
Journal of Computational and Applied Mathematics 235 (2011) 2523–2550

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A generic framework for stochastic Loss-Given-Default
Geert Van Damme
Katholieke Universiteit Leuven, Leuven, Belgium

a r t i c l e i n f o

Article history:
Received 10 February 2010
Received in revised form 31 October 2010

Keywords:
Loss-Given-Default
Lévy process
Factor model
Basel II

a b s t r a c t

In this document amethod is discussed to incorporate stochastic Loss-Given-Default (LGD)
in factor models, i.e. structural models for credit risk. The general idea exhibited in this
text is to introduce a common dependence of the LGD and the probability of default (PD)
on a latent variable, representing the systemic risk. Though our theory can be applied to
any arbitrary firm-value model and any underlying distribution for the LGD, provided its
support is a compact subset of [0, 1], special attention is given to the extension of the
well-known cases of the Gaussian copula framework and the shifted Gamma one-factor
model (a particular case of the generic one-factor Lévy model), and the LGD is modeled
by a Beta distribution, in accordance with rating agency models and the Credit Metrics
model.

In order to introduce stochastic LGD, a monotonically decreasing relation is derived
between the loss rate L, i.e. the loss as a percentage of the total exposure, and the
standardized log-return R of the obligor’s asset value, which is assumed to be a function
of one or more systematic and idiosyncratic risk factors. The property that the relation
is decreasing guarantees that the LGD is negatively correlated to R and hence positively
correlated to the default rate. From this relation, expressions are then derived for the
cumulative distribution function (CDF) and the expected value of the loss rate and the
LGD, conditionally on a realization of the systematic risk factor(s). It is important to remark
that all our results are derived under the large homogeneous portfolio (LHP) assumption
and that they are fully consistent with the IRB approach outlined by the Basel II Capital
Accord.

We will demonstrate the impact of incorporating stochastic LGD and using models
based on skew and fat-tailed distributions in determining adequate capital requirements.
Furthermore, we also skim the potential application of the proposed framework in a credit
risk environment. It will turn out that both building blocks, i.e. stochastic LGD and fat-
tailed distributions, separately, increase the projected loss and thus the required capital
charge. Hence, the aggregation of a model based on a fat-tailed underlying distribution
that accounts for stochastic LGD will lead to sound capital requirements.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

For long time, researchers and practitioners in the field of (portfolio) credit risk have spent more time and resources
on modeling default risk and default dependence than they have on what is called Loss-Given-Default (LGD). According to
the Basel II Capital Accord, LGD is the fraction of Exposure-At-Default (EAD) that will not be recovered following default.
Traditional pricing and rating models generally combine a stochastic, or at least time-dependent, default rate with a time-
invariant and constant LGD. For instance, even now, index and single name traders are still using a fixed 40% recovery
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assumption for their present value calculations, which causes problems in the CDO context, where the newly emerging
[60%, 100%] super duper tranche would have1 no value under traditional models.

Moreover, the financial crises of the past decade and their devastating impact on the global economy provided empirical
evidence for the existence of significant positive correlation between the default rate and the LGD in a specific period (cf. [1]).
This has led to the consensus that the current models are inadequate, calling for new methods taking into account non-
constant LGD. Under Basel II, for instance, banks and other financial institutions are now recommended to calculate the
Downturn LGD, which reflects economic downturn conditions where necessary to capture the relevant risks, i.e. the realized
recovery rates should be lower than average during times of high default rates, to avoid underestimating the expected loss
(cf. Basel Committee on Banking [2,3]). The main reason for this requirement is that the Vasicek model (cf. [4]) used in the
Basel Capital Accord does not have systematic correlation between probability of default (PD) and loss given default (LGD),
which would underestimate downturn risk.

In the literature, several ways have yet been proposed to obtain a non-constant LGD that is correlated with the default
risk, extending each of the three popular approaches for modeling default risk, i.e. reduced formmodels, firm-value models
and the copula approach. The former two approaches model the LGD by assuming it is driven by a latent variable that is
correlated with the latent variable driving default (cf. [5–7]), whereas the latter aim at directly modeling the spot recovery,
i.e. the recovery upon default (cf. [8,9]). An extensive overview of the literature can be found in [10].

In this document amethod is discussed to incorporate stochastic LGD in structuralmodels for default risk, as introduced in
the seminal papers in [11,12], by introducing a common dependence of the LGD and the PD on a latent variable, representing
the systemic risk. Though our theory can be applied to any arbitrary firm-value model and any underlying distribution for
the LGD, provided its support is a compact subset of [0, 1], special attention is given to the extension of the well-known
cases of the Gaussian copula framework and the shifted Gamma one-factor model, i.e. a particular case of the generic one-
factor Lévy model (cf. [13]). Furthermore in this text, w.r.t. the above implementations, we will model the LGD by a Beta
distribution, in line with rating agency models and the Credit Metrics model.

In order to introduce stochastic LGD, a monotonically decreasing relation is derived between the loss rate L, i.e. the loss
as a percentage of the total exposure, and the standardized log-return R of the obligor’s asset value, which is assumed to be
a function of one or more systematic and idiosyncratic risk factors. As a starting point, we use the work of Tasche [6] and
Joocheol et al. [7]. The property that the relation is decreasing, guarantees that the LGD is negatively correlated toR andhence
positively correlated to the default rate. From this relation, expressions are next derived for the cumulative distribution
function (CDF) and the expected value of the loss rate and the LGD, conditionally on a realization of the systematic risk
factor(s). It is important to remark that all our results are derived under the large homogeneous portfolio (LHP) assumption
and that they are fully consistent with the IRB approach outlined by the Basel II Capital Accord.

We will demonstrate the impact of incorporating stochastic LGD and using models based on skew and fat-tailed
distributions in determining adequate capital requirements. Furthermore, we also skim the potential application of the
proposed framework in a credit risk environment. It will turn out that both building blocks, i.e. stochastic LGD and fat-tailed
distributions, separately, increase the projected loss and thus the required capital charge. Hence, the aggregation of a model
based on a fat-tailed underlying distribution that accounts for stochastic LGD will lead to sound capital requirements.

The text is organized as follows: Section 2 describes the general framework. We determine a relation between the loss
rate L and the standardized log-return R of the debtor’s asset value and, based on this relation, derive expressions for the CDF
and the expected value of the loss rate L and the LGD, conditionally on a level of the systematic risk. Sections 3 and 4 discuss
the extensions of the Normal one-factor model and the generic one-factor Lévy model, especially the (shifted) Gamma one-
factor model. Section 5 forms the main contribution of this text and provides a generalization, allowing the loss rate L to
depend on two risk drivers instead of one, breaking the comonotonicity between defaults and losses that is introduced by
the relation described in Section 2. In Section 6 we demonstrate the impact of accounting for downturn (stochastic) LGD
on the capital charge required under the Basel II Capital Accord and compare our model with the work of Amraoui and
Hitier [14] and Andersen and Sidenius [10], who introduce stochastic LGD in structural models for CDO valuation, with the
aim of flattening the base-correlation curve. Section 7 concludes the paper. Readers interested only in a specific formula,
may skip the text and go straight to the Appendix at the end, where all the results are summarized.

2. General framework

2.1. Introduction

In this section we develop the general framework. Starting from a structural model for credit risk and under the large
homogeneous portfolio (LHP) assumption, we will derive a model-independent relation between the cumulative loss rate
Lt , i.e. the loss as a percentage of the total exposure, and the standardized log-return R of the obligor’s asset value. Moreover,
we will show that the results derived in this section are fully consistent with the Basel II framework.

