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Abstract

The Cauchy problem for a multidimensional linear non-homogeneous transport equation in divergence form is investigated.
An explicit and an implicit representation formulas for the unique solution of this transport equation in the case of a regular vector
field v are proved. Then, together with a regularizing argument, these formulas are used to obtain a very general probabilistic
representation for measure-valued solutions in the case when the initial datum is a measure and the involved vector field is no more
regular, but satisfies suitable summability assumptions w.r.t. the solution. Finally, uniqueness results for solutions of the initial-
value problem are derived from the uniqueness of the characteristic curves associated to v through the theory of the probabilistic
representation previously developed.
© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on s’intéresse au problème de Cauchy associé à une équation de transport linéaire non homogène multidi-
mensionnelle sous forme divergence. Nous démontrons tout d’abord deux formules de représentation, l’une explicite, la seconde
implicite, de l’unique solution de cette équation de transport dans le cas d’un champ de vecteurs régulier v. Puis dans un deuxième
temps, nous utilisons ces formules et un argument de régularisation pour obtenir une représentation probabiliste très générale des
solutions de type mesure de cette équation dans le cas où la condition initiale est une mesure et pour un champ de vecteurs qui
peut être non régulier mais qui satisfait par rapport à la solution à des hypothèses de sommabilité convenables. Enfin, l’unicité
des courbes caractéristiques associées au champ de vecteurs v obtenue par la théorie de la représentation probabiliste que nous
développons, nous permet d’obtenir des résultats d’unicité pour le problème de Cauchy.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

One of the aims of this paper is to provide a probabilistic representation of positive measure-valued solutions of the
forward non-homogeneous transport equation in divergence-form (also called conservative-form). This representation
briefly tells us that any positive solution of our PDE is a superposition of solutions of the first order associated ODE.
The ultimate purpose of the paper, as we will see in the applications in the last section, is then to use this representation
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as a tool to get uniqueness results for the solutions of the transport equation, first of all in the class of positive solutions,
and then also in other classes, as for example in the class of renormalized solutions or in the class of bounded solutions,
but considering the homogeneous equation and under additional hypotheses on the involved vector field.

The non-homogeneity we consider in the PDE is given by a linear term, i.e. we consider:

∂tμt + Dx · (vtμt ) = ctμt in (0, T ) × Rd, (1.1)

where {μt }t∈(0,T ) is a Borel family of finite positive measures on Rd , c is a Borel bounded function and furthermore
we suppose that there is a suitable integrability bound on v with respect to μ. The ODE that will play a fundamental
role in our discussion is:

X(s, s, x) = x,
d

dt
X(t, s, x) = vt

(
X(t, s, x)

)
(1.2)

(and for the meaning of the notation X(t, s, x) see Definition 3.3).
Observe that, if we suppose that the distributional divergence of v is a measure absolutely continuous with respect

to the Lebesgue measure and with bounded density, then our results can be applied also to the non-conservative form
of the transport equation (because in this case the distribution vt · ∇xμt is well defined as Dx · (vtμt ) − divx vt (x)μt )
in the case when we consider solutions μt of the form μt = ωtL

d with ω ∈ L1([0, T ];L1(Rd)).
A deep investigation of the homogeneous conservative case is carried out in Chapter 8 of [7]. Moreover it is worth

noticing that, since we are considering measure-valued solutions, a non-linear generalization of the right-hand side
of (1.1) seems not possible.

When the velocity field v is sufficiently regular and there exists a unique solution of (1.2), the classical method
of characteristics provides the explicit expression of the unique solution of the homogeneous continuity equation
(the reader can see, for instance, the counterexamples provided in [19]-IV to understand which kind of regularity
assumptions must be imposed on v indeed to have uniqueness of solutions of (1.2)). When we take a locally bounded
vector field v, an initial datum ω0 and functions c and g such that they all are Lipschitz continuous in their domain of
definition, it is well known that the explicit formula of the locally Lipschitz continuous solution of,

∂tωt + vt · ∇xωt = ctωt + gt in (0, T ) × Rd,

is given by

ωt(x) = ω0
(
X(0, t, x)

)
e
∫ t

0 cτ (X(τ,t,x))dτ +
t∫

0

gs

(
X(s, t, x)

)
e
∫ t
s cτ (X(τ,t,x))dτ ds. (1.3)

As shown in [16], this results still holds if we relax the hypothesis on v, i.e. if instead of the Lipschitz regularity we
suppose that there exists a non-negative function α(t), integrable in the interval [0, T ], such that for almost every
t ∈ (0, T ) the inequality 〈vt (x) − vt (y), x − y〉 � −α(t)|x − y|2 is valid for all x, y ∈ Rd .

If we take an initial datum that is a measure, and so we look for distributional solutions of our equation, under the
assumption,

v ∈ L1([0, T ];W 1,∞(Rd ,Rd)
)

(1.4)

it is well known (see for example [2,19,10]) that the explicit formula for the unique measure-valued solution of

∂tϑt + Dx · (vtϑt ) = 0, ϑ0 = ϑ̄, t ∈ [0, T ], (1.5)

is given by

ϑt := X(t,0, ·)#ϑ̄ . (1.6)

What we want to do first in this paper is to give the analogous result in the non-homogeneous case (1.1) (assuming
v and c sufficiently regular). As we will recall in Proposition 3.6, generalizing in the obvious way the validity of
formula (1.3) to the measure-valued case, also in the non-homogeneous case (1.1), but still assuming (1.4), we can
explicitly express the solution through the characteristics by the well known formula:

μt = X(t,0, ·)#
(
μ0e

∫ t
0 cs (X(s,0,·))ds

) ∀t ∈ [0, T ].
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Since in the previous formula the dependence upon the characteristics is not linear, to get, in a certain way, this
linearity property we will also prove the following implicit representation formula:

μt = X(t,0, ·)#μ0 +
t∫

0

X(t, s, ·)#(csμs)ds ∀t ∈ [0, T ]. (1.7)

The linear dependence upon the characteristics in the previous formula will play an essential role in the proof of the
probabilistic representation for solutions of the transport equation in the case when we relax the hypotheses on v.

The whole theory of characteristics fails if v is not smooth: the solution of (1.2) is no longer uniquely defined, and
the notion of solution to (1.1) and (1.5) has to be reinvestigated.

In this connection it is worth to mention that Filippov’s theory (see [20]) gives a generalized definition of solutions
of (1.2) for a merely bounded vector field v; furthermore in this context uniqueness and stability results are ensured
under the so-called one-sided Lipschitz condition (OSLC). Let us recall that a vector field v satisfies the (OSLC) if
there exists α ∈ L1+(0, T ) such that for L1-a.e. t ∈ (0, T ):〈

vt (y) − vt (x), y − x
〉
� α(t)|y − x|2 for Ld -a.e. x, y ∈ Rd .

Filippov’s theory is used to solve differential equations and inclusions (see for example [8,13,14]) and also to study
the multidimensional (i.e. for x ∈ Rd ) transport equation for instance by Poupaud and Rascle in [24] and by Petrova
and Popov in [22] and [23].

The study of solutions of the homogeneous transport equation for a vector field v satisfying the (OSLC) has been
deeply carried out by Bouchut and James in [11] for the one dimensional case (i.e. for x ∈ R), and by Bouchut, James
and Mancini in [12] for the multidimensional case (here the non-divergence form of the equation is considered): in
these works, among other things, provided v satisfies a (OSLC), existence, uniqueness and weak stability of solutions
are obtained through the notion of duality solution.

As we previously announced, in this paper we want to study solutions of (1.1) assuming on v, to give a distributional
sense to the PDE, the integrability bound w.r.t. μt ,

T∫
0

∫
Rd

∣∣vt (x)
∣∣dμt(x)dt < +∞.

This condition is not enough to guarantee uniqueness of solutions of (1.2): our aim is to show the relationship that
holds in this general case between solutions of (1.1) and solutions of (1.2).

We denote by ΓT the space C([0, T ];Rd) of continuous maps from [0, T ] into Rd endowed with the sup norm,
then we introduce the evaluation maps:

et : (x, γ ) ∈ Rd × ΓT �→ γ (t) ∈ Rd for t ∈ [0, T ]. (1.8)

We take into account that characteristics are not unique considering suitable probability measures in Rd × ΓT .
The probabilistic representation for solutions of ∂tμt + Dx · (vtμt ) = 0 is provided by Theorem 8.2.1 in [7], and

for the convenience of the reader we recall the precise statement of this result (that gave us the initial hint for our
discussion).

Theorem 1.1 (Probabilistic representation in the homogeneous case). Let μt : [0, T ] → P (Rd) be a narrowly con-
tinuous solution of the continuity equation ∂tμt + Dx · (vtμt ) = 0 for a suitable Borel vector field v(t, x) = vt (x)

satisfying:

T∫
0

∫
Rd

∣∣vt (x)
∣∣p dμt(x)dt < +∞ for some p > 1.

Then there exists a probability measure η in Rd × ΓT such that

(i) η is concentrated on the set of pairs (x, γ ) such that γ ∈ ACp(0, T ;Rd) is a solution of the ODE γ̇ (t) = vt (γ (t))

for L1-a.e. t ∈ (0, T ), with γ (0) = x;
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(ii) μt = μ
η
t for any t ∈ [0, T ], with μ

η
t defined as∫

Rd

ϕ dμ
η
t =

∫
Rd×ΓT

ϕ
(
et (γ )

)
dη(x, γ ) ∀ϕ ∈ C0

b

(
Rd

)
, ∀t ∈ [0, T ]. (1.9)

Conversely, any η satisfying (i) and

T∫
0

∫
Rd×ΓT

∣∣vt

(
γ (t)

)∣∣dη(x, γ )dt < +∞,

induces, via (1.9), a solution of the continuity equation, with μ0 = γ (0)#η.

(Observe that the definition of the evaluation maps et does not contain x, and so also formula (1.9) defining
μ

η
t = et #η does not contain x: for a discussion of this matter see Remark 11 in [5].)

The implicit representation formula (1.7) and the probabilistic representation in the homogeneous case gave us
the suggestion that a similar result must hold for solutions of (1.1). Indeed, under the same assumptions on v of the
previous theorem we will prove (see Theorem 4.1 for the precise statement) that if μt is a positive narrowly continuous
solution of ∂tμt + Dx · (vtμt ) = ctμt then still there exists a positive finite measure η in Rd × ΓT such that (i) of
Theorem 1.1 holds, but condition (ii) now must be replaced by the following conditions:

(ii′) μs � μ
η
s for every s in [0, T ], and the measure μ

η
s is given by the disintegration theorem, i.e.

