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Abstract This paper is a report on a research into the impact of different parameters of current

density, anode type, temperature, pH, and electrolyte concentration on the removal of Reactive

Red 120 in synthesized wastewater through electrocoagulation using solar energy for the purpose

of improving economic efficiency of the process. Current density of 45 Am�2 proved to be optimum

level for dye removal. Other optimum alternatives were iron anode, a temperature level of 25 �C, a
pH of 7, and an electrolyte concentration of 15 mg L�1. The characterization of the post-treatment

product using GC–MS studies revealed intermediate compounds. Cost analysis was also performed

for the treatment process. Further, the obtained optimum conditions were applied to the treatment

of six samples of real textile effluent. Electrocoagulation was satisfactory in only four of the cases.

Lastly, efficiency of treating the real samples was evaluated by subjecting the experimental

electrodes to the SEM technique.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The dye stuff lost in the textile industry poses a major problem

to wastewater sources [14,21]. Indeed, textile industry produces
high levels of dye and floating solid materials [17]. It is esti-
mated that 5000 tons of dyeing materials are discharged into
the environment every year. These poisonous materials absorb

the oxygen of the water [15,20]. This has raised much as it
threatens human life and the environment. Industrial wastewa-
ters contain various kinds of toxic substances such as cyanides,

alkaline cleaning agents, degreasing solvents, oil, fat, and
metals [3]. Common ways of wastewater treatment include
adsorption, sedimentation, chemical analysis, chemicoagula-
tion, biological methods, and advanced oxidation procedures

[3–5]. However, these approaches are not without their disad-
vantages. Biological methods, for example, take much time
and cannot degrade complicated dyes [5]. In addition, some

commercial dyes are harmful to some microorganisms [16].
Furthermore, absorbents are not reusable in general [5].
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Chemiocoagulation even causes pollution due to the produc-
tion of colloids in wastewater [3]. Common chemical oxidation
like using chlorine is slow and needs reactive materials which

are dangerous to transport and store [6]. Another problem is
that these methods are not efficient enough because there are
various materials in wastewater [4]. Advanced oxidation meth-

ods such as ozonation, photocatalyst, and photo fenton are
costly and uneconomical [5]. Therefore, there is a need for
more effective and cheaper ways of treating textile wastewater

which consume the smallest amounts of chemicals and energy.
Research into wastewater treatment has focused on electro-

chemical coagulation over the past few years [1,4,9]. Electroco-
agulation provides some significant advantages such as simple

equipment, easy operation, small retention time, high veloci-
ties, reduced amount of sludge, and no chemical additives
[11]. Electrocoagulation is an electrochemical technique in

which particles generated by the anode combine to free active
coagulation factors in the solution. Metal ions are generated in
anodes, and hydrogen is produced in cathodes [8]. Hydrogen

can help mass particles float and come out of water [22]. The
resulting metal ions, i.e. Al3+(ag) and Fe3+(ag), undergo some
reactions to produce hydroxide or polyhydroxide, which

strongly absorb dispersed compound molecules and result in
coagulation [10].

In the present research, synthesized wastewater and real
textile effluents were subjected to the process of electrocoagu-

lation in order to explore the impact of a number of operating
parameters on the efficiency of removing a reactive dye. The
parameters were current density, anode type, temperature,

pH, and electrolyte concentration. It should be noted at this
point that we used solar energy for the purpose of improving
the economic efficiency of the process. Indeed, our review of

the previous research showed us no instance of solar energy
being used in electrocoagulation. Cost analysis was also per-
formed for the treatment process. Further, in order to evaluate

the efficiency of the electrocoagulation process, the experimen-
tal electrodes were characterized using the SEM technique.
The post-treatment product was characterized using GC–MS
techniques.

2. Experiment

2.1. Materials and equipment

The solution was prepared by pouring Reactive Red 120 ob-

tained from the Iranian company of Alvan Sabet into doubly
distilled water. To test the proposed electrocoagulation treat-
ment, we used a sample of real textile wastewater obtained
Table 1 Properties of the real wastewater

used.

