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ABSTRACT

Objectives: Losses to follow-up and administrative censoring
can cloud the interpretation of trial-based economic evalua-
tions. A number of investigators have examined the impact of
different levels of adjustment for censoring, including nonad-
justment, adjustment of effects only, and adjustment for both
costs and effects. Nevertheless, there is a lack of research on
the impact of censoring on decision-making. The objective of
this study was to estimate the impact of adjustment for
censoring on the interpretation of cost-effectiveness results
and expected value of perfect information (EVPI), using a
trial-based analysis that compared rate- and rhythm-control
treatments for persons with atrial fibrillation.
Methods: Three different levels of adjustment for censoring
were examined: no censoring of cost and effects, censoring of
effects only, and censoring of both costs and effects. In each
case, bootstrapping was used to estimate the uncertainty in

costs and effects, and the EVPI was calculated to determine
the potential worth of further research.
Results: Censoring did not impact the adoption decision.
Nevertheless, this was not the case for the decision uncer-
tainty or the EVPI. For a threshold of $50,000 per life-year,
the EVPI varied between $626,000 (partial censoring) to
$117 million (full censoring) for the eligible US population.
Conclusions: The level of adjustment for censoring in trial-
based cost-effectiveness analyses can impact on the decisions
to fund a new technology and to devote resources for further
research. Only when censoring is taken into account for
both costs and effects are these decisions appropriately
addressed.
Keywords: censoring, cost-effectiveness acceptability curves,
cost-effectiveness analysis, economic evaluation, expected
value of perfect information, Kaplan-Meier survival analysis.

Introduction

One of the major challenges faced by decision-makers
in all (budget-constrained) health-care systems is the
choice between alternative interventions for the same
medical indication. Increasingly these decisions are
being guided by economic evidence, including results
of cost-effectiveness studies. Inevitably, the estimates of
the costs and effects involve some uncertainty because
of measurement, sampling, and random errors. This
leads to a situation in which decision-makers must
address two decisions: the first involves identifying the
most appropriate method of patient management to
fund given the current level of information and uncer-
tainty, and the second involves funding additional

research to reduce the uncertainty in the future [1]. A
formal framework exists to address these two separate
but related decisions [1–3]. Given the objective to
maximize health benefit subject to a budget constraint,
the appropriate method of patient management is
identified, within this framework, according to the
expected cost-effectiveness of the interventions (i.e.,
the point estimate), irrespective of the uncertainty sur-
rounding the estimate [1]. The second decision, that of
whether to fund more research, involves an assessment
and valuation of the uncertainty surrounding the
decision [1].

Prospective collection of patient-level cost data
within randomized controlled trials is one approach
to obtain the information needed to estimate cost-
effectiveness. In the majority of trials, however, these
data are incomplete as a result of censoring and this
needs to be accounted for in the cost-effectiveness
analysis [4]. In this situation, the estimation of the
expected costs and effects from the sample becomes
more involved with implications for the cost-
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effectiveness analysis. Investigators have examined the
impact of different levels of adjustment for censoring,
ranging from nonadjustment, through adjustment of
effects alone or costs alone, to adjustment for both
costs and effects (see Young [4] for a comprehensive
review and description of approaches for accounting
for censored costs). Nevertheless, there is a lack of
research on the impact of these adjustments for cen-
soring on the measure of uncertainty and the decision
to fund more research.

This article examines the impact of not adjusting for
censoring versus adjusting for censoring of effects
alone and adjusting for censoring of both effects
and costs, on health-care decision-making in terms of
the optimal intervention to adopt and whether to fund
the collection of additional information. This is dem-
onstrated using patient-level data from a trial-based
cost-effectiveness analysis comparing rate-control
to rhythm-control treatment for atrial fibrillation
(AFFIRM) [5].