η =
∫
Rd

ηs
x dμη

s (x) with μη
s = (es)#η; (1.10)

(ii′′) for every t ∈ [0, T ], μt satisfies the following equality:

〈μt ,ϕ〉 = 〈
μ

η
t , ϕ

〉 +
t∫

0

( ∫
Rd

∫
ΓT

ϕ
(
γ (t)

)
dηs

x(γ )cs(x)dμs(x)

)
ds, (1.11)

for any test function ϕ ∈ C∞
c (Rd).

Observe that the explicit representation formula μt = (et )#η given in part (ii) of Theorem 1.1 has been replaced in
the non-homogeneous case by the implicit formula (1.11) in (ii′′), and furthermore the new condition (ii′) appears
(since ηs

x are well defined only up to μ
η
s -negligible sets, formula (1.11) makes sense only if μs � μ

η
s for every s in

[0, T ]).
The importance of such a probabilistic representation is that, under suitable hypothesis on the vector field v, it

gives uniqueness results for positive solutions of the transport equation once we know, in some way, uniqueness of the
characteristic curves associated to the vector field v. This happens for example in the well known case of Lipschitz
(w.r.t. the space variable) vector fields, or of vector fields satisfying an Osgood type condition. So in this paper we
investigate in a non-classical setting the relationship between the transport equation (a PDE) and the associated first
order ODE, and the final aim of the work is to get uniqueness of the PDE from uniqueness of the ODE. In [19,3,2] the
converse implication is also studied about uniqueness results of the PDE versus uniqueness results of the ODE (i.e. to
what extent (1.2) has a unique solution for Ld -almost every initial condition x), but here we will not consider this
aspect of the problem.

The reader must take care of the fact that all the results stated by now are true for positive solutions only, and in
fact we have considered a family {μt }t∈[0,T ] of positive finite measures, while for possibly signed solutions nothing
can be said without additional regularity assumptions on v: in the last section we investigate what we can say making
further assumptions on v. In particular, in the last section we first give the precise definition of what we intend for
probabilistic solution, then we recall the definition of renormalized solution so to illustrate the relationship between
the two kind of solutions of,

∂tμt + Dx · (vtμt ) = 0 in (0, T ) × Rd,
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when both notions make sense. Then we state and prove a uniqueness theorem (Theorem 5.6) for renormalized
solutions, and an existence and uniqueness theorem (Theorem 5.9) for bounded solutions of,

∂tωt + Dx · (vtωt ) = 0 in (0, T ) × Rd, ω(0, ·) = ω0,

and in these theorems we take in consideration also “possibly signed” solutions, but of course we have to impose
additional regularity assumptions on v and on the class in which we look for our solutions.

The plan of the paper is the following: first in Section 2 we recall our notation and some preliminary results, then
in Section 3 we provide the two representation formulas (the explicit formula and the implicit one) for the solutions
of our equation. In Section 4 we prove the theorem about the probabilistic representation of solutions, and finally in
Section 5 we use it in some applications so to understand, as previously announced, why our results can be of interest
in the theory of PDEs.

2. Preliminaries and notation

In this section first we introduce our main notation and then we recall some basic tools that we will need in the
following.

We will denote by Ld the Lebesgue measure in Rd .
Given a map f (t, x) depending on time and space, we will use the notation ft for the map x �→ f (t, x), while a

derivative with respect to t will be denoted by d
dt

or by ˙ in the case of ODEs and by ∂t in the case of PDEs. The least
Lipschitz constant of a Lipschitz function f will be denoted by Lipf .

If I ⊂ R and f : I × Rm → Rk is a Borel function, and if X is a normed space of Rk-valued functions defined
on Rd (e.g. Lp or a Sobolev space), we say that f ∈ L1(I ;X) if

∫
I
‖f (t, ·)‖dt < +∞. Analogously, if X is a local

space, we say that f ∈ L1(I ;Xloc) if
∫
I
‖f (t, ·)‖BR

dt < +∞ for any R > 0.
Given a complete separable metric space X we will denote by B(X) the family of the Borel subsets of X, by M

the set of all Radon measures on X, by M+(X) the set of all positive Radon measures on X, by M+
b (X) the set of all

positive finite Radon measures on X and by P ⊂ M+
b (X) the subset of all probability measures.

We are going now to describe a construction that is quite natural in geometric measure theory and that will be
widely used in the paper.

Push-forward. If X, Y are complete separable metric spaces, μ ∈ M and f :X → Y is a Borel (or, more generally,
μ-measurable) function, we denote by f#μ ∈ M the push-forward of μ through f , defined by:

f#μ(B) := μ
(
f −1(B)

) ∀B ∈ B(Y ).

An approximation by simple functions shows the chain rule,∫
X

ϕ
(
f (x)

)
dμ(x) =

∫
Y

ϕ(y)d(f#μ)(y),

for every bounded (or f#μ integrable) Borel function ϕ :Y → R.
Let us go on giving the definition of some properties of measures that will be needed in the following.

Narrow convergence. We say that a bounded sequence (μn) ⊂ M is narrowly convergent to μ ∈ M as n → ∞ if,

lim
n→∞

∫
X

ϕ(x)dμn(x) =
∫
X

ϕ(x)dμ(x),

for every function ϕ ∈ C0
b(X), the space of all continuous bounded real functions defined on X (but it is sufficient

to check the previous equality on any subset C of continuous bounded functions whose linear envelope is dense in
C0

b(X) with respect to the uniform topology induced by the “sup” norm).

Tightness. We say that a set K ⊂ M is tight if,

∀ε > 0 ∃Kε compact in X such that |μ|(X \ Kε) � ε ∀μ ∈ K.

For a complete treatment of the relationships between narrow convergence and tightness we refer to Chapter 5 of [7]
and Chapter III of [17]. Anyway, for the convenience of the reader, we want to recall an integral condition for the
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tightness that will be useful in the sequel. It is easy to check that the tightness condition is equivalent to the following
one: there exists a function φ :X → [0,+∞], whose sublevels {x ∈ X: φ(x) � c} are compact in X, such that

sup
μ∈K

∫
X

φ(x)d|μ|(x) < +∞.

We will also use the following tightness criterion: let X, X1, X2 be separable metric spaces and let ri :X → Xi

be continuous maps such that the product map r := r1 × r2 :X → X1 × X2 is proper. Let K ⊂ P (X) be such that
Ki := ri

#(K) is tight in P (Xi) for i = 1,2. Then also K is tight in P (X).

Disintegration of measures. Now we give the statement of the disintegration theorem, that will be an essential
tool in providing a probabilistic representation for solutions of our problem.

Let X, Y be separable metric spaces and let X � x �→ ηx ∈ P (Y ) be a measure-valued map. We say that η is a
Borel map if X � x �→ ηx(B) is a Borel map for any Borel set B ⊂ Y (or equivalently if this property holds for any
open set A ⊂ Y ). Then the monotone class theorem gives that

X � x �→
∫
Y

f (x, y)dηx(y) (2.1)

is Borel for every bounded (or non-negative) Borel function f :X × Y → R.
By (2.1) the formula,

η(f ) =
∫
X

( ∫
Y

f (x, y)dηx(y)

)
dν,

defines for any ν ∈ P +(X) a unique measure η ∈ P +(X × Y), that will be denoted by
∫
X

ηx dν(x). Actually the
disintegration theorem implies that any η ∈ P +(X × Y) whose first marginal is ν can be represented in this way.

Theorem 2.1 (Disintegration). Let X, Y be complete separable metric spaces, η ∈ P +(X ×Y), let π :X ×Y → X be
a Borel map and let μ

η
π = π#η ∈ P +(X). Then there exists a μ

η
π -a.e. uniquely determined Borel family of probability

measures {ηπ
x }x∈X ⊂ P (Y ) such that

η =
∫
X

ηπ
x dμη

π(x),

i.e. ∫
X×Y

f (x, y)dη(x, y) =
∫
X

(∫
Y

f (x, y)dηπ
x (y)

)
dμη

π(x)

for every Borel map f :X × Y → [0,+∞].

This is not the more general statement of the disintegration theorem, but is the one useful for our purposes. The reader
can find the more general statement in the context of Radon spaces for instance in Chapter 5 of [7], or in [17] (III-70).

3. Representation formulas for the non-homogeneous continuity equation

In this section we collect some technical results on the continuity equation that will be fundamental in the proof of
the main theorem of the paper.

We are going to consider the non-homogeneous continuity equation,

∂tμt + Dx · (vtμt ) = ctμt in (0, T ) × Rd, (3.1)

and we intend to extend the results, true for the homogeneous equation, concerning the representation formula of the
solutions through the characteristic curves of the vector field v. Here μt is a Borel family of finite positive measures
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on Rd defined for t in the open interval I := (0, T ), c : (x, t) �→ ct (x) ∈ R is a Borel bounded scalar function and
v : (x, t) �→ vt (x) ∈ Rd is a Borel vector field such that

T∫
0

∫
Rd

∣∣vt (x)
∣∣dμt(x)dt < +∞. (3.2)

We suppose that (3.1) holds in the sense of distributions, i.e.

T∫
0

∫
Rd

(
∂tϕ(t, x) + 〈

vt (x),∇xϕ(t, x)
〉 + ct (x)ϕ(t, x)

)
dμt(x)dt = 0, (3.3)

for any test function ϕ ∈ C∞
c ((0, T ) × Rd).

Remark 3.1. As observed in [7] (see Remark 8.1.1) for the homogeneous case, also in (3.3) more general test functions
can be used. By a regularization argument via convolution, it can be shown that (3.3) holds if ϕ ∈ C1

c ((0, T ) × Rd)

as well, and then, under condition (3.2), one can choose bounded test functions ϕ with bounded gradient and whose
support has a compact projection in (0, T ) (that is, the support in x needs not be compact).

The following technical lemma allows us to consider t �→ μt as a measurable map with values in the space of
narrowly continuous maps (provided we change the values of the map over an L1-negligible set of t’s), and this is
convenient because in this way for any test function ϕ we have a well defined map t �→ 〈μt ,ϕ〉.

Lemma 3.2 (Narrowly continuous representative). Let μt be a Borel family of finite positive measures satisfying
(3.3) for Borel functions vt and ct satisfying (3.2). Then there exists a narrowly continuous curve [0, T ] � t �→
μ̃t ∈ M+

b (Rd) such that μt = μ̃t for L1-a.e. t ∈ (0, T ). Moreover, if ϕ ∈ C1
c ([0, T ] × Rd) and t1 � t2 ∈ [0, T ] we

have:

∫
Rd

ϕ(t2, x)dμ̃t2(x) −
∫
Rd

ϕ(t1, x)dμ̃t1(x) =
t2∫

t1

∫
Rd

(
∂tϕ(t, x) + 〈∇ϕ(t, x), vt (x)

〉 + ϕ(t, x)ct (x)
)

dμt(x)dt.