Property Range

pH 8.27–9.71

Current density Am�2 10–75

COD (mg dm�3) 267–714

BOD5 (mg dm�3) 143

TSS (mg dm�3) 73–328

TS (mg dm�3) 1797–5709

Fe (mg dm�3) 0.31–1.43

Zn (mg dm�3) 0.01–0.16
from a local textile dyeing factory. This wastewater contained
a mixture of dyes, iron, and zinc. The properties of the real
wastewater are presented in Table 1.

NaOH and HCl (used to adjust the pH of the wastewater)
and NaCl were purchased from the German company of
Merck. NaCl is minimally poisonous, reasonably priced, and

highly conductive and soluble, and it has very little impact
on pH. The solar cell was purchased from PTL Solar (Ger-
many). In addition, the solar cell battery was obtained from

Faran Electronic Industries (a manufacturer in Tehran, Iran).
A rheostat controlled the electrical current provided by the
battery. The electrochemical characteristics of the reactor used
in the experiment can be seen in Table 2.
2.2. Procedure

The synthetic wastewater was prepared by dissolving
150 mg L�1 of dye into distilled water. This particular choice
was made because it was the optimum concentration at which

the reactor could maximally degrade the dye with regard to the
operating conditions applied.

Five different levels of current density were applied (15, 25,

35, 45, and 75 Am�2) in order to determine which level leads to
the highest efficiency of color removal. Four anode types were
compared in terms of their effect on the efficiency of dye

removal and energy consumption: iron, aluminum, a combina-
tion of iron and aluminum, and titanium. To determine the
effect of temperature on the removal of dye from the
experimental wastewater, five degrees of temperature were

considered: 15, 25, 35, 45, and 55 �C. To accomplish this, the
reactor was placed in a water bath. The effect of pH was
studied by setting the pH of the wastewater at ten values:

acidic (pH 2–6), neutral (pH 7), and alkaline (pH 9–11). The
pH was adjusted with NaOH and HCl. The influence of
salinity was studied using NaCl at four concentrations: 5, 1,

and 15 mg L�1. Before each run of the experiment, the elec-
trodes were first washed thoroughly with tap water, dipped
in HCl solution for at least 15 min, and then washed with pure

water. One liter of dye solution was poured into the reactor.
The electrodes were immersed in the solution and connected
to the DC power supply. The treatment time was for 15 min.
To ensure uniformity, the solution was magnetically stirred

at 200 rpm during electrocoagulation. Samples were taken
from the solution every two minutes and were put inside a
UV–Vis spectrophotometer cell in order to measure the maxi-

mum absorption of wavelength for the dye. An absorbance
value at 530 nm was used to measure dye concentrations.
The dye removal efficiency, R%, was expressed as a percentage

as follows (Eq. (1)):

ð%Þ R ¼ C� C0

C0

� 100 ð1Þ

where C0 and C are the initial and final dye concentration,
respectively. The amount of energy consumed by the process
of electrocoagulation, denoted by EEC and expressed in

kWh/m3 wastewater, was calculated through Eq. (2) [18]:

EEC ¼ ðU:I:tÞ
v

ð2Þ

where U is the operating voltage (volt), I is the operating cur-
rent (in amperes), t is the length of reaction (in seconds), and v



Table 2 Properties of the electrochemical reactor used.

Property Description

Dimensions (mm) 70 · 80 · 290

Volume (L) 1

Material Glass

Anode Iron (Fe), aluminum (Al), titanium (Ti)

Cathode Titanium (Ti)

Electrode thickness (mm) 2

Electrode size (mm) 30 · 180

Electrode arrangement Parallel

Electrode gap (mm) 10

Current range (A) 0–18

Voltage range (V) 0–75
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is the volume of wastewater (m3). The process of electrocoag-
ulation was also performed on samples of real textile effluent.

3. Results and discussion

3.1. The effect of current density on the removal of Reactive Red
120

The strong ability of iron and aluminum as anodes to re-
move contaminants may be explained as follows: during
electrocoagulation, metal hydroxides are formed, Fig. 1.

These flocs have a large surface area and as a result can rap-
idly adsorb dye polymers and trap colloidal particles. These
flocs can easily be removed from the aqueous solution by

means of sedimentation or flotation. The monomeric and
polymeric hydroxyl complexes can remove contaminants
thank to their high oxidative potentials [13]. In addition, if

the iron and aluminum potential is sufficiently high, other
reactions such as direct oxidation of organic compounds
may take place at the anode [7].