Consider a portfolio with notional value N , consisting of M names with respective notionals Ni, i = 1, . . . ,M .
Furthermore, assume that C is a macro-economic factor, common to all credits and that Ii is an idiosyncratic factor, specific

1 Assuming a fixed 40% recovery, i.e. a fixed 60% LGD, the expected loss (and hence the value) of the [60%, 100%] super duper tranche will be equal to
zero.
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to the ith name. Finally, let ρ ∈ (0, 1) denote the correlation between the log-returns of any two names i and j ≠ i, i.e. we
assume equicorrelation between the log-returns. Following2 Merton’s model, obligor i defaults in a time period [0, t] if the
standardized log-return of the asset value Ri

not.
= Ri (C, Ii; ρ) hits a certain lower bound Hd

t , that is 1
d
i,t = 1 ⇔ Ri ≤ Hd

t , with
1d
i,t the default indicator, equaling 1 if the ith name has defaulted in the interval [0, t] and 0 otherwise. Furthermore, the

corresponding default probability (PD) is given by pdi,t = Pr

1d
i,t = 1


= Pr


Ri ≤ Hd

t


. Mark that Ri is traditionally modeled

by a Normal one-factor model, i.e.

Ri =
√
ρC +


1 − ρIi,

where the random variables C and Ii are assumed to be i.i.d. and follow a standard Normal distribution. The latter Gaussian
one-factor model will be covered in Section 3. However, as mentioned before, in Section 4 of this text we will also examine
the possibilities of incorporating stochastic LGD in the (shifted) Gamma one-factor model (cf. [13]). Though it should
be mentioned that the different models discussed in this text are consistent w.r.t. ρ, in the sense that they all satisfy
Corr


Ri, Rj


= ρ, for i ≠ j, Corr [Ri, C] =

√
ρ and Corr [Ri, Ii] =

√
1 − ρ.

Any default by an arbitrary credit induces a loss to the investor. The fraction of the Exposure-At-Default (EAD) that will
not be recovered in the event of a default is referred to as the Loss-Given-Default (LGD). To clarify this, let PLi,t denote the
cumulative loss due to credit i until time t . Furthermore, assume that the PD3at time t is stochastic and given by Q d

i,t , where
E

Q d
i,t


= pdi,t . Finally, note that the loss is only positive in the case of a default. Then, the cumulative portfolio loss rate, i.e.

the total loss as a percentage of the total exposure, until time t , is given by

Lt =
PLt
N

=
1
N

M−
i=1

PLi,t =
1
N

M−
i=1


Li,t
1d

i,t = 1

Q d
i,tNi,

with Li,t the cumulative loss rate at time t of a fixed obligor i. Denote the LGD of obligor i by LGDi,t =

Li,t
1d

i,t = 1

. In the

sequel we assume that the LGD is time-independent and omit the subscript t .
Now, under the LHP assumption, it holds that Q d

i,t
d
= Q d

t and LGDiQ d
i,t

d
= LGDQ d

t , for all i = 1, 2, . . . ,M , such that

PLt
d
= LGDQ d

t N, (1)

where d
= stands for equality in distribution. Hence, in the LHP limit, due to the strong Law of large numbers, Lt is equal to

the expected loss of one obligor, i.e.

Lt = E

LGDQ d

t


, (2)

which is traditionally set equal to = E [LGD] pdt , justified by the assumption that the LGD and the PD are independent, where,
the LGD is generally assumed to be constant. However, as declared before, there is sufficient empirical evidence for the
existence of significant positive correlation between the latter variables, in a specific time period (cf. [1]).

The latter obviously complicates the computation of the expectation in the right-hand side of (2). The general idea
exhibited in this text is to introduce a common dependence of the LGD and the PD on the latent variable C , representing the
systematic risk, while assuming independence of the conditional LGD (CLGD) and the conditional PD (CPD) (cf. [6,7]). More
specifically, we will determine the conditional expected loss rate, conditional on a common factor C and set

Lt = κ(C) = E

LGDQ d

t

 C = E [LGD |C ] pd,Ct , (3)

where pd,Ct is the conditional expected default probability and κ a monotonically decreasing function of C . This implies
(cf. [17]) that

Pr [Lt ≤ l] = Pr [κ(C) ≤ l] ∗
= 1 − Pr


C ≤ κ [−1](l)


, (4)

from which the Value-at-risk (VaR) can then be computed as

VaRα(Lt) = κ

F [−1]
C (1 − α)


. (5)

Furthermore, the downturn LGD (DLGD) is defined as (cf. [18])

DLGDα =
VaRα(Lt)

p
d,F [−1]

C (α)

t

= E

LGD

C = F [−1]
C (α)


, (6)

2 In this work we assume Merton’s one-period model for default, i.e. default can only occur at the maturity T of the debt instrument. This has some
obvious drawbacks, as compared to the first-passage models (cf. [15]) allowing default to occur at any time t ∈ [0, T ]. However, this issue can easily be
solved by introducing a time-dependent default barrier (cf. [16]).
3 Note that when speaking of the default time at time t , we mean default in the time period [0, t].



2526 G. Van Damme / Journal of Computational and Applied Mathematics 235 (2011) 2523–2550

with F [−1]
X the generalized inverse of the CDF of a random variable X . The second equality of (6) follows directly from

substituting (5) into (3). Note, however, that equality ∗
= and therefore Eqs. (3) and (5) are only valid if C is one-dimensional.

Hence, if C is a vector of 2 or more common factors (cf. Section 5.4) there will generally be no other solution than to derive
the VaR and DLGD through simulation, based on κ(C) and thus on the expected value of the CLGD. Therefore, in this text,
we will primarily be concerned with the derivation of the latter quantity.

2.2. Model framework

We are now ready to derive the model-independent relation between the loss rate and the standardized log-return R of
the obligor’s asset value. Assume that

Lt =


Λ > 0; 1d

t = 1;
0; 1d

t = 0,
(7)

is the cumulative loss rate of an arbitrary name in the (homogeneous) portfolio. Notice that the random variableΛ is in fact
the (time-independent) LGD and is distributed according to a law D, with bounded support [λl, λu], where 0 ≤ λl ≤ λu ≤ 1.
A popular choice for D is the Beta(a, b) distribution, because the support of the latter is [0, 1]. Moreover, we have that
Pr [Lt > 0] = Pr


1d
t = 1


= pdt . Hence, it holds that Pr [Lt > 0] = Pr


R ≤ Hd

t


, where the risk factor R not.

= R (C, I; ρ) is a
function of a systematic risk factor C and an idiosyncratic risk factor I , satisfying Corr [R, C] =

√
ρ, Corr [R, I] =

√
1 − ρ,

and where Hd is the (possibly time dependent) default barrier, which triggers default when being hit by R.
From the above it follows that (cf. [6])

pl,t = Pr [Lt ≤ l]

= FΛ(l) · pdt +

1 − pdt


, (8)

for all l ∈ [0, 1] and for all t ≥ 0, with FΛ(l) = Pr

Lt ≤ l

1d
t = 1


the CDF associated to the law D. But this implies that

l =

F [−1]
Λ


pl,t −


1 − pdt


pdt


; 1 − pdt < pl,t ≤ 1;

0; 0 ≤ pl,t ≤ 1 − pd,

with F [−1]
Λ the inverse of the CDF ofΛ. Using the fact that ∀l ∈ (0, 1], ∃! r ∈


inf(R),Hd

t


: pl,t = 1 − FR(r), leads to

Lt = h1(R) =

F [−1]
Λ


1 −

FR(R)
pdt


; inf(R) ≤ R < Hd

t ;

0; Hd
t ≤ R ≤ sup(R),

(9)

hence, for r ∈

inf(R),Hd

t


we have

r = h[−1]
1 (l) = F [−1]

R


[1 − FΛ(l)] pdt


, (10)

with l ∈ (0, 1]. By convention, we set h[−1]
1 (0) = F [−1]

R


pdt


= Hd
t . Notice that FR(R)

pdt
= Pr


R ≤ R

R ≤ Hd
t

 not.
= F

R
R≤Hd

t
(R).