This is a classical result, whose proof can be obtained as in the homogeneous case (see for example Lemma 8.1.2
in [7]) with minor changes.

Since the ODE (1.2) will play, as announced before, a fundamental role in our discussion, first we recall some
definitions and elementary results of the theory of ordinary differential equations.

Definition 3.3 (Characteristic curves). We say that a function Xt(s, x) = X(t, s, x) is a characteristic curve for a
vector field v if it is absolutely continuous w.r.t. the first variable in an interval I of R, with values in Rd , and is an
integral solution of the ODE (1.2), i.e.

Xt(s, x) = x +
t∫

s

vτ

(
Xτ (s, x)

)
dτ, 0 � s � t � T .

So our notation Xt(s, x) means that we are considering the integral solution of γ̇ (r) = vr(γ (r)) evaluated at the
time t and that at the time s has value x.

By the classical theory of ODEs we know that if v ∈ L1([0, T ];W 1,∞(Rd ;Rd)), i.e.

S :=
T∫ (

sup
Rd

|vt | + Lip
(
vt ,Rd

))
dt < +∞,
0
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then solutions of the ODE are unique and stable. Furthermore we have also the following quantitative estimates for
the map Xt(s, x):

sup
s∈[0,T ]

T∫
0

sup
x∈Rd

∣∣∂tXt (s, x)
∣∣dt � S, sup

t,s∈[0,T ]
Lip

(
Xt(s, ·),Rd

)
� eS.

Remark 3.4. Since it is a result that we will use in the sequel, we recall that if v is a locally bounded and Lipschitz
continuous vector field then for any t ∈ [0, T ] the characteristic curves X(t, s, x) are solutions of the following trans-
port equation:

∂sX(t, s, x) + vs(x) · ∇xX(t, s, x) = 0. (3.4)

Indeed, from the definition of X and from the uniqueness in the Cauchy problem, we immediately get that

∀t1, t2, t3 ∈ [0, T ], ∀x ∈ Rd X
(
t3, t2,X(t2, t1, x)

) = X(t3, t1, x), (3.5)

i.e. the flow satisfies the so-called semigroup property. If we differentiate the previous relation with respect to t2 we
have:

∂sX
(
t3, t2,X(t2, t1, x)

) + ∇xX
(
t3, t2,X(t2, t1, x)

)
∂tX(t2, t1, x) = 0,

and using that ∂tX(t, s, x) = vt (X(t, s, x)) we get (3.4), after an obvious change of variable, which is possible
thanks to the fact that for all t, s ∈ [0, T ] the map x �→ X(t, s, x) is a diffeomorphism of Rd with inverse X(s, t, ·)
(this property is simply deduced by (3.5) taking t1 = t3).

We refer the reader to [10] for a brief self-contained exposition of the theory of characteristics for the transport
equation in the case of a regular vector field.

The next lemma is a uniqueness result for the continuity equation (the first step in order to prove the representation
formulas), and although its proof is a standard result (see for example [19,1,7]) we recall it for the convenience of the
reader.

Lemma 3.5 (Comparison principle). Let σt be a narrowly continuous family of signed measures solving
∂tσt + Dx · (vtσt ) = ctσt in (0, T ) × Rd , with σ0 � 0, c a Borel bounded scalar function in (0, T ) × Rd such that

T∫
0

∫
Rd

(∣∣vt (x)
∣∣+∣∣ct (x)

∣∣)d|σt |(x)dt < +∞

and

T∫
0

(
|σt |(B) + sup

B

|vt | + Lip(vt ,B)
)

dt < +∞,

T∫
0

(
|σt |(B) + sup

B

|ct | + Lip(ct ,B)
)

dt < +∞,

for any bounded closed set B ⊂ Rd . Then σt � 0 for any t ∈ [0, T ].

Proof. The proof of this lemma strictly follows the scheme of the proof of the analogous result in the homogeneous
case.

Fix ψ ∈ C∞
c ((0, T ) × Rd) with 0 � ψ � 1, R > 0 and a smooth cut-off function χR(·) = χ(·/R) ∈ C∞

c (Rd) such
that

0 � χR � 1, |∇χR| � 2/R, χR ≡ 1 on BR(0), χR ≡ 0 on Rd \ B2R(0).
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We define wt and dt so that

wt = vt and dt = ct on B2R(0) × (0, T ), wt = 0 = dt if t /∈ [0, T ],
and

sup
Rd

|wt | + Lip
(
wt,Rd

)
� sup

B2R(0)

|vt | + Lip
(
vt ,B2R(0)

) ∀t ∈ [0, T ],

sup
Rd

|dt | + Lip
(
dt ,Rd

)
� sup

B2R(0)

|ct | + Lip
(
ct ,B2R(0)

) ∀t ∈ [0, T ].

Let wε
t and dε

t be obtained from wt and dt by a double mollification with respect to the space and time variables.
Notice that wε

t are equibounded with respect to ε in the space L1([0, T ];W 1,∞(Rd ;Rd)), and the same holds for dε
t

in L1([0, T ];W 1,∞(Rd)), i.e. they satisfy the following estimates:

sup
ε∈(0,1)

T∫
0

(
sup
Rd

∣∣wε
t

∣∣ + Lip
(
wε

t ,Rd
))

dt < +∞, (3.6)

sup
ε∈(0,1)

T∫
0

(
sup
Rd

∣∣dε
t

∣∣ + Lip
(
dε
t ,Rd

))
dt < +∞. (3.7)

We now build (using the classical method of characteristics) a smooth solution ϕε : [0, T ] × Rd → R of the backward
problem:

∂ϕε

∂t
+ 〈

wε
t ,∇ϕε

〉 = ψ − χRdε
t ϕε in [0, T ] × Rd, ϕε(T , x) = 0, x ∈ Rd .

If we denote by Xε(s, t, x) the continuous (w.r.t. the first variable) solution of the ODE,

Xε
t (t, x) = x,

d

ds
Xε

s (t, x) = wε
s

(
Xs(t, x)

)
,

the explicit formula for the solution of the backward problem is given by:

ϕε(t, x) = −
T∫

t

ψ
(
s,Xε(s, t, x)

)
e− ∫ s

t χR(Xε(τ,t,x))dε(τ,Xε(τ,t,x))dτ ds, (3.8)

and this can be verified directly by simple calculations, using Leibniz’s formula and Remark 3.4.
By (3.8) we immediately obtain that ϕε � 0, and that |ϕε| and |∇ϕε| are uniformly bounded w.r.t. ε for (t, x) ∈

[0, T ] × Rd . Now we can insert the test function ϕεχR in the continuity equation and take into account that σ0 � 0
and ϕε � 0 to obtain:

0 � −
∫
Rd

ϕεχR dσ0 =
T∫

0

∫
Rd

(
χR

∂ϕε

∂t
+ 〈

vt ,χR∇ϕε + ϕε∇χR

〉 + ctϕ
εχR

)
dσt dt

=
T∫

0

∫
Rd

χR

(
ψ + 〈

vt − wε
t ,∇ϕε

〉 + (
ct − dε

t

)
ϕε

)
dσt dt +

T∫
0

∫
Rd

ϕε〈∇χR,vt 〉dσt dt

�
T∫

0

∫
Rd

χR

(
ψ + 〈

vt − wε
t ,∇ϕε

〉 + (
ct − dε

t ϕε
))

dσt dt − sup
x∈B2R(0), 0<ε<1

∣∣ϕε(t, x)
∣∣ T∫

0

∫
Rd

|∇χR||vt |d|σt |dt.

When we pass to the limit for ε ↓ 0, using the uniform bounds on |ϕε| and |∇ϕε|, and the fact that wt = vt and dt = ct

on [0, T ] × suppχR , we get:
T∫ ∫

d

χRψ dσt dt � C

T∫ ∫
d

|∇χR||vt |d|σt |dt � 2C

R

T∫ ∫
|vt |d|σt |dt.
0 R 0 R 0 R�|x|�2R
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Eventually letting R → ∞ we obtain
∫ T

0

∫
Rd ψ dσt dt � 0. By the arbitrariness of ψ we get the thesis. �

Now we are ready to state and prove the representation formulas for measure-valued solutions of (1.1) through the
solutions of (1.2) in the case when v is sufficiently regular.

Proposition 3.6 (Existence and uniqueness). Let v be a Borel vector field in L1([0, T ];W 1,∞(Rd ;Rd)), c a Borel
bounded and locally Lipschitz continuous (w.r.t. the space variable) scalar function and μ0 ∈ P (Rd). Then there
exists a unique μt , t ∈ [0, T ], narrowly continuous family of Borel finite positive measures solving (in the distributional
sense) the initial value problem

∂tμt + Dx · (vtμt ) = ctμt in (0, T ) × Rd, μ(0, ·) = μ0, (3.9)

and it is given by the explicit formula:

μt = X(t,0, ·)#
(
μ0e

∫ t
0 cs (X(s,0,·))ds

) ∀t ∈ [0, T ]. (3.10)

Moreover

μt = X(t,0, ·)#μ0 +
t∫

0

X(t, s, ·)#(csμs)ds ∀t ∈ [0, T ] (3.11)

provides an implicit formula for μt .

Proof. In this proof we focus only on the existence and the representation issue: in a first step we show that the
measure μt defined by formula (3.10) is a solution of (3.1), then in a second step we prove that it also satisfies the
integral equality (3.11). At this point Lemma 3.5 guarantees that for any initial datum μ0 there exists a unique solution
of (3.1), and so it must be necessarily expressed by formula (3.10) and must necessarily satisfy Eq. (3.11) by the first
two steps of the proof.

Notice that in both cases (explicit and implicit formulas) we need to check (3.3) only on test functions of the form
ψ(t)ϕ(x), i.e. ∫

R

ψ ′(t)〈μt ,ϕ〉dt +
∫
R

ψ(t)

∫
Rd

(〈vt ,∇ϕ〉 + ctϕ
)

dμt dt = 0, (3.12)

so we have simply to show that the map t �→ 〈μt ,ϕ〉 belongs to W 1,1(0, T ) for any ϕ ∈ C∞
c (Rd), and that its time

derivative is
∫

Rd (〈vt ,∇ϕ〉 + ctϕ)dμt .

Step 1 (Explicit representation formula). We are going first to prove that

t �→ μt := X(t,0, ·)#
(
μ0e

∫ t
0 cs (X(s,0,·))ds

)
is absolutely continuous, and in particular W 1,1(0, T ). For every choice of finitely many pairwise disjoint intervals
(ai, bi) ⊂ (0, T ), we have:

〈μbi
− μai

, ϕ〉 =
∫
Rd

(
ϕ
(
X(bi,0, x)

)
e
∫ bi
ai

cs (X(s,0,x))ds − ϕ
(
X(ai,0, x)

))
e
∫ ai

0 cs (X(s,0,x))ds dμ0(x).