The polynuclear hydrolytic species of Al and Fe, when pro-

duced in large numbers, are very good coagulants for forming
flocs. Hydrolysis of Al and Fe ions leads to the formation of
large networks (e.g. Al–O–Al–OH) capable of chemically

absorbing contaminants [10].
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Figure 1 The removal efficiency of Reactive Red 120 as a function o

(b) aluminum anode (distance between electrodes: 10 mm, electrode su
It is also worthy of note at this point that the formation of
metal hydroxides results in electrode mass loss [2]. The follow-
ing mechanism [23] has been proposed for the production of

metal hydroxides when iron electrode is used as anodes:

Fe ! Fe2þ þ2e� Anode ð3Þ
2H2Oþ2e� ! H2þ2OH� Cathode ð4Þ
Fe2þ þ2OH� ! Fe ðOHÞ2 In bulk solution ð5Þ
Fe2þ þ5H2Oþ1=2O2 ! 2FeðOHÞ3þ4Hþ

In bulk solution ð6Þ
Fe3þ þ3OH� ! Fe ðOHÞ3 In bulk solution ð7Þ
Fe ðOHÞnþdye ! remove contaminants In bulk solution ð8Þ

A similar mechanism [12] has been proposed for the case of
aluminum anode:

Al ! Al3þþ3e� Anode ð9Þ
2H2O ! O2ðgÞ þ4Hþ þ4e� Cathode ð10Þ
3H2Oþ3e� ! 3=2H2þ3OH� ð11Þ
2Alþ6H2Oþ2OH� ! 2AlðOHÞ�4 þ3H2ðgÞ

In bulk solution ð12Þ
nAlðOHÞ3 ! AlnðOHÞ3n In bulk solution ð13Þ
AlnðOHÞ3nþdye ! remove contaminants In bulk solution ð14Þ

Fig. 1a depicts the efficiency of removing Reactive Red 120
using the electrochemical reactor with iron and titanium as an-
ode and cathode, respectively. At the current densities of 35,

45, and 75 Am�2, a high efficiency of dye removal was ob-
tained after 3 min of electrocoagulation. Dye removal reached
higher than 97% after 5 min. With the current density of

25 Am�2, this amount of dye removal was achieved at a longer
time (13 min). At 15 Am�2 current density, dye removal re-
mained below 75% at all electrocoagulation times. The exper-
iment was rerun with aluminum used as anode. As Fig. 1b

shows, aluminum resulted in a similar, but to some extent low-
er, dye removal. This was especially so at an electrocoagulation
time of less than one minute.

3.1.2. The effect of anode type on the removal of Reactive Red
120

Fig. 2a compares the four anode types of iron, aluminum,

iron-aluminum combination, and titanium in terms of the
magnitude of dye removal. In this run of the experiment, a
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Figure 2 (a) The removal efficiency of Reactive Red 120 as a function of anode type and electrocoagulation time, (b) Energy

consumption for the treatment of dye as a function of anode type and electrocoagulation time (current density: 75 Am�2, distance between

electrodes: 10 mm, electrode surface area: 30 · 180 mm, temperature: 25 �C, pH: 7).
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Figure 3 (a) The removal efficiency of reactive Red 120 as a function of temperature at a current density 75 Am�2 with an anode iron,

(b) Energy consumption, (current density: 75 Am�2, anode type: iron, distance between electrodes: 10 mm, electrode surface area:

30 · 180 mm temperature: 25 �C, pH: 7).
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Figure 4 (a) The influence of initial pH on the removal efficiency of Reactive Red 120 by electrocoagulation, (b) The evolution of pH

with time in removing Reactive Red 120 by electrocoagulation (current density: 75 Am�2, anode type: iron, distance between electrodes:

10 mm, electrode surface area: 30 · 180 mm, temperature: 25 �C).
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Figure 5 The effect of electrolyte concentration on the removal

efficiency of Reactive Red 120 by electrocoagulation (current

density: 75 Am�2, anode type: iron, distance between electrodes:

10 mm, electrode surface area: 30 · 180 mm, temperature: 25 �C,
pH: 7).
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current density of 75 Am�2 was applied, and the cathode was
titanium. The highest removal efficiency was obtained in the
case of iron: around 90% after 5 min and 96% after 15 min

of electrocoagulation. The lowest degree of dye removal was
obtained when titanium anode was used: an efficiency of
59% after 15 min. This can be explained by the fact that metal

hydroxide was not formed.
Fig. 2b presents a comparison of the four anode types in

terms of the amount of energy they consumed in the process
Figure 6 SEM images of experimental electrodes: (a) pre-treatment

(d) post-treatment iron, (e) pre-treatment titanium, (f) post-treatment
of removing Reactive Red 120 from the aqueous solution. A
current density of 75 Am�2 was applied. As can be observed,
the iron anode required the lowest level of energy, ranging

1.7–4 kWh/m3 of wastewater. Also, titanium consumed the
largest amount of energy: 4–6.6 kWh/m3 of wastewater. An
explanation is that when titanium anode is used, metal hydrox-

ide is not formed, and this increases electrical resistance, result-
ing in greater energy consumption.

3.1.3. The effect of temperature on the removal of Reactive Red
120

Fig. 3a displays the impact of five levels of temperature on the
efficiency of dye removal (namely 15, 25, 35, 45, and 55 �C) at
a current density of 75 Am�2 with an anode iron. The best
temperature for dye removal was 25 �C. The difference
between the temperature levels was minimal. As for energy

consumption, 25 �C proved to be the best level of temperature.
Fig. 3b shows this. An explanation is that as the temperature
increases, ion movement also increases, and this in turn re-
duces the possibility of metal hydroxide groups being formed.

This fact increases energy consumption and reduces the
efficiency of dye removal. The temperature level and removal
efficiency were found to be inversely related. An explanation

is that the rise in the temperature of the solution speeds up
the chemical reactions. This leaves less time for the formation
of metal hydroxides such as FeOH2+, FeðOHÞþ2 , FeðOHÞ4þ2 ,

FeðOHÞ�4 , AlðOHÞþ2 , AlðOHÞ�4 , Al2(OH)4+2, and Al6(OH)3+15

[12,7]. This in turn reduces the potential of these flocs and
decreases the removal of dye.
aluminum, (b) post-treatment aluminum, (c) pre-treatment iron,

titanium.
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3.1.4. The effect of pH on the removal of Reactive Red 120

Maximum dye removal was obtained when the solution had a

pH of 7 (Fig. 4a). A possible explanation is that in acidic and
neutral conditions, Fe(OH)+2 is formed, but in alkaline
conditions, Fe(OH)+4 occurs [19]. Indeed, Fe(OH)+2 is more

capable than Fe(OH)+4 of absorbing dyes. An increase in
the pH of the aqueous solution was also observed here.
Fig. 4b gives a schematic representation. The initial pH of 2

rose to 4 after 2 min and continued to increase, ultimately
reaching 7 after 15 min. Interestingly, although the samples
had different initial pH levels, they became similarly alkaline
(a pH of 7–12) after 15 min of electrocoagulation.

3.1.5. The effect of salinity on the removal of Reactive Red 120

Fig. 5 portrays the effect of different concentrations of NaCl

as electrolyte (5, 10, and 1.5 mg L�1) on the removal of
Reactive Red 120 from the synthesized wastewater through
the process of electrocoagulation. The removal efficiency im-
Figure 7 Proposed pathway of React
proves as NaCl concentration increases. The concentration
level of 15 mg L�1 again proved optimum. The explanation
given above for the effect of salinity holds true in this case

as well.

3.2. Electrode characterization

The efficiency of the treatment was evaluated by studying the
surface characteristics of the experimental electrodes using a
scanning electron microscope (SEM) unit (HITACHI-3000 SH

Model, Japan). Fig. 6 shows the pre- and post-treatment surface
characteristics of the three electrodes used in the experiment.

3.3. GC–MS analysis

To identify the intermediate products formed during the EC
treatment of Reactive Red 120, GC–MS analysis was performed.
From these results, a pathway can be proposed for the degrada-
ive Red 120 degradation under EC.



Table 3 Properties of the real textile effluent before and after electrocoagulation.

