, k}$ be its components in the decomposition (7.15). We have

$$
S\left(\mathfrak{t}_{4}\right)=S \cdot\left(\tilde{\mathfrak{t}}_{4}\right) \otimes \bigotimes_{2 \leqslant i<j \leqslant 4} S \cdot\left(\tilde{\mathfrak{t}}_{3}^{1, i, j}\right) \otimes \bigotimes_{i=2}^{4} S \cdot\left(\tilde{\mathfrak{t}}_{2}^{1, i}\right) \otimes S\left(\mathrm{t}_{3}^{2,3,4}\right)
$$

We denote by p the projection

$$
p: S\left(\mathrm{t}_{4}\right) \rightarrow \tilde{\mathrm{t}}_{3}^{1,3,4} \otimes S \cdot\left(\mathrm{t}_{3}^{2,3,4}\right)
$$

which is the tensor product of: the identity on the last factor, the projection to degree 1 on the factor $S \cdot\left(\tilde{\mathfrak{t}}_{3}^{1,3,4}\right)$, and the projection to degree 0 in all other factors. We also denote by $m: \tilde{\mathrm{t}}_{3}^{1,3,4} \otimes S \cdot\left(\mathrm{t}_{3}^{2,3,4}\right) \rightarrow S\left(\mathrm{t}_{3}\right)$ the map induced by the identifications $\tilde{\mathfrak{t}}_{3}^{1,3,4} \subset \mathfrak{t}_{3}^{1,3,4} \simeq t_{3}, t_{3}^{2,3,4} \simeq t_{3}$ followed by the product map in $S\left(t_{3}\right)$. We denote by $\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}$ the maps $\mathscr{T}_{3} \rightarrow \mathscr{T}_{4}$ defined by

$$
\begin{aligned}
& \mathrm{d}_{1}(x)=x^{12,3,4}-x^{1,3,4}-x^{2,3,4} \\
& \mathrm{~d}_{2}(x)=x^{1,23,4}-x^{1,2,4}-x^{1,3,4} \\
& \mathrm{~d}_{3}(x)=x^{1,2,34}-x^{1,2,3}-x^{1,2,4}
\end{aligned}
$$

so $\mathrm{d}=\mathrm{d}_{1}-\mathrm{d}_{2}+\mathrm{d}_{3}$. The maps d_{i} are compatible with the filtrations of \mathscr{T}_{3} and \mathscr{T}_{4}; we denote by $\operatorname{gr}^{k}\left(\mathrm{~d}_{i}\right)$ the corresponding graded maps, so
$\operatorname{gr}^{k}(\mathrm{~d})=\operatorname{gr}^{k}\left(\mathrm{~d}_{1}\right)-\operatorname{gr}^{k}\left(\mathrm{~d}_{2}\right)+\operatorname{gr}^{k}\left(\mathrm{~d}_{3}\right)$. Then if we set

$$
x_{1}=\sum_{a, b, c \mid a+b+c=k-1}\left(t^{1,2}\right)^{a}\left(t^{1,3}\right)^{b}\left(t^{2,3}\right)^{c} \otimes e_{a, b, c}
$$

where $e_{a, b, c} \in \tilde{\mathfrak{f}}_{3}$, we have

$$
m \circ p \circ \operatorname{gr}^{k}\left(\mathrm{~d}_{1}\right)(x)=\left(\sum_{\alpha=0}^{k} \alpha x_{\alpha}\right)-\left(t^{2,3}\right)^{k-1} e_{0,0, k-1}
$$