Now we want to take the modulus of 〈μbi
− μai

, ϕ〉 and then the sum over all intervals (ai, bi). Let us denote by ‖c‖
the positive constant such that −‖c‖ � c � ‖c‖. Since,

n∑
i=1

∣∣ϕ(
X(bi,0, x)

)
e
∫ bi
ai

cs (X(s,0,x))ds − ϕ
(
X(ai,0, x)

)∣∣
� eT ‖c‖‖∇ϕ‖∞

∫
⋃

i (ai ,bi )

∣∣Ẋ(t,0, x)
∣∣dt + ‖c‖‖ϕ‖∞

∑
i

(bi − ai)

� eT ‖c‖‖∇ϕ‖∞
∫

⋃
(a ,b )

‖vt‖∞ dt + ‖c‖‖ϕ‖∞
∑

i

(bi − ai),
i i i
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an integration with respect to (e
∫ ai

0 cs(X(s,0,x))dsμ0) gives:∫
Rd

n∑
i=1

∣∣ϕ(
X(bi,0, x)

)
e
∫ bi
ai

cs (X(s,0,x))ds − ϕ
(
X(ai,0, x)

)∣∣e∫ ai
0 cs (X(s,0,x))ds dμ0(x)

� e2T ‖c‖‖∇ϕ‖∞
∫

⋃
i (ai ,bi )

‖vt‖∞ dt + ‖c‖eT ‖c‖‖ϕ‖∞
∑

i

(bi − ai),

so the absolute continuity of the integral shows that the right-hand side can be made small when
∑n

i=1(bi − ai) is
small. We have shown the absolute continuity of the map, and in particular its continuity, then to check the distribu-
tional equality it is sufficient to prove the pointwise one. Indeed, we have:

d

dt

∫
Rd

ϕ(x)dμt(x) = d

dt

∫
Rd

ϕ(x)d
(
X(t,0, x)#

(
μ0(x)e

∫ t
0 cs(X(s,0,x))ds

))

=
∫
Rd

e
∫ t

0 cs (X(s,0,x))ds d

dt
ϕ
(
X(t,0, x)

)
dμ0(x)

+
∫
Rd

ϕ
(
X(t,0, x)

) d

dt
e
∫ t

0 cs (X(s,0,x))ds dμ0(x)

=
∫
Rd

〈∇xϕ
(
X(t,0, x)

)
, Ẋ(t,0, x)

〉
e
∫ t

0 cs (X(s,0,x))ds dμ0(x)

+
∫
Rd

ϕ
(
X(t,0, x)

)
e
∫ t

0 cs(X(s,0,x))dsct

(
X(t,0, x)

)
dμ0(x)

=
∫
Rd

〈∇xϕ(x), vt (x)
〉
dμt(x) +

∫
Rd

ϕ(x)ct (x)dμt(x).

Step 2 (Implicit representation formula). Let us focus now on the implicit representation and let us show that the
measure μt defined by (3.10) satisfies (3.11).
It suffices to show that for any test function ϕ ∈ C∞

c (Rd) the following equality holds:∫
Rd

ϕ
(
X(t,0, x)

)
e
∫ t

0 cτ (X(τ,0,x))dτ dμ0(x) −
∫
Rd

ϕ
(
X(t,0, x)

)
dμ0(x)

=
∫
Rd

t∫
0

ϕ
(
X

(
t, s,X(s,0, x)

))
cs

(
X(s,0, x)

)
e
∫ s

0 cτ (X(τ,0,x))dτ ds dμ0(x).

Since X(t, s,X(s,0, x)) = X(t,0, x) for any 0 � s � t � T , the previous equality reduces to the following one:

∫
Rd

ϕ
(
X(t,0, x)

)(
e
∫ t

0 cτ (X(τ,0,x))dτ − 1 −
t∫

0

cs

(
X(s,0, x)

)
e
∫ s

0 cτ (X(τ,0,x))dτ ds

)
dμ0(x) = 0. (3.13)

Once we set F(s) := e
∫ s

0 cτ (X(τ,0,x))dτ , we have that F(0) = 1 and, by the Leibniz formula:

d

ds
F (s) = F(s)cs

(
X(s,0, x)

)
.

So, by the fundamental theorem of the integral calculus, (3.13) holds true, and this proves the implicit representation
formula. �
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Remark 3.7. Observe that the proof of Step 1 in the previous proposition simply uses the definition of characteristic
curve. So, given a Borel vector field v, if we know in some way that there exists at least one characteristic curve X

associated to v, using formula (3.10) we can immediately construct a solution of the initial value problem (3.9).
Notice also that the proof of Step 2 requires in addition the semigroup property of X, that is true when we have

uniqueness of the solutions of the ODE (1.2).

The implicit representation formula for solutions μt of (3.1) will be our starting point for a probabilistic repre-
sentation of μt under weaker regularity assumptions on the vector field v (i.e. when the characteristics of v are not
unique).

When we have the homogeneous equation, and we denote by ϑt its solutions, from the explicit representation
ϑt (x) = X(t,0, x)#μ0(x) and using the area formula (see [2]), we can see that

if ϑ0 = ρLd then ϑt = ρ(·)
JX(t,0, ·) ◦ X−1(t,0, ·)Ld ,

where JX = |det∇X|. If we look again at (3.10) we can immediately conclude that an analogous result holds in the
non-homogeneous case, i.e.

if μ0 = ρLd then μt = ρ(·)e
∫ t

0 c(s,X(s,0,·))ds

JX(t,0, ·) ◦ X−1(t,0, ·)Ld . (3.14)

Remark 3.8. Observe that for an initial datum ω0 ∈ L∞(Rd) (resp. ω0 ∈ L1(Rd)) and a bounded Borel vector field
v : [0, T ] × Rd → Rd that satisfies also,

Dx · vt = divx vtL
d for L1-a.e. t ∈ (0, T ) with [divx v]− ∈ L∞(

(0, T ) × Rd
)
,

the existence of a solution to

∂tωt + Dx · (vtωt ) = ctωt in (0, T ) × Rd, ω(0, ·) = ω0, (3.15)

such that ωt ∈ L∞(Rd) (resp. ωt ∈ L1(Rd)) for L1-a.e. t ∈ (0, T ) is not a problem and easily follows by a regular-
ization argument. Indeed, in the case of a Lipschitz vector field the solution ωt is given by formula (3.14), where we
take ρ(x) = ω0(x), and observe that from the same formula (3.14) we get the following estimate on ωt :

ωt � |ω0|
(
e
∫ t

0 ‖c+
s ‖∞ ds

)(
e
∫ t

0 ‖[divbs ]−‖∞ ds
)

(we refer the reader to [5] where a detailed explanation of the estimate on JX is made). In the case of a bounded
vector field we can find a suitable ωt as a weak limit in the following way: we take a sequence (vn

t )n∈N of locally
Lipschitz (in the space variable) functions such that vn

t strongly converges to vt in L1
loc(R

d) for L1-a.e. t ∈ (0, T ) as
n → +∞. Then we denote by ωn

t the unique solution of,

∂tω
n
t + Dx · (vn

t ωn
t

) = ctω
n
t in (0, T ) × Rd, ωn(0, ·) = ω0,

that by (3.14) can be explicitly written as

ωt
n(x) = ω0(·)e

∫ t
0 cs (Xn(s,0,·))ds

JX(t,0, ·) ◦ X−1
n (t,0, x),

where Xn is the unique characteristic associated to vn. Finally we choose ωt to be the weak limit in the sense of
distributions of the sequence (ωn

t ) as n → +∞.

In the remaining part of this section we state some technical lemmas that will be used in the sequel: Lemma 3.9 is a
generalization of Lemma 8.1.10 in [7], while Lemma 3.10 is a suitable and not difficult generalization of Lemma 8.1.9
in [7]. In Lemma 3.9 the generalization consists in taking a convex non-decreasing function ψ : R+ → R+ instead of
the function | · |p , so we show how to adapt the proof, while we skip the proof of Lemma 3.10 because in this case the
generalization, besides considering the non-homogeneous case, is the same one of Lemma 3.9.
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Lemma 3.9. Let p � 1, ψ : R+ → R+ a non-decreasing convex function, μ ∈ M+
b (Rd) and let E be a Rm-valued

measure in Rd with finite total variation and absolutely continuous with respect to μ. Then for any convolution kernel
ρ the following inequality holds: ∫

Rd

ψ

(∣∣∣∣E ∗ ρ

μ ∗ ρ

∣∣∣∣
)

μ ∗ ρ dx �
∫
Rd

ψ

(∣∣∣∣Eμ
∣∣∣∣
)

dμ,

where in the right-hand side of the inequality E
μ

denotes the density of the measure E w.r.t. μ.

Proof. We use Jensen’s inequality in the form:

Φ

( ∫
Rd

ϕ(x)dϑ(x)

)
�

∫
Rd

Φ(ϕ(x))dϑ(x), (3.16)

where Φ : Rm+1 → [0,+∞] is convex, l.s.c. and positively 1-homogeneous, ϕ : Rd → Rm+1 is a Borel map and ϑ is
a finite measure in Rd . We fix x ∈ Rd , then we choose ϕ := (E

μ
,1), ϑ := ρ(x − ·)μ and

Φ(x, t) :=
⎧⎨
⎩

ψ(
|x|
t

)t if t > 0,

0 if (z, t) = (0,0),

+∞ if either t < 0 or t = 0, z �= 0.

If we apply (3.16) with ϕ, ϑ and Φ as above we get the thesis (see Lemma 8.1.10 in [7] for details), and for this
purpose we have only to verify that Φ is convex. This holds true, indeed for z0 > 0 we can write:

ψ(z0) = sup
i

{
aiz0 + bi : ai, bi ∈ R, aiz + bi � ψ(z) ∀z > 0

}
, (3.17)

and consequently,

ψ

( |x|
t

)
t = sup

i

{
ai |x| + bit

}
, (3.18)

where the sup is taken over the same families of ai and bi that appear in (3.17). Since ψ is non-decreasing we have
that ai must be positive, and so the function given by (3.18) is convex in the variable (x, t). �
Lemma 3.10 (Approximation by regular curves). Let ψ : R+ → R+ be a non-decreasing convex function, and let μt

be a time-continuous solution of (3.1) w.r.t. a velocity field vt and a scalar function ct satisfying the integrability
condition:

T∫
0

∫
Rd

ψ
(∣∣vt (x)

∣∣)dμt(x)dt < +∞

and
T∫

0

∫
Rd

ψ
(∣∣ct (x)

∣∣)dμt(x)dt < +∞.