From this it is easy to verify that

1 −
FR(R)
pdt

= 1 − F
R
R≤Hd

t
(R) = FΛ(Λ) ∼ Un[0, 1], (11)

such that F [−1]
Λ


1 −

FR(R)
pdt


= Λ, for inf(R) ≤ R < Hd

t , as required. Furthermore, using (9) and (11), Eq. (10) can be rewritten
as follows

r = h[−1]
1 (l) = F [−1]

R
R≤Hd

t
(1 − FΛ(l)) , l ∈ (0, 1] . (12)

Recall, from the previous paragraph, that we assumed the LGDΛ to be time-independent, i.e. the parameters of the law
D are independent of the time of default. Moreover, we assume that the latter law is also independent of the distribution
of the risk factor R.4 However, the latter distribution will influence the conditional distribution of the LGD, conditional on
a realization of the systematic risk factor C or the idiosyncratic risk factor I . In this paper we only examine the situation of

4 Unlike the distribution of the loss rate Lt , which depends both on time and the underlying factor model, through pdt , i.e. the unconditional probability
of default before time t (cf. (8)).
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common dependence of the LGD and the PD on the systematic factor C , thereby following Joocheol et al. [7], who state that
under the asymptotic single risk factor model the loss rate for a well diversified portfolio depends only on the (single) systematic
risk factor and not on the idiosyncratic risk factors. Though the reader is cordially invited to translate the theory to conditioning
on I .

Assuming a one-factor structural model for the obligor’s asset value, the conditional distribution of the LGD, given C = c ,
is given by

Pr

Lt ≤ l| R ≤ Hd

t , C = c


= Pr

h1(R) ≤ l

R ≤ Hd
t , C = c


∗
= Pr


R ≥ h[−1]

1 (l)
 R ≤ Hd

t , C = c


= 1 −

Pr

R ≤ h[−1]

1 (l)
 C = c


Pr

R ≤ Hd

t

 C = c
 , (13)

where equality ∗
= is explained by the fact that the function h1 is monotonically decreasing in R (cf. (9)). Now, if we denote

the conditional CDF of the LGD given C = c by FΛ|C=c (·) and the corresponding CPD by pd,ct , then, combining (8) and (13)
yields that the conditional distribution of the loss rate L, given C = c , satisfies

Pr [Lt ≤ l |C = c ] = FΛ|C=c (l) · pd,ct +


1 − pd,ct


= 1 − Pr


R ≤ h[−1]

1 (l)
 C = c


. (14)

Moreover, using relations (9) and (14), we can determine the expected value of the CLGD as

E

Lt
R ≤ Hd

t , C = c


=
E [Lt |C = c ]

Pr

R ≤ Hd

t

 C = c


=

 λu
l=λl

Pr

R ≤ h[−1]

1 (l)
 C = c


dl

Pr

R ≤ Hd

t

 C = c
 . (15)

Note that the numerator in the right-hand side of the above expression equals κ(c) = VaR1−FC (c) (cf. (3) and (5)), thus
(15) corresponds to DLGD1−FC (c). Hence, being able to compute the above quantities allows one to incorporate stochastic
recovery rates in VaR and DLGD calculations (cf. (5) and (6)), but it also has many other practical applications, e.g. as pricing
models for credit defaults swaps (CDSs) or collateralized debt obligations (CDOs) and scenario generators for analyzing and
rating asset-backed securities (ABSs).

Finally, note that (15) is in line with the standard procedure, outlined in the Basel II capital framework, of setting the
expected loss rate equal to E [Lt ] = E


Lt
1d

t = 1

Pr

1d
t = 1


. Conditioning on C = c and dividing both sides of the latter

equality by Pr

1d
t = 1

 C = c

leads to (15).

In the next two sections, following rating agency practice, we will assume that Λ follows a Beta distribution, with
parameters a, b > 0, hence λl = 0 and λu = 1.5 Though it should be kept in mind that any distribution with bounded
support is suited forΛ.6 Readers interested in the formulas for a general distribution are referred to the Appendix at the end
of this text. Hence,

Lt = h1(R) =

B[−1]
a,b


1 −

FR(R)
pdt


; inf(R) ≤ R < Hd

t ;

0; Hd
t ≤ R ≤ sup(R),

(16)

and

r = F [−1]
R


1 − Ba,b(l)


pdt

, l ∈ (0, 1] , (17)

with Ba,b the CDF of the Beta distribution with parameters a and b. The latter can be calibrated based on historical data
regarding the expected value and the variance of the loss rate L or the LGDΛ. However, assuming that 1 − E[LGD] is equal
to the expected recovery conditional on default, to be consistent with single-name and index pricing, the LGD model must
be calibrated such that 1 − E[LGD] is the same as the mid recovery, generally taken to be 40% w.r.t. CDSs (cf. [14]).

5 Let σ 2
X and µX denote the variance and the expected value of the random variable X , then it is easy to verify that σ 2

Lt = pdt

µ2

LGD + σ 2
LGD


−

µLGDpdt

2 .
By the properties of the Beta distribution, it then follows that 0 ≤ µ2

LGDp
d
t


1 − pdt


< σ 2

L < µLGDpdt

1 − µLGDpdt


≤ 0.25.

6 Note that one can always construct a random variable Y with support [λl, λu] from a Beta(a, b) distributed random variable X , using the transformation
Y = λl + (λu − λl)X .
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3. The Gaussian one-factor model

Recall that the Normal one-factor model models the asset value V of a borrower, where V is described by a geometric
Brownian motion,

VT = V0 exp [µ(T )+ σ(T )WT ]
d
= V0 exp


µ(T )+ σ(T )

√
TZ

, (18)

withW a Wiener process and where the random variable Z ∼ N(0, 1) satisfies

Z not.
= R (X, ξ ; ρ) =

√
ρX +


1 − ρξ,

with X, ξ
i.i.d.
∼ N(0, 1) and ρ ∈ (0, 1). The random variable X denotes the systematic risk factor (C) which is common to

each obligor and the random variable ξ represents the idiosyncratic risk factor (I) associated with each individual obligor.
Finally, as indicated before, ρ determines the borrower’s exposure to the systematic and idiosyncratic risk factors.

A borrower is said to default at time t ≥ 0, if his financial situation deteriorates so dramatically that VT hits a
predetermined lower bound Bd

t , which (as can be seen from (18)) is equivalent to saying that Z hits some barrier Hd
t ∈ R.

From (16) it then follows that

Lt = h1(Z) =

B[−1]
a,b


1 −

Φ(Z)
Φ(Hd

t )


; −∞ ≤ Z < Hd

t ;

0; Hd
t ≤ Z ≤ +∞,

(19)

hence h[−1]
1 (l) = Φ[−1]


1 − Ba,b(l)


Φ

Hd

t


, for l ∈ (0, 1], whereΦ is the CDF of the standard Normal distribution. Using

Eqs. (13)–(15) this leads to

Pr

Lt ≤ l

Z ≤ Hd
t , X = x


= 1 −

Φ

[
h[−1]
1 (l)−

√
ρx

√
1−ρ

]
Φ


Hd
t −

√
ρx

√
1−ρ

 , (20)

Pr [Lt ≤ l |X = x ] = 1 − Φ


h[−1]
1 (l)−

√
ρx

√
1 − ρ


, (21)

and

E

Lt
Z ≤ Hd

t , X = x


=

 1
l=0Φ

[
h[−1]
1 (l)−

√
ρx

√
1−ρ

]
dl

Φ


Hd
t −

√
ρx

√
1−ρ

 , (22)

with h1 given by (19).

4. Generic one-factor Lévy model

4.1. The generic one-factor Lévy model

The generic one-factor Lévymodel (cf. [13]) is comparable to and in fact a generalization of the Normal one-factormodel.
However, instead of describing the name’s asset value by a geometric Brownian motion, we will now model the latter with
an exponential Lévy model, i.e.

VT = V0 exp [AT ] , (23)

where the standardized log-return is modeled by a Lévy process A = {At : t ≥ 0}, satisfying

At
not.
= R (Y , χ; ρ) = Yρ t

T
+ χ(1−ρ) tT

, (24)

with ρ ∈ (0, 1) and Y and χ i.i.d. Lévy processes, based on the same mother infinitely divisible distribution L, satisfying
E[Yt ] = 0 and Var[Yt ] = t , for all t ≥ 0. Then the Lévy process A will also be based on the law L, but generally will not be
identically distributed to Y and χ . Moreover, E [AT ] = 0 and Var [AT ] = 1, in line with the Normal one-factor model. Each of
the Lévy models discussed in this text will be silently assumed to be parameterized, in order to satisfy the latter properties.