Background

Health-Care Decision-Making and
Cost-Effectiveness Analysis
Cost-effectiveness is increasingly one of the criteria
that are being used to guide adoption choices be-
tween alternative health-care interventions. Such
cost-effectiveness analyses enumerate the additional
resources consumed for an improvement in outcome
(e.g., survival or quality-adjusted life-years) associated
with one health intervention compared to another.
This is expressed as an incremental cost-effectiveness
ratio (ICER)––a measure of the additional cost per
additional unit of health gain. For example, for a com-
parison of rate-control versus rhythm-control manage-
ment for patients with atrial fibrillation, the ICER
would be calculated as:

ICER
Mean cost Mean cost

Mean surviv
rate-control rhythm-control=

−
aal

Mean survival
rate-control

rhythm-control

−

To decide whether an intervention offers “good”
value for money compared to the alternative, the ICER
must be compared to a specified monetary threshold.
This threshold represents the maximum amount that
the decision-maker is willing to pay for one unit of
additional health benefit (cost-effectiveness threshold).
The intervention is considered cost-effective if the
ICER falls below this threshold, and otherwise, it is
not considered cost-effective.

By explicitly incorporating this threshold, the deci-
sion payoffs (costs and effects) can be combined to
form a measure of net monetary benefit (NB) for each
intervention (t) [1–3,6–8]:

NB cost-effectiveness threshold

health benefit Costt

= (
) −

×

Now the cost-effective intervention is identified as
the one associated with the maximum value of NB.
The NB approach simplifies the assessment of cost-
effectiveness when the decision involves more than two
interventions, or when stochastic analyses are under-
taken. In addition, the use of net benefits has been
suggested to simplify the assessment of uncertainty
[9–11].

Inevitably, the estimates of effectiveness and the
resources consumed by the interventions are measured
with uncertainty. As such, the costs, effects, and any
estimate of the cost-effectiveness (ICER or NB) asso-
ciated with interventions will also be uncertain. When
trial data are available, bootstrapping methods are
useful for generating the distribution of estimators,
especially when the derivation of their distribution is
intractable. This provides an estimate of the extent of
the uncertainty surrounding the costs and effects
individually. The uncertainty surrounding cost-
effectiveness is dependent upon the specified amount
that a decision-maker is willing to pay for a gain in
effect. This uncertainty can be plotted as a function of
this threshold on a cost-effectiveness acceptability
curve as the, essentially Bayesian, probability that the
intervention is cost-effective [12–15].

In a health-care system with the objective to maxi-
mize health benefit subject to the budget constraint,
interventions should be selected on the basis of the
expected costs, outcomes, and cost-effectiveness, rather
than measures of uncertainty [1–3]. It is when consid-
ering the second decision faced by the decision-maker,
that of whether to fund the collection of additional
information through research, that the uncertainty sur-
rounding the costs, effects, and cost-effectiveness is
important [1–3]. At this point, the finite probability that
the decision is incorrect (or error probability, given as
the complement of the cost-effectiveness acceptability
curve) and the consequences of an incorrect decision, in
terms of opportunity costs, play a crucial role [3].
Bayesian value-of-information analysis provides a
method to assess the expected opportunity losses asso-
ciated with the existing (uncertain) evidence base, to
determine whether further research should be con-
ducted and how this should be designed [2,3]. The
techniques involve establishing the difference between
the expected value of a decision made on the basis of the
existing evidence and the expected value of a decision
made on the basis of further information [16]. This
difference is then compared to the cost of collecting the
additional evidence; where the value of further infor-
mation exceeds the costs of collecting it, the research is
deemed worthwhile [1].

Perfect information surrounding all elements of the
decision would, by definition, eliminate all uncertainty.
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The expected value of perfect information (EVPI) is
therefore equivalent to the expected cost of the current
uncertainty surrounding the decision and provides a
measure of the maximum return to further research;
providing a necessary condition for determining
whether further research is potentially worthwhile. See
Claxton and colleagues [1–3] and Ades et al. [16] for
more details on value-of-information analysis.

Censoring
In most trials, some proportion of the patient sample
will drop out of the study or be lost to follow-up,
leaving the data incomplete at the time of study termi-
nation. In trials with mortality as the end point, data
from patients who are alive at the end of follow-up or
who are lost during the study are considered “right
censored” [17]. All that is known for censored patients
is that their survival is longer than the follow-up time
in the trial. If no adjustment is made for censoring,
survival times will be underestimated and the estimate
of survival will be biased. Kaplan-Meier survivor curve
[18] and Cox regression [19] methods are accepted as
the standard approaches for estimation adjusting from
right-censored survival data. These traditional non-
parametric approaches assume that censoring is com-
pletely random and independent of the risk of event
under observation (i.e., death) at any time [17,20].