Let (ρε) ⊂ C∞
c (Rd) be a family of strictly positive mollifiers in the x-variable, and set:

με
t := μt ∗ ρε, vε

t := (vtμt ) ∗ ρε

μt ∗ ρε

, cε
t := (ctμt ) ∗ ρε

μt ∗ ρε

.

Then με
t is a continuous solution of (3.1) w.r.t. vε

t and cε
t , which satisfy,

T∫ (
sup
B

|vε
t | + Lip

(
vε
t ,B

))
dt < +∞,

T∫ (
sup
B

|cε
t | + Lip

(
cε
t ,B

))
dt < +∞,
0 0
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for every compact set B ⊂ Rd and the uniform integrability bounds:∫
Rd

ψ
(∣∣vε

t (x)
∣∣)dμε

t (x) �
∫
Rd

ψ
(∣∣vt (x)

∣∣)dμt(x) ∀t ∈ (0, T ),

∫
Rd

ψ
(∣∣cε

t (x)
∣∣)dμε

t (x) �
∫
Rd

ψ
(∣∣ct (x)

∣∣)dμt(x) ∀t ∈ (0, T ).

Moreover,

(vtμt ) ∗ ρε → vtμt , (ctμt ) ∗ ρε → ctμt narrowly,

and

lim
ε↓0

∥∥ψ
(∣∣vε

t

∣∣)∥∥
L1(με

t ;Rd )
= ∥∥ψ

(|vt |
)∥∥

L1(μt ;Rd )
∀t ∈ (0, T ),

lim
ε↓0

∥∥ψ
(∣∣cε

t

∣∣)∥∥
L1(με

t ;Rd )
= ∥∥ψ

(|ct |
)∥∥

L1(μt ;Rd )
∀t ∈ (0, T ).

4. The probabilistic representation

The aim of the theorem proved in this section is to extend the probabilistic representation of the solutions of the
homogeneous continuity equation (in divergence form) to the non-homogeneous one. This representation is of interest
because it tells us to what extent formula (3.11) is still valid when the vector field v fails to satisfy the regularity
condition:

T∫
0

(
sup
B

|vt | + Lip(vt ,B)
)

dt < +∞.

It is well known that in this case, without further information on v, nothing guarantees uniqueness of characteristics,
so it is useful to consider suitable probability measures in the space C([0, T ];Rd) endowed with the sup norm, that
we denote by ΓT . We recalled in the Introduction the precise statement of the theorem that provides the probabilistic
representation for positive narrowly continuous solutions of ∂tμt + Dx · (vtμt ) = 0, so now we are going to state and
prove the analogous theorem for positive narrowly continuous solutions of ∂tμt + Dx · (vtμt ) = ctμt .

Theorem 4.1 (Probabilistic representation in the non-homogeneous case). Let μt : [0, T ] → M+
b (Rd) be a narrowly

continuous solution of the continuity equation (3.1) for a suitable Borel vector field vt (x) = v(t, x) and a Borel
bounded scalar function ct (x) = c(t, x) satisfying:

T∫
0

∫
Rd

∣∣vt (x)
∣∣p dμt(x)dt < +∞ for some p � 1. (4.1)

Then there exists a finite positive measure η in Rd × ΓT such that

(i) η is concentrated on the set of γ ∈ ACp(0, T ;Rd) that are solutions of the ODE γ̇ (t) = vt (γ (t)) for L1-a.e.
t ∈ (0, T ) with γ (0) = x;

(ii) μs � μ
η
s for every s in [0, T ] , and the measure μ

η
s is given by the disintegration theorem, i.e.

η =
∫
Rd

ηs
x dμη

s (x) with μη
s = (es)#η; (4.2)

(iii) for every t ∈ [0, T ], μt satisfies the following equality:

〈μt ,ϕ〉 = 〈
μ

η
t , ϕ

〉 +
t∫ ( ∫

d

∫
ϕ
(
γ (t)

)
dηs

x(γ )cs(x)dμs(x)

)
ds (4.3)
0 R ΓT
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for any test function ϕ ∈ C∞
c (Rd).

Conversely, any η satisfying (i), (ii) and

T∫
0

∫
Rd×ΓT

(∣∣vt

(
γ (t)

)∣∣ + ∣∣ct

(
γ (t)

)∣∣)dη(x, γ )dt < +∞, (4.4)

induces via (4.3) a solution of (3.1), with μ0 = γ (0)#η.

Proof. Let us first prove the direct implication.
Step 1 (Regularization). Let μt , vt and ct be given as in the statement of the theorem and let us denote by ‖c‖

the positive constant such that −‖c‖ � c � ‖c‖. Let us apply the regularization Lemma 3.10, finding approximations
με

t , v
ε
t and cε

t satisfying the continuity equation and the uniform integrability condition (3.2). Therefore we can apply
Proposition 3.6, obtaining the representation formula:

με
t = Xε(t,0, ·)#μ

ε
0 +

t∫
0

Xε(t, s, ·)#
(
cε
sμ

ε
s

)
ds,

where Xε(t, s, x) is the maximal solution of

Ẋε(t, s, x) = vε
t

(
Xε(t, s, x)

)
, Xε(s, s, x) = x.

Thinking Xε(t,0, x) as a map from Rd to ΓT , we can define:

ηε(x, γ ) := (
id(x) × Xε(t,0, x)

)
#μ

ε
0(x) ∈ M+

b

(
Rd × ΓT

)
. (4.5)

Now we claim that the family ηε is tight as ε ↓ 0 and that any limit point η fulfills (i), (ii) and (iii).
Step 2 (Tightness). The tightness of the family can be obtained by the tightness criterion recalled in the

preliminaries. Choosing the maps r1, r2 defined in Rd × ΓT as

r1 : (x, γ ) �→ x ∈ Rd, r2 : (x, γ ) �→ γ − x ∈ ΓT ,

observe that r = r1 × r2 : Rd × ΓT → Rd × ΓT is proper. The family r1
#ηε is given by the first marginal με

0 which
are tight (indeed, they narrowly converge to μ0). About βε := r2

# ηε we have to distinguish two cases to prove their
tightness.

Case p > 1. We can write:

∫
ΓT

T∫
0

|γ̇ |p dt dβε =
∫
Rd

T∫
0

∣∣Ẋε(t,0, x)
∣∣p dt dμε

0(x)

=
∫
Rd

T∫
0

∣∣vε
t

(
Xε(t,0, x)

)∣∣p dt dμε
0(x)

=
T∫

0

∫
Rd

|vε
t (x)|p

e
∫ t

0 cε(s,Xε(s,t,x)ds
d
(
Xε(t,0, x)#

(
e
∫ t

0 cε
(
s,Xε(s,0,x)dsμε

0(x)
))

dt

� eT ‖c‖
T∫

0

∫
Rd

∣∣vt (x)
∣∣p dμt(x)dt < +∞,

where in the last inequality we used Proposition 3.6 and Lemma 3.9 with ψ(·) = | · |p . Since for p > 1 the functional
γ �→ ∫ T |γ̇ |p dt (set to +∞ if γ /∈ ACp((0, T );Rd) or γ (0) �= 0) has compact sublevels in ΓT , also βε is tight.
0
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Case p = 1. When p = 1 the argument previously used fails because the functional γ �→ ∫ T

0 |γ̇ |dt is not coercive
in ΓT , anyway this difficulty can be easily dropped.

If ψ : R+ → R+ is a convex superlinear function then the functional γ �→ ∫ T

0 ψ(|γ̇ |)dt is coercive in ΓT by the
Dunford–Pettis theorem (see for instance Proposition 1.27 and Theorem 1.38 in [6]), then, using Lemma 3.9 and
calculations analogous to the ones in the case p > 1, we have also:

∫
ΓT

T∫
0

ψ
(|γ̇ |)dt dβε � eT ‖c‖

T∫
0

∫
Rd

ψ
(|vt |

)
dμt dt.

Now to conclude we have simply to show that if
∫ T

0

∫
Rd |vt |dμt dt < +∞ then there exists a convex superlinear

function ψ such that
∫ T

0

∫
Rd ψ(|vt |)dμt dt < +∞, and this follows again by the Dunford–Pettis theorem. Indeed,

once we set μ := ∫ T

0 μt dt , we can write
∫ T

0

∫
Rd |vt |dμt dt = ∫

Rd |v|dμ, and since the family F = {v} is a compact
set, by the Dunford–Pettis theorem we deduce the existence of the useful ψ .

Step 3 (Conditions (ii) and (iii)). Let now η be a narrow limit point of ηε along some infinitesimal sequence εi .
Using that μ

ηεi

t = (et )#η
εi , the definition of ηεi in (4.5) and the implicit representation (3.11), we can write:∫

Rd

ϕ(x)dμ
ηεi

t (x) =
∫

Rd×ΓT

ϕ
(
γ (t)

)
dηεi (x, γ ) =

∫
Rd

ϕ
(
Xεi (t,0, x)

)
dμ

εi

0 (x)

=
∫
Rd

ϕ(x)dμ
εi
t (x) −

t∫
0

( ∫
Rd

ϕ
(
Xεi (t, s, x)

)
cεi
s (x)dμεi

s (x)

)
ds

for any ϕ ∈ C0
b(Rd). When we let i → ∞ we just obtain (4.3), defining ηs

x and μ
η
s as in (4.2).

Furthermore, from the explicit representation (3.10), we also have:∫
Rd

ϕ(x)dμ
εi
t (x) =

∫
Rd

ϕ
(
Xεi (t,0, x)

)
e
∫ t

0 cεi (s,Xεi (s,0,x)) dμ
εi

0 (x)

� eT ‖c‖
∫
Rd

ϕ
(
Xεi (t,0, x)

)
dμ

εi

0 (x) = eT ‖c‖
∫
Rd

ϕ(x)dμ
ηεi

t (x),

that is μ
εi
t � Cμ

ηεi
t , and in the limit for i → ∞ we get μt � μ

η
t .