Property Expt. 1 Expt. 2 Expt. 3 Expt. 4 Expt. 5 Expt. 6

Before/After Before/After Before/After Before/After Before/After Before/After

Dye removal (%) 93.8 95.5 94.2 96.7 55.3 63.4

pH 9.5/9.6 8.4/9.3 8.3/9.7 9.1/8.5 9.3/9.5 8.9/9.5

Energy Consumption 0.57 0.65 0.83 0.70 0.81 0.79

(kWhm-3) 428/70 439/55 389/222 683/132 766/377 440/89

COD* (mg dm�3) 4054/891 4864/1032 5877/598 6695/462 2042/1261 1772/1823

TS** (mg dm�3) 402/15 381/24 398/21 377/19 327/16 212/53

TSS*** (mg dm�3) 1.10/1.02 0.69/0.32 1.66/0.29 1.73/0.17 0.66/1.14 1.71/0.97

* COD: chemical oxygen demand.
** TS: total solids.
*** TSS: total suspended solids.
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tion of the dye (Fig. 7). To explain the process, the metal
hydroxides attacked the carbon atom bearing the dye leakage,

leading to cleavage of the C–N bond and the generation of
2-Aminobenzenesulfonic acid (m/z 27), and 3-Amino-5 [(4-ami-
no-6-chloro-1,3,5-triazin-2-yl)amino]-4-hydroxyn aphathalene-

2-sulfonic acidmethanethiol (m/z 465). Themain transformation
products were 3-amino-4-hydroxynaphthalene-2–7-disulfonic
acid (m/z 320), 6-chloro-1,3,5-triazine-2,4-diamine(m/z 146),
and 2-naphthalenol (m/z 144). If the ECprocess continues, these

organic compounds will change into CO2 and H2O.

3.4. Economic analysis

Cost analysis was done for the treatment process. To this end,
the costs of energy and electrolyte material were taken into
consideration as major cost items. The operating cost was cal-

culated using Eq. (3) below [12].

Operating cost ðUSD=m3Þ ¼ aENCþ bCC ð3Þ

where ENC is the energy consumption (kWh/m3) and CC is

the chemical consumption (kg/m3). The letters a and b are unit
prices for the Iranian market in December 2012, as follows: (a)
electrical energy: 0.042 USD/kWh and (b) electrolyte (NaCl):
5.70 USD/kg. The cost of electrical energy was calculated

using Eq. (2). In this study, treating 1 m3 of the synthesized
aqueous solution containing both dyes under the optimum
conditions obtained from the earlier runs of the experiment

consumed 3.48 kWh/m3 of energy and 15 mg L�1 of NaCl. Gi-
ven these data, the operating cost was calculated to be
1.86 USD/m3. However, it should be noted that we paid no

money for the electrical energy consumed during the treatment
as this energy was supplied by solar cell. This means 15% off
the total costs.

3.5. Electrocoagulation of real textile effluent

The process of electrocoagulation was also applied to six
samples of real textile effluent. The experiment was carried

out at a current density of 75 Am�2. The surface area of each
electrode was 30 · 180 mm. The electrodes were placed at a
distance of 10 mm from each other. The temperature was set

to 25 �C. Iron and titanium were used as the anode and cath-
ode, respectively. NaCl was used as the electrolyte.

Table 3 gives the features of each sample before and after

the process of electrocoagulation. The dye removal efficiency
was satisfactory in only four of the cases. This inconsistency
shows that the experiment parameters were not sufficiently

conducive to the degradation of dye molecules in the real
textile wastewater. Another reason may be the presence of par-
ticles which interfere with the electrocoagulation process.
4. Conclusion

This study was an investigation into the impact of current

density, anode type, temperature, pH, and salinity on the re-
moval of Reactive Red 120 from synthesized wastewater.
Regarding current density, 45 Am�2 turned out to be optimum
level. The levels of 25 and 35 Am�2 were also effective, but

they resulted in a longer electrocoagulation time. The other
optimum alternatives were iron anode, a temperature level of
25 �C, a pH of 7, and an electrolyte concentration of

15 mg L�1. Cost analysis was also done for the treatment pro-
cess. Additionally, the application of the obtained optimum
parameters to the treatment of samples of real textile effluent

did not give consistent results. The post-treatment product
was characterized using GC–MS studies. This indicates that
dye removal is more complicated in the case of real effluent

than with synthesized wastewater. On the whole, the findings
of this work can be applied to treating industrial wastewater
although further research should increase our understanding
of various aspects of the problem.
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