Similarly, censoring can lead to biased estimates of
trial-based costs unless appropriately accounted for in
the analysis. If data from all patients (both censored
and uncensored) are used to estimate mean costs, these
will be underestimated because they will exclude all
potential costs that might have been incurred by sub-
jects after they are censored. If data from only uncen-
sored patients (i.e., those observed to die during the
study) are used, the estimates will be biased toward
cost estimates of patients with shorter survival times,
because patients with longer survival times are more
likely to be censored [21].

Previous approaches to adjust cost estimates for
censoring have been based on the application of sur-
vival analysis techniques to cost data [22]. These
approaches treated patient costs as survival times but
failed to recognize that cost data typically violate the
assumption of independent censoring. This violation
occurs because patients accrue costs at different rates,
with patients in better health accruing costs at lower
rates than those in worse health [23]. To address the
issue of dependent censoring with cost data, Lin et al.
[21] and Etzioni et al. [24] presented the Kaplan-Meier
sample average (KMSA) estimator. In the KMSA esti-
mator, the duration of the study is partitioned into a
number of time intervals. For each time interval, the
mean cost for all patients who are noncensored at the
start of the interval is multiplied by the probability of
survival during the period as calculated at the begin-
ning of the period. These products are summed over

all time intervals to produce an estimate of total
censoring-adjusted costs. This approach has been
shown to provide consistent estimators of average
costs that are asymptotically normal under the
assumption that censoring occurred at the boundaries
of the defined time intervals [21,25–29].

Methods

Data Source
Data for this study were from the clinical and
cost-effectiveness analyses of the Atrial Fibrillation
Follow-up Investigation of Rhythm Management
(AFFIRM) trial, and salient features are summarized
below [5,30–32]. The objective of AFFIRM was to
compare the effectiveness of rate-control versus
rhythm-control in patients with atrial fibrillation and
having one or more risk factors for stroke or death
[5,30]. The study sample of 4060 patients was similar
to the target population (61% men with a mean age of
69.7 years) with associated cardiovascular comorbid
conditions. The primary outcome was survival time,
with follow-up reported for 97.6% of patients (71
withdrew consent and 26 had unknown vital status at
termination). Only 16% died during follow-up, which
averaged 3.5 years; therefore, 84% of the sample was
censored.

Health-care resource use considered in the cost-
effectiveness analysis included hospitalizations, cardiac
procedures, electric or chemical cardioversion, short-
stay and emergency department visits, and medications
used to treat atrial fibrillation. The perspective
adopted was that of a third-party payer [5]. The
patient cost was calculated by multiplying each health-
care resource use component by the unit cost (obtained
from multiple publicly available sources) and summing
the results for each patient. The mean cost was calcu-
lated across all patients. Future costs and effects were
discounted to their present value at a rate of 3%
per annum [33,34]. The cost-effectiveness analysis
reported a nonsignificant mean survival gain (0.08-
year survival gain, 95% confidence interval [CI] -0.02
to 0.17 years; P = 0.10) and lower mean cost (-$5077,
95% CI –$7423 to –$2801) for rate-control subjects.
Rhythm-control was both more costly and less effec-
tive than (i.e., dominated by) rate-control and, as such,
no ICER was calculated [35].

Data analysis
The incremental costs, survival, and ICER (measured
as the cost per life-year gained) of rate- versus rhythm-
control strategy were estimated for three scenarios that
differed in the level of adjustment for censoring.

No adjustment for censoring in either costs or
survival. The number of life-years for each subject was
estimated to be equal to the time from randomization
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to last contact (death or lost to follow-up). The mean
number of life-years per patient for each treatment
strategy was estimated as the sum of the number of
life-years for each patient divided by the total number
of subjects enrolled in the study. The total cost per
patient was calculated by multiplying each component
of health-care resource use by the unit cost and
summing the results for each patient. The mean cost
per patient was estimated as the sum of the total cost
for each patient divided by the total number of patients
at the start of the study. Mean costs were estimated
from observed costs for all patients (both censored and
uncensored) with no adjustment for censoring.