Finally we have to check condition (i).
Step 4 (An auxiliary inequality). Let w(t, x) = wt(x) be a bounded uniformly continuous function, and let us prove

the estimate:

∫
Rd×ΓT

∣∣∣∣∣γ (t) − x −
t∫

0

wτ

(
γ (τ)

)
dτ

∣∣∣∣∣
p

dη(x, γ ) � eT ‖c‖
T∫

0

∫
Rd

|vτ − wτ |p dμτ dτ. (4.6)

Indeed we have:

∫
Rd×ΓT

∣∣∣∣∣γ (t) − x −
t∫

0

wτ

(
γ (τ)

)
dτ

∣∣∣∣∣
p

dηε(x, γ )

=
∫
Rd

∣∣∣∣∣Xε(t,0, x) − x −
t∫

0

wτ

(
Xε(τ,0, x)

)
dτ

∣∣∣∣∣
p

dμε
0(x)

=
∫
d

∣∣∣∣∣
t∫ (

vε
τ − wτ

)(
Xε(τ,0, x)

)
dτ

∣∣∣∣∣
p

dμε
0(x)
R 0
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� eT ‖c‖
t∫

0

∫
Rd

∣∣vε
τ − wτ

∣∣p dμε
τ dτ

� eT ‖c‖
t∫

0

∫
Rd

∣∣vε
τ − wε

τ

∣∣p dμε
τ dτ + eT ‖c‖

t∫
0

∫
Rd

∣∣wε
τ − wτ

∣∣p dμε
τ dτ

� eT ‖c‖
T∫

0

∫
Rd

∣∣vτ − wτ

∣∣p dμτ dτ + eT ‖c‖
T∫

0

sup
x∈Rd

∣∣wε
τ (x) − wτ (x)

∣∣p dτ,

where in the last two inequalities we have added and subtracted wε
τ := wτ ∗ ρε and then used Proposition 3.6 and

Lemma 3.9 with ψ(·) = | · |p . Setting ε = εi and passing to the limit as i → ∞ we recover (4.6), since the function
under integral is a continuous and non-negative test function in Rd × ΓT .

Step 5 (Condition (i)). Now let μ := ∫ T

0 μt dL1(t) be the Borel measure on Rd × ΓT whose disintegration with
respect to L1 is {μt }t∈(0,T ), and let wn ∈ C0

c ((0, T ) × Rd ;Rd) be continuous functions with compact support con-
verging to v in Lp(μ;Rd). Using the representation given in point (ii), we have:

∫
Rd×ΓT

T∫
0

∣∣wn
τ

(
γ (τ)

) − vτ

(
γ (τ)

)∣∣p dτ dη

=
T∫

0

∫
Rd

∣∣wn
τ − vτ

∣∣p dμη
τ dτ =

T∫
0

∫
Rd

∣∣wn
τ − vτ

∣∣p dμτ dτ

−
T∫

0

( t∫
0

∫
Rd

∫
ΓT

∣∣wn
τ

(
γ (t)

) − vτ

(
γ (t)

)|p dηs
x(γ )cs(x)dμs(x)ds

)
dτ.

Observe that as n → ∞ both terms in the right-hand side of the previous equality go to zero from the hypothesis on
wn (for the second term we use the dominated convergence theorem, once we recall that μs � μ

η
s for any s ∈ [0, T ]).

So, using the triangular inequality in Lp(η), (4.6) with w = wn and the previous equality we obtain ∀t ∈ [0, T ]:
∫

Rd×ΓT

∣∣∣∣∣γ (t) − x −
t∫

0

vτ

(
γ (t)

)
dτ

∣∣∣∣∣
p

dη(x, γ )

�
∫

Rd×ΓT

∣∣∣∣∣γ (t) − x −
t∫

0

wn
τ

(
γ (τ)

)
dτ

∣∣∣∣∣
p

dη(x, γ )

+
∫

Rd×ΓT

T∫
0

∣∣wn
τ

(
γ (τ)

) − vτ (γ (τ ))
∣∣p dτ dη(x, γ ),

and when we let n → ∞, ∫
Rd×ΓT

∣∣∣∣∣γ (t) − x −
t∫

0

vτ

(
γ (τ)

)
dτ

∣∣∣∣∣
p

dη(x, γ ) = 0 ∀t ∈ [0, T ].

Therefore,

γ (t) − x −
t∫
vτ

(
γ (τ)

)
dτ = 0 for η-a.e. (x, γ ),
0
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for any t ∈ [0, T ]. Choosing all t’s in (0, T ) ∩ Q we obtain an exceptional η-negligible set that does not depend on t

and use the continuity of γ to show that the identity is fulfilled for any t ∈ [0, T ].
Let us now consider the converse implication, whose proof is much simpler.
Notice that, due to assumption (i), the set F of all (t, x, γ ) such that either γ̇ (t) does not exist or it is different from

vt (γ (t)) is L1 × η-negligible. As a consequence, we have:

γ̇ (t) = vt

(
γ (t)

)
η-a.e., for L1-a.e. t ∈ [0, T ].

To achieve the thesis we have to prove the following facts:

(1) the map t �→ μt is narrowly continuous;
(2) ∀ζ ∈ C1(Rd) bounded with a bounded gradient, the map t �→ ∫

ζ dμt is absolutely continuous;
(3) the pointwise equality,

d

dt

∫
Rd

ζ dμt =
∫
Rd

(〈vt ,∇ζ 〉 + ct ζ
)

dμt ,

holds for any ζ given as in (2).

With a straightforward calculation, since (4.4) holds, we can check that t �→ μt is narrowly continuous, so we get (1).
It is also easy to check (2), indeed for s < t in (0, T ) we have:

∣∣∣∣
∫
Rd

ζ dμs −
∫
Rd

ζ dμt

∣∣∣∣ � ‖∇ζ‖∞
t∫

s

∫
Rd×ΓT

∣∣vτ

(
γ (τ)

)∣∣dη dτ + 2‖ζ‖∞
t∫

s

∫
Rd

ητ
x(ΓT )

∣∣cτ (x)
∣∣dμτ (x)dτ,

where we have used that γ̇ (τ ) = vτ (γ (τ )). Now, taking into account that μs � μ
η
s and that for any τ ∈ [0, T ] ητ

x is a
probability measure in ΓT for μ

η
τ -a.e. x ∈ Rd , we get (2).

Finally, let us show (3). Using Leibniz’s formula for differentiating integral functions we have:

d

dt

∫
Rd

ζ(x)dμt(x) = d

dt

∫
Rd

ζ(x)dμ
η
t (x) + d

dt

t∫
0

∫
Rd

∫
ΓT

ζ
(
γ (t)

)
dηs

x(γ )cs(x)dμs(x)ds

=
∫

Rd×ΓT

〈∇xζ
(
γ (t)

)
, vt

(
γ (t)

)〉
dη(x, γ )

+
t∫

0

∫
Rd

∫
ΓT

〈∇xζ
(
γ (t)

)
, vt

(
γ (t)

)〉
dηs

x(γ )cs(x)dμs(x)ds

+
∫
Rd

∫
ΓT

ζ
(
γ (t)

)
dηt

x(γ )ct (x)dμt(x)

=
∫
Rd

〈∇xζ(x), vt (x)
〉
dμt(x) +

∫
Rd

ζ(x)

( ∫
ΓT

dηt
x(γ )

)
ct (x)dμt(x),

then using again that μt � μ
η
t and that ηt

x(ΓT ) = 1 for μ
η
t -a.e. x, we get (3). �

Remark 4.2. Observe that in the case when Dx · vt (x) � Ld with a density divvt (x) ∈ L∞((0, T ) × Rd), taking
ct (x) := −divvt (x), Eq. (3.1) becomes,

∂tμt (x) + vt (x) · ∇xμt (x) = 0, (4.7)

and then Theorem 4.1 provides a probabilistic representation for positive measure-valued solutions of (4.7) of the
form μt = ωtL

d , with ω ∈ L1([0, T ];L1(Rd)). So, at this point, it would be interesting to understand to what extent a
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probabilistic representation for this kind solutions of (4.7) is still valid if we relax our hypothesis on the vector field v,
i.e. if divx vt (x) /∈ L∞((0, T ) × Rd) (and notice that it is necessary to have Dx · vt (x) � Ld to define the distribution
vt (x) · ∇xμt (x)), but this is still an open problem.

In the remaining part of this section we give a generalization of Theorem 4.1 (that we will apply in the proof of
Theorem 5.9) to measure-valued solutions of the transport equation that are only locally finite on Rd , but under the
additional assumption of boundedness on v.

Given a compact set K ⊂ Rd , we denote by Γ K
T ⊂ ΓT the set:

Γ K
T := {

γ ∈ ΓT : γ (0) ∈ K
}
.

Theorem 4.3. Let μt ∈ L∞([0, T ];M+(Rd)) be a locally narrowly continuous solution of the continuity equation:

∂tμt + Dx · (vtμt ) = ctμt in (0, T ) × Rd, (4.8)

for a suitable Borel vector field vt (x) = v(t, x) ∈ L∞((0, T ) × Rd;Rd) and a Borel bounded scalar function
ct (x) = c(t, x). Then there exists a positive measure η in Rd × ΓT that is finite on K × Γ K

T for any compact K ⊂ Rd

and such that

(i) η is concentrated on the set of γ ∈ ACp(0, T ;Rd) that are solutions of the ODE γ̇ (t) = vt (γ (t)) for L1-a.e.
t ∈ (0, T ) with γ (0) = x;

(ii) μs � μ
η
s for every s in [0, T ], and the measure μ

η
s is given by the disintegration theorem, i.e.

η =
∫
Rd

ηs
x dμη

s (x) with μη
s = (es)#η; (4.9)

(iii) for every t ∈ [0, T ], μt satisfies the following equality,

〈μt ,ϕ〉 = 〈
μ

η
t , ϕ

〉 +
t∫

0

( ∫
Rd

∫
ΓT

ϕ
(
γ (t)

)
dηs

x(γ )cs(x)dμs(x)

)
ds, (4.10)

for any test function ϕ ∈ C∞
c (Rd).

Conversely, any η satisfying (i), (ii) and

T∫
0

∫
K×Γ K

T

(∣∣vt

(
γ (t)

)∣∣ + ∣∣ct

(
γ (t)

)∣∣)dη(x, γ )dt < +∞, (4.11)

for any compact set K ⊂ Rd , induces via (4.10) a solution of (4.8), with μ0 = γ (0)#η.

We do not write down the proof, which develops along the same lines as in Theorem 4.1 with the obvious modifi-
cations, but observe that a suitable extension of Lemma 3.10 is necessary. We have to choose in the appropriate way
the kernel ρ which produces the mollifiers ρε , because in this case μt is only locally finite. First of all observe that we
need a kernel ρ > 0 so that μt ∗ ρε �= 0, because in the proof we define:

vε
t := (vtμt ) ∗ ρε

μt ∗ ρε

, cε
t := (ctμt ) ∗ ρε

μt ∗ ρε

,

furthermore we need a regularizing kernel (ρ ∈ C2(Rd) is enough) because in the proof we apply Proposition 3.6 to
με

t := μt ∗ρε . Let us spend a few lines in the description of such a ρ. Since we are supposing v ∈ L∞((0, T )×Rd ;Rd)

and μ ∈ L∞([0, T ];M+(Rd)), we can apply Lemma 2.11 of [4] so to deduce for any x ∈ Rd and any R ∈ R,

μt

(
BR(x)

)
� μ0

(
BR+Ct (x)

)
for a fixed t ∈ [0, T ], C = ‖v‖L∞((0,T )×Rd ),
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and then the local upper bound:

sup
t∈[0,T ]

μt

(
BR(x)

)
� μ0

(
BR+CT (x)

) := mR(x).