On the other hand, let us define the i-degree of an element of $\left(\tilde{\mathfrak{t}}_{|I|}\right)^{I}$ to be 1 if $i \in I$ and 0 if $i \notin I$. Then the i-degree of $\otimes_{I \subset\{1, \ldots, n\}} S^{\alpha_{I}}\left(\left(\tilde{\mathfrak{t}}_{I I \mid}\right)^{I}\right) \subset S\left(\mathrm{t}_{n}\right)$ is $\sum_{I \mid i \in I} \alpha_{I}$. If x is homogeneous for the 1-degree, then so is $\operatorname{gr}^{k}\left(\mathrm{~d}_{2}\right)(x)$, and 1-degree $\left(\operatorname{gr}^{k}\left(\mathrm{~d}_{2}\right)(x)\right)=$ 1-degree (x). On the other hand, the elements of $S\left(\mathrm{t}_{4}\right)$ whose 1 -degree is $\neq 1$ are in the kernel of p. It follows that

$$
m \circ p \circ \operatorname{gr}^{k}\left(\mathrm{~d}_{2}\right)\left(x_{\alpha}\right)=0 \quad \text { if } \alpha \neq 1
$$

and $p \circ \operatorname{gr}^{k}\left(\mathrm{~d}_{2}\right)\left(x_{1}\right)=\left(e_{0,0, k-1}\right)^{1,3,4}\left[\left(t^{2,4}+t^{3,4}\right)^{k-1}-\left(t^{3,4}\right)^{k-1}\right]$, so

$$
m \circ p \circ \operatorname{gr}^{k}\left(\mathrm{~d}_{2}\right)\left(x_{1}\right)=e_{0,0, k-1}\left[\left(t^{1,3}+t^{2,3}\right)^{k-1}-\left(t^{2,3}\right)^{k-1}\right] .
$$

Finally, $\quad p \circ \operatorname{gr}^{k}\left(d_{3}\right)(x)=0$. If x is such that $\operatorname{gr}^{k}(\mathrm{~d})(x)=0$, we have $m \circ p \circ \operatorname{gr}^{k}(\mathrm{~d})(x)=0$, so

$$
\sum_{\alpha \geqslant 0} \alpha x_{\alpha}=e_{0,0, k-1}\left(t^{1,3}+t^{2,3}\right)^{k-1}
$$

Looking at degrees in the decomposition (7.15), we get $x_{\alpha}=0$ for $\alpha \geqslant 2$, and $x_{1}=$ $e_{0,0, k-1}\left(t^{1,3}+t^{2,3}\right)^{k-1}$. Using the projection $p^{\prime}: S\left(\mathrm{t}_{4}\right) \rightarrow \tilde{\mathrm{f}}_{3}^{1,2,4} \otimes S^{\prime}\left(\mathrm{t}_{3}^{1,2,3}\right)$, we get in the same way $x_{1}=e_{k-1,0,0}\left(t^{1,2}+t^{1,3}\right)^{k-1}$. Now $e_{k-1,0,0}\left(t^{1,2}+t^{1,3}\right)^{k-1}=e_{0,0, k-1}\left(t^{1,3}+\right.$ $\left.t^{2,3}\right)^{k-1}$ implies $e_{k-1,0,0}=e_{0,0, k-1}=0$ so $x_{1}=0$. Therefore $x \in S^{k}\left(\oplus_{1 \leqslant i<j \leqslant 3} \mathbb{K} t^{i, j}\right)$. Let us set $x=S\left(t^{1,2}, t^{1,3}, t^{2,3}\right)$, where S is a homogeneous polynomial of degree k of $\mathbb{K}[u, v, w]$. Since $\mathrm{d}(x)=0$, we have

$$
\begin{aligned}
& S\left(t^{1,3}+t^{2,3}, t^{1,4}+t^{2,4}, t^{3,4}\right)-S\left(t^{1,2}+t^{1,3}, t^{1,4}, t^{2,4}+t^{3,4}\right) \\
& \quad+S\left(t^{1,2}, t^{1,3}+t^{1,4}, t^{2,3}+t^{2,4}\right)=S\left(t^{2,3}, t^{2,4}, t^{3,4}\right)+S\left(t^{1,2}, t^{1,3}, t^{2,3}\right)
\end{aligned}
$$