Partial adjustment––survival adjusted for censoring,
and costs not adjusted for censoring. The mean
number of life-years for each treatment strategy was
adjusted for censoring using the Kaplan-Meier product
limit estimator to calculate survival. The time horizon
for both treatment and control groups was standard-
ized at 5.65 years, the longest follow-up observed in
AFFIRM. Mean survival time (in years) was estimated
as the area below the Kaplan-Meier survival curve for
each treatment group. Costs were not adjusted for
censoring. This was the approach applied in the pub-
lished cost-effectiveness analysis of the AFFIRM trial,
as a result of a lack of access to the individual cost data
at the time that the analysis was undertaken [5].

Full adjustment––both survival and costs adjusted for
censoring. Life-years were adjusted for censoring as
described above. Costs were adjusted for censoring
using the KMSA method [21,24].

For each scenario, a sampling distribution of costs
and effects was estimated for each intervention by
nonparametric bootstrapping with 10,000 replicates.
The results for rate- compared to rhythm-control are
presented as a scatter plot on the incremental cost-
effectiveness plane and as cost-effectiveness acceptabil-
ity curves [12,36]. The mean values of these sampling
distributions are used to calculate the ICER and, in
comparison to the cost-effectiveness threshold, identify
the appropriate intervention to fund given current
levels of information. To address the second decision,
concerning funding of further research, the population
EVPI is calculated for each scenario. For simplicity,
the calculation of EVPI was undertaken using NB
determined for a range of values of the ceiling ratio
($20,000, $50,000, and $100,000 per life-year).

Each individual value in the distribution (i.e., each
bootstrap replicate) represents a possible future reso-
lution of the current uncertainty (i.e., a possible future
realization of perfect information) for which the
appropriate intervention can be determined, on the
basis of maximum NB. Nevertheless, it is not known

at which particular realization the uncertainty will
resolve. As such, the expected value of a decision with
perfect information is calculated by averaging these
maximum NB over the distribution. The EVPI is
simply the difference between the expected value of the
decision taken with perfect information and that taken
with current information, which is based on the
expected NB [16]:

E max NB(t, ) max E NB(t,t tθ θθ θ− )

where t = interventions, and q = uncertainty in
parameters.

Because information provided by research is a
public good (once generated it can be used to inform
the decision for all patients), the societal value of
research should be calculated across the population of
potential programmed participants [1,2]. Here, the
estimate of this potential population is based on an
estimate of the population from the United States who
would be similar to the trial subjects (in terms of age
and diagnosis) and would face the same treatment
decision regarding management with either rate- or
rhythm-control. This population was estimated to be
4.16 million patients over 5 years, based on a preva-
lence estimate of 2.3 million people [37] and an inci-
dence of 500,000 cases per year [38]. The population
calculation involves discounting at 3% per annum
(after the first year) to account for time preference. The
population EVPI is presented for three values for the
cost-effectiveness threshold: $20,000, $50,000, and
$100,000 per life-year.

Results

Figure 1 presents the Kaplan–Meier curves illustrating
the survival over time for the scenario when survival
is not adjusted (no adjustment) and the scenarios
when survival is adjusted (partial adjustment and full
adjustment).

Table 1 reports the mean survival, total cost, and
ICER associated with rate- versus rhythm-control
treatment for the three scenarios that differed in how
adjustments were made for censoring. These are all
computed as sample averages.

In each case, rate-control is less costly on average
than rhythm-control. In the two scenarios where cen-
soring of survival is taken into account, rate-control is
also more effective on average and dominates rhythm-
control. When no account is made for censoring, rate-
control is associated with a nonsignificant shorter
mean survival (-0.0009 years, 95% CI -0.08 to 0.07)
compared to rhythm-control. Nonetheless, after con-
sidering the joint distribution of costs and effects, rate-
control remains the favored approach because of the
lower cost compared to rhythm-control (–$4800, 95%
CI –$6624 to –$2923), despite the absence of a statis-
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tically significant difference in survival between the
two strategies. Therefore, in each case, the decision
made on the basis of expected ICER estimates is to
adopt rate-control, either because it dominates (where
censoring is applied) or because the associated ICER
(saving almost $5 million for every life-year given up in
the case of no censoring) exceeds any reasonable
threshold. When both the incremental cost and incre-
mental survival are negative, the decision rule becomes
select if ICER greater than threshold.