Fix now a function φ ∈ C2(Rd) such that φ > 0 in B1 and φ ≡ 0 in Rd \ B1, and take a countable covering of Rd

with balls of radius 1 fixed and centres {xN }N∈N. Set ρN(x) := φ(x − xN) and define ρ := ∑
N∈N

cNρN , where cN

are chosen so that
∞∑

N=1

cN

∫
Rd

ρN(x)dx =
∫
Rd

ρ(x)dx = 1,

and

‖ρ‖C2(Rd ) =
∞∑

N=1

m1(xN)cN‖ρn‖C2 = ‖φ‖C2

∞∑
N=1

m1(xN)cN < ∞.

Let us also observe that in this framework in which we handle locally-finite measures we have to replace the notions
of tightness and narrow convergence in Rd ×ΓT respectively with tightness in K ×Γ K

T for any compact set K ⊂ Rd ,
and local narrow convergence, where local means that in the definition of convergence (see Section 2) we consider
test-functions whose support is contained in K × ΓT , where K ⊂ Rd is compact.

5. Applications

In this section we intend to provide some applications for the theory of probabilistic solutions (see definition below)
developed in the previous part of the paper, and in particular we want to see how we can apply it to deduce uniqueness
results for solutions of the transport equation from uniqueness of the characteristics of v.

Let us give first a precise definition of what we intend for “probabilistic solution”.

Definition 5.1 (Probabilistic solutions). Let v be a Borel vector field and c a Borel bounded scalar function defined in
(0, T ) × Rd , and let μ = {μt }t∈[0,T ] be a family of measures with finite total variation that is a distributional solution
of:

∂tμt + Dx · (vtμt ) = ctμt in (0, T ) × Rd . (5.1)

Then, we say that μ is a probabilistic solution of (5.1) if there exists a measure η ∈ M(ΓT × Rd) such that

(i) η is representable as η = ∫
Rd ηx dμ0(x), with μ0 = (e0)#η and ηx � 0 for μ0-a.e. x;

(ii) μt can be represented in terms of η in the sense of Theorem 4.1.

Observe that, in the previous definition, in condition (i) the measures ηx are obtained from the measure η through
disintegration w.r.t. μ0, and the fundamental requirement is that ηx must be positive for μ0-a.e. x, while a priori no
hypothesis on the sign of μ0 is made. In this sense with Definition 5.1 we are giving an extension to “possibly signed”
measures μ of the notion of probabilistic solutions of (5.1), implicitly given for positive μ in Theorem 4.1.

For clarify, let us rewrite the direct implication of Theorem 4.1 in terms of Definition 5.1:

Theorem 5.2. Let μt : [0, T ] → M+
b (Rd) be a narrowly continuous solution of the continuity equation,

∂tμt + Dx · (vtμt ) = ctμt in (0, T ) × Rd, (5.2)

for a suitable Borel vector field vt (x) = v(t, x) and a Borel bounded scalar function ct (x) = c(t, x) satisfying:

T∫
0

∫
Rd

∣∣vt (x)
∣∣p dμt(x)dt < +∞ for some p � 1.

Then μ is a probabilistic solution of (5.2).
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Now as a first step we want to show the relationship between renormalized solutions and probabilistic solutions.
The theory of renormalized solutions has been first developed by Di Perna and Lions for vector fields with Sobolev
regularity, and only recently improved by Ambrosio for BV -vector fields, so we refer the reader to [19] and [3] and
the bibliography contained therein for a deep study of renormalized solutions, and we only recall the definition.

The definition below is not verbatim the definition of renormalized solutions that is given in [19] and [3], but the
reader can easily verify that it is just the same one noticing that, under the hypotheses of Definition 5.3, the distribution
v · ∇xμ (that is present in the definition given by Di Perna–Lions) is well defined as Dx · (vμ) − μdivx v.

Definition 5.3 (Renormalized solutions). Let v : [0, T ]×Rd → Rd be a Borel vector field such that Dx ·vt = divvtL
d

for L1-a.e. t ∈ (0, T ), with divv ∈ L1
loc

(
(0, T );L1

loc(R
d)). Let μ ∈ L∞((0, T );L∞(Rd)) such that

∫ T

0 |vt ||μt |dt <

+∞ and assume that ∂tμ + Dx · (vμ) ∈ L1
loc((0, T ) × Rd). Then, we say that μ is a renormalized solution of (5.1) if

∂tβ(μt ) + Dx · (β(μt )vt

) = −Lβ(μt )Dx · vt + β ′(μt )ctμt ∀β ∈ C1(R), (5.3)

with Lβ(s) = sβ ′(s) − β(s).

It has to be noticed that the definition of renormalized solution makes sense also when μ is not a distributional
solution, i.e. when μ is not locally summable, and in this case the notion of probabilistic solution has no meaning.
In the case when both notions make sense the next proposition points out a simple relationship between the two kind
of solutions: we consider the equation,

∂tμt + Dx · (vtμt ) = 0 in (0, T ) × Rd , (5.4)

and we are able to show that any distributional renormalized solution of (5.4) is also a probabilistic one. The contrary
is false in general (as we will discuss in Remark 5.5), and an interesting open problem is to understand under which
conditions in the class of distributional solutions of (5.4) we have the coincidence between the sets of renormalized
and probabilistic solutions.

Proposition 5.4. Let v be a vector field that satisfies the hypotheses of Definition 5.3 and of Theorem 4.1. Then any
distributional renormalized solution ω of (5.4) is also a probabilistic one (to be precise, μ = ωLd is a probabilistic
solution, according to Definition 5.1).

Proof. Let v be as in the statement, and take ω a renormalized distributional solution of (5.4). Then we can write
ω = ω+ − ω−, where ω+ and ω− are respectively the positive and the negative part of ω. Let us define βε(s) :=√

ε2 + (s+)2 − ε, and observe that for any ε > 0,

βε(s) ∈ C1(R), β ′
ε(s) ∈ [0,1] and Lβε(s) ∈ [0, ε].

Furthermore pointwise βε(s) → s+ as ε → 0, so if we pass to the limit as ε → 0 in (5.3) with βε instead of β , we can
deduce that ω+ is a renormalized (and then μ+ = ω+Ld a distributional) solution of (5.4), and the same holds for ω−
(taking βε(s) := √

ε2 + (s−)2 − ε and applying the same argument used for ω+). From their definition μ+ = ω+Ld

and μ− = ω−Ld are positive measure-valued solutions, so we can apply Theorem 4.1 to each one of them to find
η+ and η− such that for any test function ϕ,〈

μ+
t , ϕ

〉 = 〈(
μ+)η

t
, ϕ

〉
and

〈
μ−

t , ϕ
〉 = 〈(

μ−)η

t
, ϕ

〉
. (5.5)

Using the disintegration theorem we can write,

η+ =
∫
Rd

η+
x ω+

0 (x)dx and η− =
∫
Rd

η−
x ω−

0 (x)dx,

so, if we define,

η :=
∫
Rd

(
η+

x χ{ω+
0 �0}(x) + η−

x χ{ω−
0 >0}(x)

)
dLd(x), (5.6)

we can immediately realize that η � 0 and furthermore,
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∫
Rd

μtϕ dLd(x) =
∫
Rd

μ+
t ϕ dLd(x) −

∫
Rd

μ−
t ϕ dLd(x)

=
∫
Rd

∫
ΓT

ϕ
(
γ (t)

)
d
(
η+

x ω0(x) − η−
x ω0(x)

)
dLd(x)

= 〈
μ

η
t , ϕ

〉
.

The previous chain of equalities simply tells us that μ is a probabilistic solution that can be represented by the measure
η given by (5.6). �

Observe that for the non-homogeneous equation the argument used in the proof of the previous proposition does
not lead to the same conclusion.

Remark 5.5. Let us see now, with a simple argument, why we cannot expect that the contrary implication in Proposi-
tion 5.4 is true, i.e. why is false that every probabilistic solution of (5.4) is also a renormalized one. Indeed, suppose
for simplicity Dx · v = 0, and take a solution μ bounded from below. Then μ + k is still a solution for every constant
k, furthermore for k sufficiently large μ+ k is positive and then it has a probabilistic representation. If we suppose, by
contradiction, that any probabilistic solution is also a renormalized one, we can immediately deduce that μ + k and
then μ is a renormalized solution of our equation, while it is not generally true that any solution bounded from below,
even for a vector field with null divergence, has the renormalization property (see for instance the counterexample
built by Depauw in [18]).

In the following two theorems we will illustrate how to deduce uniqueness results for some classes of solutions
ω of the initial value problem for the homogeneous transport equation from the uniqueness of the characteristics of
v. When supposing the uniqueness of the characteristic curves associated to v we will always mean that there exists
a vector field ṽ Ld -equivalent to v, i.e. satisfying Ld({ṽt (x) �= vt (x)}) = 0, for L1-a.e. t ∈ (0, T ) and such that the
characteristic curves associated to ṽ are unique. Since we will consider distributional solutions, taking ṽ instead of v

in (3.15) does not affect the value of the solutions, but allows us to deduce uniqueness results for ω using the theory
developed in the previous section.

Theorem 5.6. Let v : [0, T ] × Rd → Rd be a Borel vector field satisfying the following conditions:

(i) Dx · vt = divx vtL
d for L1-a.e. t ∈ (0, T ) with divx v ∈ L1

loc((0, T );L1
loc(R

d)),
(ii) there exists a vector field ṽ for which Ld({ṽt (x) �= vt (x)}) = 0 for L1-a.e. t ∈ (0, T ), and such that for Ld -a.e.

x ∈ Rd , for all s there exists at most one characteristic curve X(t, s, x) in [0, T ] associated to ṽ.

Then, for any initial datum ω0 ∈ L∞(Rd), there exists at most one ω ∈ L∞([0, T ]; (L1 ∩ L∞)(Rd)) distributional
renormalized solution of,

∂tωt + Dx · (vtωt ) = 0 in (0, T ) × Rd, ω(0, ·) = ω0, (5.7)

and satisfying

T∫
0

∫
Rd

∣∣vt (x)
∣∣p∣∣ωt(x)

∣∣dx dt < +∞ for some p � 1.

Proof. Let v and ω be as in the statement of the theorem. We want to prove that ω, if exists, is unique.
By the proof of Proposition 5.4 we know that also ω+ and ω− are renormalized solutions of (5.7).