In the above equation, Yρ is a systematic risk factor, common to all borrowers, χ1−ρ is an idiosyncratic risk factor and ρ
determines the exposure to the latter risk factors. It can be shown that Corr [AT , Yρ] =

√
ρ and Corr


AT , χ1−ρ


=

√
1 − ρ.
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A borrower defaults if AT hits a predetermined barrier Hd
t . Hence, from (16) it follows that

Lt = h1(AT ) =

B[−1]
a,b


1 −

FAT (AT )

FAT (H
d
t )


; inf(AT ) ≤ AT < Hd

t ;

0; Hd
t ≤ AT ≤ sup(AT ),

(25)

thus h[−1]
1 (l) = F [−1]

AT


1 − Ba,b(l)


FAT


Hd

t


, for l ∈ (0, 1]. From this we obtain, using Eqs. (13)–(15),

Pr

Lt ≤ l| AT ≤ Hd

t , Yρ = yρ


= 1 −

Pr

AT ≤ h[−1]

1 (l)
 Yρ = yρ


Pr

AT ≤ Hd

t

 Yρ = yρ
 , (26)

Pr

Lt ≤ l| Yρ = yρ


= 1 − Pr


AT ≤ h[−1]

1 (l)
 Yρ = yρ


, (27)

and

E

Lt | AT ≤ Hd

t , Yρ = yρ


=

 1
l=0 Pr


AT ≤ h[−1]

1 (l)
 Yρ = yρ


dl

Pr

AT ≤ Hd

t

 Yρ = yρ
 , (28)

with h given by (25) and FAT the CDF of the random variable AT .

4.2. The Gamma one-factor model

From now on, we will assume that Y and χ are i.i.d. shifted Gamma processes, i.e. Y = {Yt = tµg − Gt; t ≥ 0}, where
G is a Gamma process, with shape parameter αg > 0 and scale parameter βg > 0. Setting βg =

√
αg and µg =

αg
βg

ensures

that E [AT ] = 0 and Var [AT ] = 1 (cf. [13]). Note that the processes Y and χ are based on the Gamma

αg , βg


distribution,

whereas the process A is based on the Gamma
 αg

T , βg

distribution. Indeed, from the fact that a Gamma distribution is

infinitely divisible it follows that

Yt
d
= tµg − XYt

χt
d
= tµg − Xχt ,

(29)

for t ≥ 0, which implies, using (24), that

At = Yρ t
T

+ χ(1−ρ) tT
d
= µg

t
T

−

[
XY

ρ t
T

+ Xχ
(1−ρ) tT

]
d
= µg

t
T

− XAt , (30)

with XYt , Xχt ∼ Gamma

tαg , βg


and XAt ∼ Gamma


αg

t
T , βg


. Hence, AT ∈


−∞, µg


, since XYρ , Xχ1−ρ , XAT > 0. Notice

that the fact that Y and χ are i.i.d. Lévy processes implies that the random variables XYt and Xχt are independent.
From the previous paragraph, together with (25), it then follows that in the case of the Gamma one-factor model

Lt = h1(AT ) =

B[−1]
a,b


1 −

1 − 0αg ,βg

µg − AT


1 − 0αg ,βg


µg − Hd

t
 ; −∞ ≤ AT < Hd

t ;

0; Hd
t ≤ AT ≤ µg ,

(31)

such that h[−1]
1 (l) = µg − 0

[−1]
αg ,βg


1 −


1 − 0αg ,βg


µg − Hd

t

 
1 − Ba,b(l)


, for l ∈ (0, 1], with 0m,n the CDF of a Gamma

distribution with shape parameterm > 0 and scale parameter n > 0. Using Eqs. (13)–(15) this leads to

Pr

Lt ≤ l

AT ≤ Hd
t , Yρ = yρ


= 1 −

1 − 0(1−ρ)αg ,βg


(1 − ρ)µg + yρ − h[−1]

1 (l)


1 − 0(1−ρ)αg ,βg

(1 − ρ)µg + yρ − Hd

t
 , (32)

Pr

Lt ≤ l

Yρ = yρ


= 0(1−ρ)αg ,βg


(1 − ρ)µg + yρ − h[−1]

1 (l)

, (33)

and

E

L
AT ≤ Hd

t , Yρ = yρ


=

1 −
 1
l=0 0(1−ρ)αg ,βg


(1 − ρ)µg + yρ − h[−1]

1 (l)

dl

1 − 0(1−ρ)αg ,βg

(1 − ρ)µg + yρ − Hd

t
 , (34)

with h1 given by (31). Note that we can truncate the latter integral at ϵ = h1

(1 − ρ)µg + yρ


, as the integrand is zero for

all l ≥ h1

(1 − ρ)µg + yρ


.
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Note that in the special case where αg = 1, the random variable µg − AT
d
= XAT follows a standard exponential

distribution (assuming βg =
√
αg and µg =

αg
βg

) and hence has the so-called memoryless property. This fact, together

with the observation that the CPD is equal to 1 when Yρ ≤ Hd
t − (1 − ρ)µg , implies that, for any κ > 0,

E

L
AT ≤ Hd

t , Yρ = Hd
t − (1 − ρ)µg − κ


= E


L
Yρ = Hd

t − (1 − ρ)µg − κ


= E

B[−1]
a,b


Pr

XAT ≤ Xχ1−ρ + κ


. (35)

Hence, below the Armageddon point Yρ = Hd
t − (1 − ρ)µg , where the CPD is equal to 1, the conditional expected

LGD is equal to the conditional expected loss and independent of the level of the default barrier, which determines the
unconditional default probability. This observation no longer holds when αg ≠ 1, as the Gamma distribution is generally
not memoryless. Furthermore, notice that B[−1]

a,b


Pr

XAT ≤ Xχ1−ρ + ϵ


is not necessarily Beta distributed, since XAT and

Xχ1−ρ are generally not identically distributed.

5. Generalization

5.1. Note on comonotonicity between defaults and losses

An obvious drawback of the relation L = h1(R) (cf. (9)) is that default and LGD are comonotonic, i.e. both are driven by one
and the same randomvariableR, i.e. the standardized log-return of the obligor’s asset value. This is to someextent acceptable,
in the sense that it is likely that a global or regional economic downturn will cause firm-values to spiral downwards, leading
to a significant increase in default rates and loss rates, but on the other hand it is possible that at some point in time there are
other (e.g. sector-related) factors which counteract or even suppress the negative impact of the global downturn, causing
the loss rate to decrease or even be zero, despite the firm’s high default rate (invoked by themacro-economic environment).

In order to break the comonotonicity between defaults and losses, one may consider the loss rate L to be a function of
both the standardized log-return R(C, I; ρ) and an additional variable J , where the former is driven by macro-economic
and idiosyncratic factors and the latter represents certain additional events, that may counteract the negative impact of a
default on the loss rate. We use the notation R(C, I; ρ) to stress the fact that the R is a function of a systematic risk C and an
idiosyncratic risk I . Moreover, we assume that C, I and J are independent and identically distributed (i.i.d.) randomvariables.
For obvious reasons, we will refer to this model as the three-factor model. However, an immediate shortfall of this method is
that the additional effects are independent of the overall economy.

An alternative that solves this problem, following Frye and Hillebrand [5,19], is to consider two risk factors R1(C, I; ρ1)
and R2(C, J; ρ2), where as above, the common risk factor C and the idiosyncratic risk factors I and J are i.i.d. randomvariables
and ρ1 measures the exposure of the former risk factor to C and I , whereas ρ2 measures the exposure of the latter factor to
C and J . The factor R1(C, I; ρ1) corresponds to the standardized log-return of the credit’s asset value, whereas the loss rate is
fully determined by R2(C, J; ρ2), with no obvious intuitive interpretation. In the sequel, we will abbreviate the latter factors
by R1 and R2. Note that R1 and R2 are both driven by the systematic risk factor C and hence are (positively) correlated. In this
text, the above framework will be referred to as the Hillebrand [19]-type model.