Figure 2 illustrates the incremental cost-
effectiveness plane, for the comparison between rate-
control and rhythm-control, for each scenario. Each
point represents one replicate (incremental cost and

incremental survival) from the bootstrap. Figure 2a
represents the case where censoring is not taken into
account. The location and spread of the incremental
cost-effect pairs in the vertical direction indicates that
there is no uncertainty regarding the existence of cost-
savings with the rate-control strategy compared to the
rhythm-control strategy (all points fall below the hori-
zontal axis), although there is some uncertainty about
the magnitude of the cost-savings (incremental savings
vary from $2923 to $6624). With regard to effective-
ness, there is uncertainty regarding whether and
the extent to which rate-control confers a survival
benefit compared to rhythm-control (from -0.08 to
0.07 years). This is consistent with the finding of a
nonsignificant difference in survival gain between the
two treatment groups. Approximately one-half of rep-
licates (51.1%) were located to the left of the vertical
axis (negative incremental survival), indicating that
there was considerable uncertainty surrounding the
effectiveness of rate-control.

Figure 2b represents the case where censoring is
taken into account in terms of survival only. The loca-
tion of the replicates in the vertical (cost) plane is the
same as the scenario with no account for censoring.
Within the horizontal plane, the location of the repli-
cates indicates that there is much less uncertainty
about whether rate-control is effective compared to
rhythm-control (now only 4.6% of replicates involved
negative incremental survival). Nevertheless, the
spread of the replicates indicates that there is slightly
more uncertainty surrounding the extent of the sur-
vival difference between the two treatments (-0.01 to
0.17 years).

Figure 2c represents the case where censoring is
taken into account in terms of both costs and survival.
The location and spread of the incremental cost-effect
pairs within the vertical plane indicates that there is
uncertainty regarding the existence and extent of cost-
savings with the rate-control strategy in comparison to
the rhythm-control strategy (+$1810 to –$8438). The
majority (90.4%) of the replicates were located below
the horizontal axis (negative incremental cost), indicat-
ing that rate-control was most often cost-saving com-
pared to rhythm-control. Within the horizontal plane,
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Figure 1 (a) Kaplan–Meier curves nonadjusted survival time. (b) Kaplan–
Meier curves adjusted survival time.

Table 1 Mean expected survival, total cost, and incremental cost-effectiveness ratio (ICER) for each censoring scenario

Censoring

Total cost ($) Mean survival (years) Incremental (rate—rhythm) ICER of rate vs. rhythm
($ per life-year) DecisionRate Rhythm Rate Rhythm Cost ($) Survival (years)

None 20,595 25,375 3.1869 3.1878 -4,800
(-6,624 to -2,923)

-0.0009
(-0.08 to 0.07)

4,983,477 Chose rate-control

Partial*† 20,595 25,375 4.6749 4.5983 -4,800
(-6,624 to -2,923)

0.08
(-0.01 to 0.17)

Rate-control dominates Chose rate-control

Full‡ 32,048 35,509 4.6749 4.5983 -3,461
(-8,438 to 1,810)

0.08
(-0.01 to 0.17)

Rate-control dominates Chose rate-control

*Survival only.
†These figures vary slightly from those published in the original cost-effectiveness article [5].This is due to the use of a different bootstrapping sample for the two analyses.
‡Both survival and costs.
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the replicates were identical to censoring of survival
only (Fig. 2b). In addition, there was a small proportion
of replicates (0.48%) that were located both above the
horizontal axis (positive incremental cost) and to the

left of the vertical axis (negative incremental survival),
indicating the potential for rate-control to be both more
costly and less effective than (dominated by) rhythm-
control.

(a)

(b)

Figure 2 (a) Incremental cost-effectiveness plane of rate-control versus rhythm-control: no censoring. (b) Incremental cost-effectiveness plane of
rate-control versus rhythm-control: partial––censoring of survival only. (c) Incremental cost-effectiveness plane of rate-control versus rhythm-control:
full––censoring of costs and survival.
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Figure 3 illustrates the cost-effectiveness acceptabil-
ity curves for rate-control compared to rhythm-control
for each of the levels of censoring adjustment, calcu-
lated from the bootstrap replicates as the proportion
where rate-control is associated with the maximum
NB. Given the data, over the range specified for the
threshold (l) ($0 to $100,000), the probability that
rate-control is cost-effective compared to rhythm-
control is high (>89%) regardless of the level of adjust-

ment for censoring (note the discontinuation of the
axis). Nevertheless, the level of adjustment for censor-
ing has an impact upon the extent of the decision
uncertainty. When censoring is taken into account for
survival only (partial censoring), the probability that
rate-control is cost-effective remains above 95% irre-
spective of the threshold. This reflects the minimal
uncertainty regarding the effectiveness of rate-control
compared to rhythm-control (only 4.6% of the cost-