(equality in $S\left(\oplus_{1 \leqslant i<j \leqslant 4} \mathbb{K} t^{i, j}\right)$).
Applying $\frac{\partial}{\partial t^{1,2}} \circ \frac{\partial}{\partial t^{3,4}}$ to this equality, we get

$$
\left(\partial_{u} \partial_{w} S\right)\left(t^{1,2}+t^{1,3}, t^{1,4}, t^{2,4}+t^{3,4}\right)=0
$$

therefore $\partial_{u} \partial_{w} S=0$. We have therefore

$$
S(u, v, w)=P(u, v)+Q(v, w)
$$

where P and Q are homogeneous polynomials of degree k. Moreover, $\mathrm{d}(x)=0$, so

$$
\begin{align*}
& {\left[P\left(t^{1,2}, t^{1,3}+t^{1,4}\right)-P\left(t^{1,2}+t^{1,3}, t^{1,4}\right)-P\left(t^{1,2}, t^{1,3}\right)\right]} \\
& \quad+\left[Q\left(t^{1,4}+t^{2,4}, t^{3,4}\right)-Q\left(t^{1,4}, t^{2,4}+t^{3,4}\right)-Q\left(t^{2,4}, t^{3,4}\right)\right] \\
& \quad+\left[P\left(t^{1,3}+t^{2,3}, t^{1,4}+t^{2,4}\right)+Q\left(t^{1,3}+t^{1,4}, t^{2,3}+t^{2,4}\right)\right. \\
& \left.\quad-P\left(t^{2,4}, t^{2,4}\right)-Q\left(t^{1,3}, t^{2,3}\right)\right]=0 \tag{7.16}
\end{align*}
$$

Write this as an identity

$$
B\left(t^{1,2}, t^{1,3}, t^{1,4}\right)+C\left(t^{1,4}, t^{2,4}, t^{3,4}\right)+A\left(t^{2,3}, t^{1,4}, t^{1,3}, t^{2,4}\right)=0
$$

Then A (resp., B, C) is independent of $t^{2,3}$ (resp., $t^{1,2}, t^{3,4}$). Let us now determine P and Q. Since $B\left(t^{1,2}, t^{1,3}, t^{1,4}\right)=B\left(0, t^{1,3}, t^{1,4}\right)$, we have $P(u, v+w)-P(u+v, w)-$ $P(u, v)=P(0, v+w)-P(v, w)-P(0, v)$. Therefore $\quad(\mathrm{d} \tilde{P})(u, v, w)=0, \quad$ where $\tilde{P}(u, v)=P(u, v)-P(0, v)$ and d is the co-Hochschild differential of polynomials in one variable. The corresponding cohomology is zero, so there exists a polynomial \bar{P}, such that

$$
P(u, v)-P(0, v)=\bar{P}(u+v)-\bar{P}(u)-\bar{P}(v)
$$

We conclude that $P(u, v)$ has the form

$$
\begin{equation*}
P(u, v)=\bar{P}(u+v)-\bar{P}(u)-R(v) \tag{7.17}
\end{equation*}
$$

where \bar{P} and R are polynomials in one variable of degree k; since $P(u, v)$ is homogeneous of degree k, we can assume that \bar{P} and R are monomials of degree k. In the same way, since $C\left(t^{1,4}, t^{2,4}, t^{3,4}\right)=C\left(t^{1,4}, t^{2,4}, 0\right)$, we have $Q(u+v, w)-$ $Q(u, v+w)-Q(v, w)=Q(u+v, 0)-Q(u, v)-Q(v, 0)$, so $(\mathrm{d} \tilde{Q})(u, v, w)=0$, where $\tilde{Q}(u, v)=Q(u, v)-Q(u, 0)$. So $Q(u, v)$ has the form

$$
\begin{equation*}
Q(u, v)=\bar{Q}(u+v)-\bar{Q}(v)-S(u) \tag{7.18}
\end{equation*}
$$

where \bar{Q} and S are polynomials in one variable of degree k, which can be assumed to be monomials of degree k. We have therefore