Wewill go even one step further andmake the loss rate L dependent on both R1 and R2. It will turn out that the procedure
discussed in Section 1, as well as the two methods described in the previous paragraphs are all special cases of our more
general framework.

5.2. A non-comonotonic extension

In order to provide a consistent generalization of the above framework, unlike Hillebrand [19], we let the loss rate L be
a function of both random variables R1 (C, I; ρ1) and R2 (C, J; ρ2), with Corr [Ri, C] =

√
ρi, i = 1, 2, Corr [R1, I] =

√
1 − ρ1

and Corr [R2, J] =
√
1 − ρ2. More specifically, we propose to model the loss rate as

Lt = h2(R3) =

F [−1]
Λ


1 −

FR3,R1

R3,Hd

t


pdt


; inf(R1) ≤ R1 < Hd

t ;

0; Hd
t ≤ R1 ≤ sup(R1),

(36)

and

r3 = h[−1]
2 (l) = F [−1]

R3
R1≤Hd

t
[1 − FΛ(l)] , (37)

for l ∈ (0, 1], where R3
not.
= R3 (R1, R2; ρ3) satisfies

(a) R3 (R1, R2; 1) = R1;

(b) R3 (R1, R2; 0) = R2;

(c) Corr (R3, Ri) ∈ [Corr (R1, R2) , 1] ,
(38)
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with Corr (R3, R1) increasing in ρ3 and Corr (R3, R2) decreasing in ρ3, for a given pair (ρ1, ρ2). Furthermore, as can be seen
from the first two requirements, the function R3 (R1, R2; ρ3)must be such that setting ρ3 = 1 puts us in the framework of
Section 1, whereas ρ3 = 0 corresponds to the Hillebrand [19]-type model. Finally, setting ρ3 ∈ (0, 1) and ρ2 = 0 gives the
three-factor model.

Note, from the third requirement, that the dependence between R3 on the one hand and R1 and R2 on the other is bounded
from below by Corr [R1, R2]. Hence Corr (R3, R1) will generally not be equal to

√
ρ3 and Corr (R3, R2) will generally not be

equal to
√
1 − ρ3. Indeed, for ρ3 ∈ (0, 1), the dependence of the loss rate’s driver R3 on R1 and R2 (and thus on the systematic

risk factor C and the idiosyncratic factors I and J) will be a non-trivial function of the triplet (ρ1, ρ2, ρ3). Furthermore, for
ρ3 = 1, the exposure of R3 to C and I is exclusively measured by ρ1 and for ρ3 = 0 the exposure to C and J is fully
determined by ρ2. Also, note that, if ρ1 = ρ2 = 0, the default rates and the loss rates are, generally, no longer influenced by
the systematic risk C and hence are independent between obligors. However, they are still dependent within each debtor,
due to the common dependence on the idiosyncratic factor I .

Furthermore, as was the case for the function h1, here again it can be shown that

1 −
FR3,R1


R3,Hd

t


pdt

= 1 − F
R3
R1≤Hd

t
(R3) = FΛ (Λ) ∼ Un[0, 1],

for inf(R1) ≤ R1 < Hd
t . Finally, note that, even if the joint CDF of (R3, R1) is known, there will generally not exist a closed

form solution to F [−1]

R3
R1≤Hd

t
(·). Hence the inverse h[−1]

2 (l)must be determined numerically.

Using Eqs. (36) and (37), the reader may verify that

Pr

Lt ≤ l| R1 ≤ Hd

t , C = c


= Pr

R3 ≥ h[−1]

2 (l)
 R1 ≤ Hd

t , C = c


= 1 −

Pr

R3 ≤ h[−1]

2 (l), R1 ≤ Hd
t

 C = c


Pr

R1 ≤ Hd

t

 C = c
 (39)

Pr [ Lt ≤ l| C = c] = 1 − Pr

R3 ≤ h[−1]

2 (l), R1 ≤ Hd
t

 C = c

, (40)

and

E

Lt | R1 ≤ Hd

t , C = c


=

 λu
l=λl

Pr

R3 ≤ h[−1]

2 (l), R1 ≤ Hd
t

 C = c

dl

Pr

R1 ≤ Hd

t

 C = c
 . (41)

Notice that the default probability, conditional on C = c , is independent of R2. This is due to the conditional independence
of R1 and R2.

We conclude that in order to be able to apply the proposed generalization in a specific factor model the main task is
to determine an appropriate function R3 (R1, R2; ρ3), satisfying the requirements in (38) and preferably such that the joint
distributions of (R3, R1) and [(R3, R1) |C = c ] are known. Eqs. (42) and (53), as discussed in the next two sections, are our
proposals for the latter function, in the Gaussian one-factor model and the shifted Gamma one-factor model, respectively.

Furthermore, following prior practice, below we will again assume that the LGDΛ follows a Beta distribution.

5.3. Normal one-factor model

In the case of the Normal one-factor model, we suggest to use

Z3
not.
= Z3 (Z1, Z2; ρ3) =

√
ρ3Z1 +


1 − ρ3Z2, (42)

where

Zi
not.
= Zi (X, ξi; ρi) =

√
ρiX +


1 − ρiξi, (43)

for i = 1, 2, with X, ξ1, ξ2
i.i.d.
∼ N(0, 1) and ρ1, ρ2, ρ3 ∈ [0, 1]. The factor Z1 corresponds to the standardized log-return of

the debtor’s asset value, i.e. an obligor defaults if Z1 ≤ Hd
t , whereas Z2 describes the influence of the additional effects on

the loss rate. Note that Z1 and Z2 are dependent, through the dependence on X . Finally, note that Z3 satisfies (38).
Notice that the above equations can also be expressed in terms of Wiener processes. Indeed, let W , W (1) and W (2) be

independent Wiener processes, i.e. W = {Wt; t ≥ 0} and Wt ∼ N(0, t), then it follows, from the well-known scaling
property

√
cWt = Wct , that

Z3
d
= W (1)

ρ3T
+ W (2)

(1−ρ3)T
, (44)



2532 G. Van Damme / Journal of Computational and Applied Mathematics 235 (2011) 2523–2550

Fig. 1. Pearson correlation between Z3 and {Z1, Z2}.

with

W (i)
t = Wρi

t
T

+ W (i)
(1−ρi)

t
T
, (45)

for i = 1, 2.
From (43) we conclude that the random vector (Z1, Z2)T is bivariate normally distributed, with mean µ = (0, 0)T and

linear correlation coefficient ρ =
√
ρ1ρ2 ≥ 0. From this it immediately follows that

Z3 ∼ N

0, 1 + 2


ρ1ρ2ρ3(1 − ρ3)


.

Furthermore, it can be shown that

Corr (Z3, Z1) =

√
ρ3 +

√
ρ1ρ2(1 − ρ3)

1 + 2
√
ρ1ρ2ρ3(1 − ρ3)

≥ 0;

Corr (Z3, Z2) =

√
1 − ρ3 +

√
ρ1ρ2ρ3

1 + 2
√
ρ1ρ2ρ3(1 − ρ3)

≥ 0.

(46)

In line with the third requirement of (38), the above two expressions are bounded from below by Corr (Z1, Z2) =
√
ρ1ρ2.

Moreover, they are symmetric in ρ1 and ρ2. Fig. 1 depicts the above linear correlation coefficients as a function of ρ3 for
several pairs (ρ1, ρ2). It is apparent that Corr (Z3, Z1) = Corr (Z3, Z2) for ρ3 = 0.50, independently of the pair (ρ1, ρ2).
Hence, ρ3 is the dominant driver of the latter correlations.