(c)

Figure 2 Continued.
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Figure 3 Cost-effectiveness acceptability cur-
ves for rate-control versus rhythm-control: (a)
no censoring, (b) partial––censoring of survival
only, and (c) full––censoring of costs and
survival.
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effectiveness pairs involved negative incremental
survival). In each of the other cases, the probability
falls below 95% over some range of the threshold
(l > $73,000 for the scenario with no account for cen-
soring, l < $17,000 for the scenario with censoring
taken into account for both costs and survival), indi-
cating the presence of some decision uncertainty.

In addition, the cost-effectiveness acceptability
curve for the full-censoring scenario has a different
shape to those for the other scenarios, an increasing
rather than decreasing probability that rate-control is
cost-effective as the threshold increases. This reflects
the uncertainty concerning the existence of cost savings
associated with rate-control compared to rhythm-
control. In this scenario, 9.6% of the cost-effectiveness
pairs involved positive incremental cost; as such, the
probability that rate-control is cost-effective given a
threshold of zero (the decision-maker is only interested
in cost-savings) is below 100% (90.4%). Nevertheless,
as the value of the threshold increases, these cost-effect
pairs begin to look cost-effective and the probability
that rate-control is cost-effective increases. See Fenwick
et al. for a full discussion of the relationship between
cost-effectiveness pairs in the cost-effectiveness plane
and the shape of cost-effectiveness acceptability curves
[15].

Table 2 details the EVPI for the population as-
sociated with the decision, given a threshold (l) of
$25,000, $50,000, and $100,000 per life-year gained.
Using the example of $50,000 per life-year gained as
the threshold (l), when no account is made of censor-
ing, the EVPI surrounding the decision is $23 million.
When censoring is taken into account in both costs and
survival, the EVPI surrounding the decision is $117
million. Nevertheless, when censoring is only taken
into account for survival, the EVPI surrounding the
decision is only $626,000. Figure 4 illustrates the
population EVPI associated with the different censor-
ing scenarios over a range of values for the threshold.
In the cases where censoring for cost is not taken into
account (no censoring and partial censoring), the EVPI
rises. This is because both the uncertainty surrounding
the decision (error probability) and the value of the
threshold (value of the consequences of an error) are
rising. In the case where censoring is taken into
account for both costs and survival, the EVPI falls
initially as the threshold rises, because the reduction in
uncertainty outweighs the increased valuation of the
consequences associated with an incorrect decision. As
the threshold increases beyond $53,000 per life-year,
the EVPI rises with the threshold. This corresponds to
the point where the cost-effectiveness acceptability
curve levels off (the reduction in the decision uncer-
tainty slows), and thus reflects the fact that the value of
the consequences of an error (measured by the thresh-
old) outweighs the reduction in the error probability
over this range.

Discussion

In this article we examine the impact of the level of
censoring adjustment undertaken on the two decisions
faced by a rational decision-maker using data from a

Table 2 Expected value of perfect information (EVPI) for the
eligible population for each censoring scenario at different
thresholds (l)

Censoring

EVPI ($) at

l = $25,000 l = $50,000 l = $100,000

No 11,000 23 million 831 million
Partial* 0 626,000 33 million
Full† 179 million 117 million 159 million

*Survival only.
†Both survival and costs.
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large trial of two strategies for treating atrial fibrilla-
tion [5]. The trial showed a small, nonsignificant dif-
ference in survival between the two strategies. Only
16% of the subjects died; thus 84% were censored.
This high amount of censoring is a common situation
in the literature.