If η+ ∈ M+
b (Rd × ΓT ) is the measure associated to μ+ = ω+Ld by Theorem 4.1, by hypothesis (ii), we know

that for s ∈ (0, T ) holds (η+)sx = δX(·,s,x), where X(·, s, x) is the unique solution of:

Ẋ(t, s, x) = vt

(
X(t, s, x)

)
in (0, T ), X(s, s, x) = x.



S. Maniglia / J. Math. Pures Appl. 87 (2007) 601–626 623
So (4.3) for μ+ reduces to

μ+
t = (et )#η

+,

and this gives uniqueness for μ+ once we fix the initial value μ+
0 = ω+

0 Ld .
The same argument applied to μ− = ω−Ld gives uniqueness for μ−. So at the end we have also uniqueness for

μ = μ+ − μ−, and consequently for ω. �
Remark 5.7 (An open problem). A well known condition on v that guarantees existence and uniqueness of the charac-
teristics of v is the Osgood condition (see for instance [21] and [15]), and an interesting open problem is to understand
whether the Osgood condition implies the renormalization property, because this may lead to existence results under
the assumptions of Theorem 5.6.

In the next theorem we exhibit an existence and uniqueness result for the solutions of the Cauchy problem for
the homogeneous transport equation in divergence form in the class of possibly signed measure-valued solutions
absolutely continuous with respect to the Lebesgue measure. So to simplify the proof of this result we first prove an
auxiliary proposition in which we localize the problem, but this localization argument does not play a relevant role
from the conceptual point of view, indeed immediately after in Theorem 5.9 we explain how to extend the result to
the whole Rd .

Let Ω ⊂ Rd be a bounded domain with a C1 boundary. We look for distributional measure-valued solutions
μ = ωLd of,

∂tμt + Dx · (vtμt ) = 0 in (0, T ) × Ω, μ(0, ·) = μ0, (5.8)

where μ0 = ω0L
d with ω0 ∈ L∞(Ω) under the additional condition that vtωt has no flow on the boundary ∂Ω .

Observe that we can think both the vector field vt and the solutions ωt as defined in the whole space but
concentrated on Ω̄ . So, we may apply the global results of Theorem 4.1 in the proof of the next theorem, and we
are requiring the null-flow condition essentially because we want the distributional divergence of the vector field vt ,
for a fixed time t , to be a measure absolutely continuous with respect to the Lebesgue measure and without any con-
tribution arising from boundary components. In fact, the Gauss–Green formula for a Lipschitz vector field B on a
bounded domain Ω with C1-boundary says that

∫
Ω

Φ d(Dx · B) = ∫
Ω

〈B,∇Φ〉dLd + ∫
∂Ω

Φ(B · ν)dHd−1 for any
test function Φ , where ν is the outer normal on ∂Ω and Hd−1 is the Hausdorff measure on ∂Ω .

Proposition 5.8. Let Ω ⊂ Rd be a bounded domain with a C1 boundary. Let v : [0, T ]×Rd → Rd be a Borel bounded
vector field satisfying the following conditions:

(i) v(t, x) = 0 when x /∈ Ω ;
(ii) Dx · vt = divx vtL

d for L1-a.e. t ∈ (0, T ) with divx v ∈ L∞((0, T ) × Rd);
(iii) there exists a vector field ṽ for which Ld({ṽt (x) �= vt (x)}) = 0 for L1-a.e. t ∈ (0, T ), and such that for Ld -a.e.

x ∈ Rd , for all s there exists at most one characteristic curve X(t, s, x) in [0, T ] associated to ṽ.

Then for any ω0 ∈ L∞(Rd) with suppω0 ⊆ Ω , there exists at most one ω ∈ L∞([0, T ];L∞(Ω)) such that μ = ωLd

is a distributional solution of (5.8) and vtωt has no flow on the boundary ∂Ω .

Proof. Let μ = ωLd with ω ∈ L∞([0, T ];L∞(Ω)) be a distributional solution of the initial value problem (5.8) such
that vtωt has no flow on the boundary ∂Ω , then we have to prove that under the assumptions above ω is unique.

We can think that all the measures involved in our arguing are defined on the whole space but concentrated on Ω̄ ,
so we can apply the global results of the previous sections, and in particular Theorem 4.1.

We can write ωLd = ν1 − ν2, where

ν1 := 1

2

(
ωLd + ω∞

δ
τ

)
and ν2 := 1

2

(
ω∞
δ

τ − ωLd

)
,

ω∞ := ‖ω‖L∞, δ := e− ∫ T
0 ‖[divvs ]+‖∞ ds
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and τ � Ld is a solution of the transport equation such that its density τ̄ ∈ L∞([0, T ];L1(Ω)) and τ̄ � δ > 0. The
existence of such a solution τ in the case of a Lipschitz vector field v is given by formula (3.14), where we take
ρ(x) ≡ 1 (see Remark 3.8), and observe that from the same formula (3.14) we get the following estimate on τ :

e− ∫ t
0 ‖[divvs ]+‖∞ ds � τ̄t � e

∫ t
0 ‖[divvs ]−‖∞ ds . (5.9)

In our case we can find a suitable τ as a weak limit in the following way: we take a sequence (zn
t )n∈N of locally

Lipschitz (in the space variable) vector fields such that zn
t strongly converges to ṽt in L1

loc(R
d) for L1-a.e. t ∈ (0, T )

as n → +∞. Then we consider an increasing sequence of open sets Ωn ⊂ Ω such that Ld(Ω \ Ωn) → 0 when
n → +∞, and a sequence of Lipschitz functions Ψn such that Ψn ≡ 1 on Ω̄n and Ψn ≡ 0 on ∂Ω ∪ (Rn \ Ω). It comes
out that for any n ∈ N Ψnzn is a Lipschitz vector field equal to zero on ∂Ω , and furthermore the sequence Ψnzn still
strongly converges to ṽt in L1

loc(R
d) for L1-a.e. t ∈ (0, T ) as n → +∞.

We denote by τn the function given by (3.14) where ρ(x) ≡ 1 and with Xn (the unique characteristic curve associ-
ated to vn = Ψnzn) instead of X. Finally we choose τ to be the weak limit in the sense of distributions of the sequence
(τn) as n → +∞.

Observe that ν1 and ν2 are positive measure-valued solutions of the equation, so the uniqueness of the
characteristics implies (through the probabilistic representation, as we detailed discussed in the proof of Theorem 5.6)
separately uniqueness results for both ν1 and ν2 with the corresponding initial conditions, and then uniqueness for ω

with initial condition ω0. �
The results of Proposition 5.8 can be extended to Rd under the same assumptions on v, that is we can prove the

following theorem:

Theorem 5.9. Let v : [0, T ] × Rd → Rd be a Borel bounded vector field satisfying the following conditions:

(i) Dx · vt = divx vtL
d for L1-a.e. t ∈ (0, T ) with divx v ∈ L∞((0, T ) × Rd),

(ii) there exists a vector field ṽ for which Ld({ṽt (x) �= vt (x)}) = 0 for L1-a.e. t ∈ (0, T ), and such that for Ld -a.e.
x ∈ Rd , for all s there exists at most one characteristic curve X(t, s, x) in [0, T ] associated to ṽ.

Then for any ω0 ∈ L∞(Rd) there exists at most one ω ∈ L∞([0, T ];L∞(Rd)) such that μ = ωLd is a distributional
solution of :

∂tμt + Dx · (vtμt ) = 0 in (0, T ) × Rd , μ(0, ·) = μ0. (5.10)

The proof is just the same as the previous proposition, but we have to take care of the fact that a density
w ∈ L∞((0, T );L∞(Rd)) gives in Rd for a fixed time t a σ -finite measures wtL

d , then in this case in the proof
we will apply Theorem 4.3 instead of Theorem 4.1.

For completeness let us write a uniqueness statement like Theorem 5.6, but for non-negative measure-valued solu-
tions instead for renormalized solutions, whose proof easily follows as a simple application of Theorem 4.1.

Theorem 5.10. Let c be a Borel bounded scalar function defined in [0, T ] × Rd . Let v : [0, T ] × Rd → Rd be a Borel
vector field satisfying the following conditions:

(i) Dx · vt = divx vtL
d for L1-a.e. t ∈ (0, T ) with divx v ∈ L1

loc((0, T );L1
loc(R

d)),
(ii) there exists a vector field ṽ for which Ld({ṽt (x) �= vt (x)}) = 0 for L1-a.e. t ∈ (0, T ), and such that for all s

Ld -a.e. x ∈ Rd there exists at most one characteristic curve X(t, s, x) in [0, T ] associated to ṽ.

Then, for any initial datum μ0 ∈ M+
b , there exists at most one μ = {μt }t∈(0,T ) ⊂ M+

b narrowly continuous solution of

∂tμt + Dx · (vtμt ) = ctμt in (0, T ) × Rd

and satisfying
T∫ ∫

d

∣∣vt (x)
∣∣p dμt(x)dt < +∞ for some p � 1.
0 R
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Remark 5.11. At this point it may be useful a comparison between our uniqueness results given in Theorem 5.9
and uniqueness results proved by Bahouri and Chemin in [9]. As a byproduct of a uniqueness result within Besov
spaces, they are able to prove that if v ∈ L1

loc(R
+;LL(Rd)) is a divergence-free vector field, g ∈ L1

loc(R
+;M(Rd))

and μ0 ∈ M(Rd), then there exists a unique solution μ ∈ L∞
loc(R

+;M(Rd)) of

∂tμt + Dx · (vtμt ) = g in R+ × Rd, μ(0, ·) = μ0. (5.11)

Let us recall that the Log-Lipschitz regularity is a particular case of the Osgood condition. To be precise, the space of
Log-Lipschitz functions LL(Rd) is the space of bounded functions u on Rd such that

‖u‖LL(Rd ) := ‖u‖L∞(Rd ) + sup
0<|x−y|�1

|u(x) − u(y)|
|x − y|(1 − log |x − y|) < +∞.

If we suppose that μ1 and μ2 are two solutions of (5.11), then μ1 − μ2 solves,

∂tμt + Dx · (vtμt ) = 0 in R+ × Rd , μ(0, ·) = 0,

and for solutions of the initial value problem above both uniqueness results of Theorem 5.8 and of Bahouri and Chemin
are available. The result of Bahouri and Chemin is stronger in the sense that is within the class L∞

loc(R
+;M(Rd))

without further restrictions, but the hypotheses on v are also stronger. Indeed, in Theorem 5.8, first we are supposing
less than the divergence-free assumption on v (because we require only that Dx · vt = divvtL

d for L1-a.e. t ∈ (0, T ),
with divx v ∈ L∞((0, T ) × Rd)), and second (in hypotheses (ii)) we are also supposing less than the Log-Lipschitz
regularity.
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