Now, X, ξ1, ξ2
i.i.d.
∼ N(0, 1) implies that7

(Z3, Z1)′ ∼ N2 µ3,1,Σ3,1

, (47)

and

(Z3, Z1 |X = x )′ ∼ N2 µx
3,1,Σ

x
3,1


, (48)

with

µ3,1 = (0, 0)′ ;

Σ3,1 =


σ 2
3 ρ3,1σ3σ1

ρ3,1σ3σ1 σ 2
1


;

σ1 = 1;

7 Since both (Z3, Z1)T and (Z3, Z1 |X = x )T can be decomposed as AZ + µ, with Z = (X, ξ1, ξ2)T a random vector whose components are independent
standard Normal random variables, A ∈ R2×3 and µ ∈ R2×1 .
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σ3 =


1 + 2


ρ1ρ2ρ3(1 − ρ3);

ρ3,1 =

√
ρ3 +

√
ρ1ρ2(1 − ρ3)

1 + 2
√
ρ1ρ2ρ3(1 − ρ3)

;

µx
3,1 =


√
ρ1ρ3 +


ρ2 (1 − ρ3)


x,

√
ρ1x
′

;

Σx
3,1 =

 
σ x
3

2
ρx
3,1σ

x
3σ

x
1

ρx
3,1σ

x
3σ

x
1


σ x
1

2


;

σ x
1 =


1 − ρ1;

σ x
3 =


ρ3 (1 − ρ1)+ (1 − ρ3) (1 − ρ2);

ρx
3,1 =

1
1 +

(1−ρ2)(1−ρ3)
ρ3(1−ρ1)

.

By N2 (µ,Σ) we denote the bivariate Normal distribution with mean µ and covariance matrix Σ . Write Φ2
µ,Σ for the CDF

of the latter, then, from (36), we get

Lt = h2(Z3) =

B[−1]
a,b


1 −

Φ2
µ3,1,Σ3,1


Z3,Hd

t


Φ

Hd

t
 

; −∞ ≤ Z1 < Hd
t ;

0; Hd
t ≤ Z1 ≤ +∞.

(49)

Note that the inverse z3 = h[−1]
2 (l), for l ∈ (0, 1], can be computed numerically efficiently, thanks to efficient algorithms to

compute the bivariate Normal CDF (cf. [20]).
Then, using (39), (40) and (66), it is a trivial task to verify that

Pr

Lt ≤ l

Z1 ≤ Hd
t , X = x


= 1 −

Φ2
µx
3,1,Σ

x
3,1


h[−1]
2 (l),Hd

t


Φ


Hd
t −

√
ρ1x

√
1−ρ1

 , (50)

Pr [Lt ≤ l |X = x ] = 1 − Φ2
µx
3,1,Σ

x
3,1


h[−1]
2 (l),Hd

t


, (51)

and

E

Lt
Z1 ≤ Hd

t , X = x


=

 1
l=0Φ

2
µx
3,1,Σ

x
3,1


h[−1]
2 (l),Hd

t


dl

Φ


Hd
t −

√
ρ1x

√
1−ρ1

 . (52)

5.4. Gamma one-factor model

In case of the Gamma one-factor model, to be consistent with the previous section, we suggest to use

A(3)T
not.
= A(3)T


A(1), A(2); ρ3


= A(1)ρ3T + A(2)(1−ρ3)T , (53)

where

A(i)t
not.
= A(i)t


Y , χ (i); ρi


= Yρi tT + χ

(i)
(1−ρi)

t
T
, (54)

for i = 1, 2 and t ∈ [0, T ], with ρ1, ρ2, ρ3 ∈ [0, 1] and Y , χ (1), χ (2) i.i.d. shifted Gamma processes, with shape and
scale parameters chosen such E


A(i)t


= 0 and Var

A(i)t


= t . The latter implies that E

A(3)T


= 0 and Var


A(3)T


=

1 + 2min {ρ1ρ3, ρ2 (1 − ρ3)}.
Finally, notice that (53) can not generally be expressed in the form of (42), due to the fact that the Gamma distribution,

and hence the (shifted) Gamma process, do not satisfy the required scaling property. More specifically, recall from (30) that
A(i)t

d
= µg

t
T − XAt , with At ∼ Gamma


αg

t
T , βg


. From this it is apparent that there will generally exist no function g such

that g(c)A(i)t
d
= A(i)ct .

The process A(1) describes the standardized log-return of the credit, i.e. an obligor defaults if A(1)T ≤ Hd
t , whereas the

process A(2) describes the additional effects influencing the loss rate. The latter two risk factors are dependent, since they
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Fig. 2. Pearson correlation between A(3)T and

A(1)T , A

(2)
T


.

are both driven by the common process Y , as compared to a common factor X in the Normal one-factor model. Note that we
actually only need to know the state of the latter process at times ρ1 (for the default driver) and ρ1ρ3, ρ2(1 − ρ3) (for the
loss driver). Hence, our model can also be regarded as one with 3 mutually correlated systematic risk factors Yρ1 , Yρ1ρ3 and
Yρ2(1−ρ3), where the loss rate’s driver A(3)T is implicitly related to the former one, by (56), and explicitly related to the latter
two, by (53). This is both an advantage as well as an unpleasant side-effect and certainly increases the analytical complexity
w.r.t. determining the VaR and DLGD, as mentioned in Section 2.1.

Finally, notice that A(3)T satisfies (38), where

Corr

A(3)T , A

(1)
T


=

ρ3 + min {ρ1, ρ2 (1 − ρ3)}
√
1 + 2min {ρ1ρ3, ρ2 (1 − ρ3)}

≥ 0;

Corr

A(3)T , A

(2)
T


=

(1 − ρ3)+ min {ρ1ρ3, ρ2}
√
1 + 2min {ρ1ρ3, ρ2 (1 − ρ3)}

≥ 0.
(55)

In linewith the third requirement of (38), the above twoexpressions are bounded frombelowbyCorr (Z1, Z2) = min{ρ1, ρ2}.
However, contrary to the Normal one-factor model, the above expressions are not symmetric in ρ1 and ρ2. Fig. 2 depicts the
above linear correlation coefficients, as a function of ρ3 for several pairs (ρ1, ρ2). Obviously, Corr (Z3, Z1) = Corr (Z3, Z2),
for ρ3 = 0.50, only if ρ1 = ρ2. Note also that Corr (Z3, Z1), for the pair (ρ1, ρ2), behaves as Corr (Z3, Z2), for the pair (ρ2, ρ1).
Furthermore, as compared to the Normal one-factor model, in the case of the shifted Gamma model the former correlation
coefficient increases much more slowly and the latter correlation coefficient decreases much more quickly as a function of
ρ3. Hence in the lattermodel, ρ3 dominates the dependence less between A(3)T on the one hand and A(1)T and A(2)T on the other.

Given (53) and (54), and assuming the LGDΛ follows a Beta distribution, the relation between the loss rate and the risk
factor A(3) is given by

Lt = h2


A(3)T


=

B[−1]
a,b

1 −

FA(3)T ,A(1)T


A(3)T ,H

d
t


1 − 0αg ,βg


µg − Hd

t

 ; −∞ ≤ A(1)T < Hd

t ;

0; Hd
t ≤ A(1)T ≤ µg ,

(56)

where the joint CDF of the couple

A(3)T , A

(1)
T


is generally unknown. Indeed, let Gs ∼ Gamma


αg s, βg


, for s > 0, then it

follows from (53) and (54) that

A(3)T
d
= µg −


Gρ3 + G1−ρ3


,

which is not necessarily equal in distribution to µg − G1, since

Corr

Gρ3 ,G1−ρ3


= Corr


A(1)ρ3T , A

(2)
(1−ρ3)T


=

min {ρ1ρ3, ρ2 (1 − ρ3)}
√
ρ3 (1 − ρ3)

≥ 0.
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Hence, unlike the Normal one-factor model, the distribution of the random variate A(3)T that drives the loss rate, and thus

also of the pair

A(3)T , A

(1)
T


, is generally unknown.8 Therefore, in order to be able to determine (the inverse of) h2


A(3)T


we

have to numerically estimate the argument

FA(3)T ,A(1)T


A(3)T ,H

d
t


1 − 0αg ,βg


µg − Hd

t
 = F

A(3)T

A(1)T ≤Hd
t


A(3)T


. (57)

Once we have constructed the above conditional CDF, it is straightforward to determine the inverse a3 = h[−1]
2 (l), for

l ∈ (0, 1].
Finally, let y (ω) be a particular realization of the process Y , then, Eqs. (39), (40) and (66) lead to