We found that the level of adjustment for censoring
did not affect the decision about which intervention to
adopt, despite the converse effectiveness result associ-
ated with the uncensored analysis (that rhythm-control
was more effective than rate-control). Nevertheless,
the level of censoring may impact the decision to fund
additional research, because the estimated population
EVPI varies by several orders of magnitude depending
on the censoring scenario. For the partial-censoring
scenario (survival only), EVPI is estimated as $626,000
for a threshold of $50,000 per life-year gained, sug-
gesting that further research, the cost of which is likely
to exceed this value, may not be worthwhile. Never-
theless, for the scenarios involving either no censoring
or full censoring, the estimates of EVPI are $23 and
$117 million dollars respectively, and as such, further
research is likely to be worthwhile. In this case, the
variations in the estimates of the EVPI across the three
censoring scenarios are driven mainly by differences in
the error probabilities surrounding the decisions (as
measured by the inverse of the cost-effectiveness
acceptability curve), although differences in the conse-
quences of making an error (as measured by the net
benefits associated with the decisions) have some
impact on the results. Thus, the EVPI estimates are
similar for no censoring and partial censoring, over the
range of thresholds for which the uncertainty associ-
ated with each is similar (up to a value of approxi-
mately $30,000 per life-year), and the EVPI estimate is
greatest for the no-censoring scenario for values of the
threshold above $65,000 per QALY (approximately),
where the uncertainty surrounding the decision
exceeds that associated with the other scenarios. The
partial-censoring scenario is associated with the lowest
level of decision uncertainty (see Fig. 3), and this is
reflected in the lower EVPI estimates generated for the
partial-censoring scenario.

These results should be interpreted within the
context that EVPI alone is not sufficient for determin-
ing the worth of further research. In the situation
where the EVPI suggests that further research would
be potentially worthwhile, additional analysis could be
performed to determine the EVPI for a particular
parameter or group of parameters (e.g., economic
parameters, clinical parameters) to assess the (poten-
tial) worth of research focused on different facets of
the decision [1,16]. The process involves determining
the increase in the expected value of the decision
associated with resolving the uncertainty concerning
a parameter or group of parameters. Nevertheless,
perfect information is not achievable with a finite

sample size, and the expected value of partial perfect
information still provides only a maximum value for
further research which can be compared to the cost to
determine whether the research is potentially worth-
while (necessary condition). Determining whether spe-
cific research, with a finite sample size, is worthwhile
requires an analysis of the expected value of sample
information. This involves valuing the reduction in
uncertainty, and hence the increase in the expected
value of the decision, actually achievable through
research, and depends upon the extent to which uncer-
tainty and the associated consequences are actually
reduced by the information provided from research
(the informativeness of the research) [16].

There are other methods of addressing censoring in
cost-effectiveness analysis that we did not examine in
this article. Bang and Tsiatis [27] suggested a number
of nonparametric-solutions estimators of costs in the
presence of censoring based upon inverse weighting
techniques. Unlike those of Lin et al. [21], their esti-
mators are shown to be consistent regardless of cen-
soring pattern. Bang and Tsiatis [27] provide both an
estimator based on total costs only (simple weighted
case estimator), and an estimator that partitions the
study into intervals similar to Lin et al. [21]. Willan
et al. [39] provide methods to estimate the mean and
variance of the incremental net benefit statistic under
conditions of censoring. These methods can be applied
when the health outcome is either mean survival time
or mean quality-adjusted survival. More recently, the
application of regression techniques to estimate costs
and effects in the presence of censoring has been dis-
cussed in the literature [28,40,41]. One of the advan-
tages of using regression techniques is the ability to
include covariates in the estimation of costs and effects
in the presence of censoring.

We selected the KMSA approach described by
Lin et al. [21] for censoring, because this approach
has been shown to provide consistent estimators of
average costs if it is assumed that censoring occurs at
the boundaries of the intervals. Furthermore, it is the
most commonly applied approach in the literature.
Nevertheless, the method does have limitations
because there is no reason to expect censoring to occur
at the boundaries of the selection intervals. Therefore,
the assumption about the consistency of the estimators
will likely be violated to some degree in most cases
[21].

Conclusion

This analysis illustrates that it is only when censoring
is taken into account for both costs and effects (the
full-censoring scenario) that the decision uncertainty
and the value of information are appropriately identi-
fied. In particular, the partial-censoring approach used
in the analysis of the AFFIRM trial [5] underestimated
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the decision uncertainty and hence the EVPI, although
in this particular example, there was no impact on
the decision regarding cost-effectiveness. This partial
approach is often employed in cost-effectiveness analy-
ses. The results shown here suggest that there may be
implications for the results of these studies.

This article originated through collaborations fostered by the
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