$$
x=\bar{P}^{1,23}+\bar{Q}^{12,3}-\bar{P}^{1,2}-\bar{Q}^{2,3}-T^{1,3}
$$

where $\bar{P}=\bar{P}\left(t^{1,2}\right), \bar{Q}=\bar{Q}\left(t^{1,2}\right)$ and $T=(R+S)\left(t^{1,2}\right)$. So $x=\mathrm{d}(\bar{Q})+(\bar{P}+\bar{Q})^{1,23}-$ $(\bar{P}+\bar{Q})^{1,2}-T^{1,3}$. Set $a=\bar{P}+\bar{Q}$; we have $\mathrm{d}(y)=0$, where $y=a^{1,23}-a^{1,2}-T^{1,3}$; applying ε_{1} to $\mathrm{d}(y)=0$, we get $T^{2,3}-T^{2,4}=0$, so $T=0$. We then get $a^{12,34}-$
$a^{12,3}-a^{2,34}+a^{2,3}=0$. Applying $\varepsilon_{3} \circ \varepsilon_{2}$ to this identity, we get $a^{1,4}=0$. Finally $\bar{P}=$ $-\bar{Q}$, so $x=\mathrm{d}(\bar{Q})$, which proves the lemma.

7.4. Isotropy groups

Proposition 7.3 can be generalized to the case of a pair of elements of Pent ${ }_{\text {Lie }}$, and it implies that the isotropy group of each element of Pent ${ }_{\text {Lie }}$ is the additive group $\left\{e^{\lambda t^{1,2}}, \lambda \in \mathbb{K}\right\}$. Let Φ be an element of Pent. There exists an element $\Phi_{\text {Lie }}$ of Pent Lie $^{\text {in }}$ the orbit of Φ. So the isotropy groups of Φ and $\Phi_{\text {Lie }}$ are conjugate. Since $1+\left(\widehat{\mathscr{T}}_{2}\right)_{0}$ is commutative, the isotropy group of Φ is $\left\{e^{\lambda t^{1,2}}, \lambda \in \mathbb{K}\right\}$.

Acknowledgments

B.E. thanks Y. Kosmann-Schwarzbach for communicating to him [Dr4], where the question of the construction of quasi-groups is raised, as well as for discussions on this question in 1995. Both authors would also like to thank P. Etingof, F. Gavarini, Y. Kosmann-Schwarzbach and P. Xu for discussions.

References

[Ban] M. Bangoura, Quasi-groupes de Lie-Poisson, C.R. Acad. Sci. Paris Sér. I Math. 319 (9) (1994) 975-978.
[BN] D. Bar-Natan, On associators and the Grothendieck-Teichmüller group I, Selecta Math. (N.S.) 4 (2) (1998) 183-212.
[Drl] V. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians. Vol. 1, Number 2, American Mathematical Society, Providence, RI, 1987, pp. 798-820.
[Dr2] V. Drinfeld, Quasi-Hopf algebras, Leningrad Math. J. 1 (6) (1990) 1419-1457.
[Dr3] V. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group closely connected with $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$, Leningrad Math. J. 2 (4) (1991) 829-860.
[Dr4] V. Drinfeld, Letter to Y. Kosmann-Schwarzbach, 1991.
[EGH] B. Enriquez, F. Gavarini, G. Halbout, On the unicity of braidings of quasitriangular Lie bialgebras, IMRN, to appear.
[EH] B. Enriquez, G. Halbout, An \hbar-adic valuation property of universal R-matrices, J. Algebra 261 (2) (2003) 434-447.
[Ga] F. Gavarini, The quantum duality principle, Ann. Inst. Fourier 52 (3) (2002) 809-834.
[GH] F. Gavarini, G. Halbout, Tressages des groupes de Poisson formels à dual quasitriangulaire, J. Pure Appl. Algebra 161 (3) (2001) 295-307.
[KS] Y. Kosmann-Schwarzbach, Poisson-Lie groups and beyond, J. Math. Sci. 82 (6) (1996) 3807-3813.
[WX] A. Weinstein, P. Xu, Classical solutions of the quantum Yang-Baxter equation, Comm. Math. Phys. 148 (1992) 309-343.

[^0]: ${ }^{*}$ Corresponding author.
 E-mail addresses: enriquez@math.u-strasbg.fr (B. Enriquez), halbout@math.u-strasbg.fr (G. Halbout).