Pr

Lt ≤ l

A(1)T ≤ Hd
t , Y = y (ω)


= 1 −

Pr

A(3)T ≤ h[−1]

2 (l), A(1)T ≤ Hd
t |Y = y(ω)


Pr

A(1)T ≤ Hd

t |Y = y(ω)


=
0ϱ1αg ,βg [g (u1, v1, w1)] − 0ϱ1αg ,βg ,ϱ2αg ,βg ,ρ [g (u1, v1, w1) , g (u2, v2, w2)]

1 − 0ϱ2αg ,βg [g (u2, v2, w2)]
, (58)

Pr [Lt ≤ l |Y = y (ω) ] = 0ϱ1αg ,βg [g (u1, v1, w1)] + 0ϱ2αg ,βg [g (u2, v2, w2)]
−0ϱ1αg ,βg ,ϱ2αg ,βg ,ρ [g (u1, v1, w1) , g (u2, v2, w2)] , (59)

and

E

Lt
A(1)T ≤ Hd

t , Y = y (ω)


= 1 −

 1
l=0


0ϱ1αg ,βg [g (u1, v1, w1)] − 0ϱ1αg ,βg ,ϱ2αg ,βg ,ρ [g (u1, v1, w1) , g (u2, v2, w2)]


dl

1 − 0ϱ2αg ,βg [g (u2, v2, w2)]
, (60)

with

ϱ1 = (1 − ρ1) ρ3 + (1 − ρ2) (1 − ρ3) ∈ (0, 1) ,
ϱ2 = (1 − ρ1) ∈ (0, 1) ,

ρ = ρ3


ϱ2

ϱ1
∈ (0, 1) ,

ui = ϱiµg , i = 1, 2,

v1 = h(−1)
2 (l),

v2 = Hd
t ,

w1 = yρ1ρ3 + yρ2(1−ρ3),
w2 = yρ1 ,
g (u, v, w) = u − v + w,

and 0m,n the CDF of a Gamma distribution with shape parameter m > 0 and scale parameter n > 0 and 0m1,n1,m2,n1,ρ the
joint CDF of a pair (G1,G2), with Corr [G1,G2] = ρ ∈ (0, 1), where Gi follows a Gamma distribution with shape parameter
mi > 0 and scale parameter ni > 0.

In order to compute the latter bivariate CDF we use five parameter bivariate Gamma CDF in [22], i.e. let Gi ∼

Gamma (mi, ni) , i = 1, 2, with Corr [G1,G2] = ρ ≥ 0, then, provided thatm1 < m2,

0m1,n1,m2,n2,ρ [g1, g2] = Pr [G1 ≤ g1,G2 ≤ g2] ,

= ψ

+∞−
j=0

+∞−
k=0

cj,kH

m1 + k,

n1g11g1>0

1 − η



×H

m2 + j + k,

n2g21g2>0

1 − η


; 0 ≤ ρ <


m1

m2
, (61)

8 Though it is possible, in some cases, to determine the CDF of a sum of correlated Gamma random variables. Alouini et al. [21], among others, consider
the case of equal shape parameters.



2536 G. Van Damme / Journal of Computational and Applied Mathematics 235 (2011) 2523–2550

Table 1
Basel II capital charges.

PD Chargeα
E [LGD] = 10 E [LGD] = 60

1 2.10 12.61
5 3.22 19.32

10 4.05 24.28
25 4.94 29.61

with

η = ρ


m2

m1
∈ [0, 1) ,

ψ =
(1 − η)m2

0(m1)0 (m2 − m1)
,

cj,k =
ηj+k0 (m2 − m1 + j)
j!k!0 (m2 + j + k)

,

where 0 (·) is the Gamma function and H(·, ·) is the lower incomplete Gamma function, defined as

H(a, z) =

∫ z

s=0
sa−1e−sds.

Note that the requirement m1 < m2 is necessary in order to avoid the poles 0,−1,−2, . . . of the Gamma function in
computing ψ and cj,k. The limit case where m1 = m2 = m, which occurs if ρ1 = ρ2 or ρ3 = 1, can be dealt with using the
four parameter bivariate Gamma CDF in [22], i.e.,

0m,n1,m,n2,ρ [g1, g2] = ψ +∞−
k=0

ckH m + k,
n1g11g1>0

1 − ρ


H

m + k,

n2g21g2>0

1 − ρ


; 0 ≤ ρ < 1, (62)

with ψ =
(1 − ρ)m

0(m)
,

ck =
ρk

k!0 (m + k)
.

Finally, it is left as an exercise to the reader to verify that the association parameter η = ρ3, if ϱ1 > ϱ2 (or equivalently
ρ1 > ρ2) and that η = ρ3

ϱ2
ϱ1

=
1

1+ (1−ρ2)(1−ρ3)
ρ3(1−ρ1)

, if ϱ1 ≤ ϱ2. Hence, by construction, we always have η ∈ (0, 1). Note that the

boundary cases ρ3 = 1 or ρ2 = 1 imply η = 1, whereas ρ3 = 0 or ρ1 = 1 imply η = 0.

6. Numerical results

In this section we implement stochastic recovery in the Normal one-factor model and the (shifted) Gamma one-
factor model. In a first, Basel II-oriented, experiment, we will examine the sensitivity of the required capital charge, i.e.
VaRα(Lt)− E [L], and the DLGD, at level α = 99.99%, to changes in the expected value of the LGD (assumed to be Beta(a, b)
distributed), the PD and the correlation coefficients ρi, i = 1, 2, 3. In a second, CDO base-correlation curve-oriented,
experiment we will compare the relation between the CLGD and the systematic factor induced by our framework to the
corresponding LGD(C)-curves according to Amraoui and Hitier [14] and Andersen and Sidenius [10].

6.1. Basel II: sensitivity analysis

In this section we will look at the sensitivity of the required capital charge, i.e. VaRα(Lt) − E [L], and the DLGD, at level
α = 99.99%, to changes in the expected value of the LGD, the PD and the correlation coefficients ρi, i = 1, 2, 3; both under
the Normal one-factor model and the Gamma one-factor model. Furthermore, we will compare the model values for the
required capital to the requirements under the Basel II Capital Accord. The latter are summarized in Table 1 (all figures in
%), for varying PDs and varying (expected) LGDs. Note that the original formulas use α = 99.9% instead of 99.99% (cf. Basel
Committee on Banking Supervision [23]).

Unless specifically stated otherwise, the following parameters will be used throughout this section:

• T = 1 year;
• PD not.

= pdT = 25%;
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Table 2
Capital charge, VaR and DLGD at level α = 99.99% for the Normal one-factor model (ρ1 = ρ2 fixed).

PD CPD ρ3 E [LGD] = 10 E [LGD] = 60
Chargeα VaRα DLGDα Chargeα VaRα DLGDα

1 22.01
0 5.15 5.25 22.62 15.06 15.66 70.16

50 5.40 5.50 24.46 14.87 15.78 71.34
100 3.34 3.34 15.63 13.62 14.22 64.62

5 37.20
0 7.99 8.49 22.84 23.19 26.19 70.40

50 8.61 9.10 24.96 23.01 26.53 71.67
100 5.49 5.99 16.09 21.17 24.17 64.98

10 50.47
0 10.59 11.59 23.79 29.56 35.56 70.46

50 11.65 12.60 25.01 29.53 36.14 71.71
100 7.51 8.50 16.84 27.09 33.09 65.56

25 74.36
0 15.19 17.69 23.84 37.76 52.76 70.96

50 17.60 19.93 26.80 38.53 54.00 72.63
100 11.55 14.03 18.87 34.88 49.88 67.08

• E [LGD] = 60%;
• Var [LGD] = 1%;
• ρ3 = 50%;
• αg = 1,

where the latter is the shape parameter of the Gamma one-factor model. The above parametrization implies that a =

0.8, b = 7.2, βg =
√
αg = 1 and µg =

αg
βg

= 1. Furthermore, the exposures to the common risk factor(s) are
assumed to be equal and set according to the rule for sovereign exposures, outlined in the Basel II Capital Accord (2003), i.e.
ρ1 = ρ2 = ρse(PD), where

ρse
not.
= ρse(PD) =

1 − e−50PD

1 − e−50
0.12 +


1 −

1 − e−50PD

1 − e−50


0.24, (63)

which yields ρse(0.25) = 12%, under the above parameter setting.
Finally, note that, as a consequence of setting the confidence level at 99.99%, the CPD of the Gamma one-factormodel will

be equal to 100%, for every PD ∈ [0, 1], provided ρse(PD) > 4.56e−4. To see this, recall that VaRα(Lt) = κ

F [−1]
C (1 − α)


,

with C the common factor. In case of the Gamma one-factor model, using the above parameter setting, the latter is
represented by Yρse and it can be shown that

F [−1]
Yρse

(1 − α) = ρseµg − 0
[−1]
αgρse,βg

(α). (64)

Moreover we already mentioned that the CPD of the Gamma one-factor model will be equal to 100%, independent of the
idiosyncratic factor, if the realization yρse of the common factor satisfies yρse ≤ ρseµg − Hd

T , which, by (64), is equivalent to

0
[−1]
αgρse,βg

(α) ≥ Hd
T = µg −0

[−1]
αg ,βg

[1 − PD]. The latter, on its turn, is equivalent to PD ≤ 1−0αg ,βg


µg − 0

[−1]
αgρse,βg

(α)

, from

which the above assertion follows, since µg − 0
[−1]
αgρse,βg

(α) = 0, for α = 99.99%, if ρse(PD) > 4.56e−4.
Tables 2 and 3 (all figures in %) show the required capital charges, the VaR of the loss rate and the DLGD,withα = 99.99%,

for varying PDs and varying expected LGDs at different levels of ρ3, with ρ1 = ρ2 = ρse(PD), under the Normal one-factor
model and the Gamma one-factor model, respectively. Tables 4 and 5 (all figures in %) give the results for ρ3 = 1 and
ρ1 = ρ2 = kρse(PD), for k = 1, 2, 4, providing an insight into the impact of the dependence on the systematic factor(s).

Firstly, all tables clearly show that the capital charges under a model that takes DLGD into account are (significantly)
higher than their Basel II equivalents (cf. Table 1), irrespective of the applied correlations. Note, in this regard, that the DLGD
is always higher than the expected LGD, where the latter difference increases with the PD. Hence, the potential for realized
LGDs to be higher than average during times of high default rates may be a material source of unaccounted credit losses for
some exposures or portfolios.

Moreover, the relative difference between the expected LGD and the DLGD is much higher at lower values of the former.
This can be seen by comparing the figures, obtained by the Normal (Gamma) one-factor model, for E[LGD] = 10%, to those
for E[LGD] = 60%. In the former case, the DLGD is approximately between 1.5 (2.4) and 2.5 (5.3) times E[LGD], whereas
in the latter case, the DLGD is approximately between 1.08 (1.18) and 1.17 (1.4) times E[LGD]. The latter comparison also
reveals that the (heavy-tailed) Gamma one-factor model produces substantially higher DLGDs, VaRs and capital charges
than the Normal one-factor model.

Secondly, as for the impact of ρ3, and hence a selection between the comonotonic [6] model (ρ3 = 1), intermediate
models (ρ3 ∈ (0, 1)) and the Hillebrand [19]-type model (ρ3 = 0), from Tables 2 and 3 it is apparent that the Tasche model
systematically produces lower capital charges and lower DLGDs, whereas the figures produced by intermediate models and
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Table 3
Capital charge, VaR and DLGD at level α = 99.99% for the Gamma one-factor model (ρ1 = ρ2 fixed).

PD CPD ρ3 E [LGD] = 10 E [LGD] = 60
Chargeα VaRα DLGDα Chargeα VaRα DLGDα

1 100 0 38.60 38.62 38.62 78.63 78.77 78.77
100 23.88 23.95 23.95 70.40 70.79 70.79

5 100 0 48.50 48.59 48.59 79.63 80.27 80.27
100 34.68 34.93 34.93 77.17 78.65 78.65

10 100 0 51.50 51.68 51.68 80.19 81.45 81.45
100 38.98 39.44 39.44 76.33 79.02 79.02

25 100 0 52.11 52.63 52.63 80.33 83.61 83.61
100 45.48 46.60 46.60 73.88 80.26 80.26

Table 4
Capital charge and DLGD at level α = 99.99% for the Normal one-factor model (ρ3 = 1 fixed).

PD CPD k × ρse E [LGD] = 10 E [LGD] = 60
Chargeα DLGDα Chargeα DLGDα

1
22.01 1 3.34 15.63 13.62 34.62
49.13 2 9.22 18.97 35.35 67.07
97.52 4 17.96 23.15 72.13 74.58

5
37.20 1 5.49 16.09 21.17 64.98
61.45 2 11.77 19.97 38.62 67.73
93.24 4 19.06 24.25 65.70 73.69

10
50.47 1 7.51 16.84 27.09 65.56
73.49 2 14.74 21.41 44.49 68.71
96.51 4 22.36 26.40 66.52 75.14

25
74.36 1 11.55 18.87 34.88 67.08
90.59 2 20.31 25.16 49.47 71.17
99.58 4 28.44 31.76 63.05 78.38

Table 5
Capital charge and DLGD at level α = 99.99% for the Gamma one-factor model (ρ3 = 1 fixed).

PD CPD k × ρse E [LGD] = 10 E [LGD] = 60
Chargeα DLGDα Chargeα DLGDα

1 100
1 23.88 23.95 70.40 70.79
2 30.25 30.34 77.90 78.43
4 37.29 37.40 77.89 78.48

5 100
1 34.68 34.93 77.17 78.65
2 39.36 39.75 76.71 79.02
4 50.20 50.68 76.89 79.91

10 100
1 38.98 39.44 76.33 79.02
2 43.99 44.72 75.54 79.78
4 50.54 51.48 76.88 82.21

25 100
1 45.48 46.60 73.88 80.26
2 50.22 52.00 72.23 82.60
4 52.58 54.92 75.18 89.20

theHillebrand [19]-typemodel are comparable,with a slight tendency for intermediatemodels to producemarginally higher
values. On the other hand, the relative increase of the capital charge, the VaR and the DLGD as a function of PD appears to be
proportional to ρ3 and hence is maximal at ρ3 = 100%. This is, of course, due to the fact that ρ3 dominates the dependence
between defaults and losses. Finally, note that the sensitivities w.r.t. ρ3 and the PD, discussed in this paragraph, hold for both
the Normal one-factor model and the Gamma one-factor model and that, especially in the former case, the relative increase
of the capital charge and the DLGD, as a function of these parameters, is again more significant at lower values of E[LGD].
From this we conclude that inducing a higher correlation between defaults and losses, will result in a lower capital charge,
for a given PD, but, simultaneously, will cause capital charges and DLGDs to increase faster as a function of PD.

Next, Tables 4 and 5, depicting the dependence of the capital charge, VaR and DLGD w.r.t. ρse, i.e. the exposure to
the systematic risk(s), show no surprises. In line with one’s expectations, increasing the latter exposure, and thereby the
dependence between obligors, results in higher capital charges and DLGDs. Note, again, that the increase as a function of PD
of the above quantities is more significant in the Normal one-factor model. This is of course due to the fact that the absolute
figures are substantially lower in the latter case, but can also be attributed to the different dependency structure underlying
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both models (cf. Figs. 1 and 2). Notice, finally, that the case ρ3 = 50% (or in general ρ3 ∈ (0, 1)) is not covered in the case
of the Gamma one-factor model (cf. Table 3), in order to avoid having to deal with 2 systematic risk factors. Though it is
theoretically possible to express the expected loss and hence the VaR by a function of two systematic factors (cf. [17]).

Finally, as already mentioned repeatedly before, the Gamma one-factor model, due to the apparent skewness and fat-
tailedness of its underlying distribution, produces substantially higher capital charges andDLGDs as compared to theNormal
one-factor model. Hence, besides accounting for stochastic LGD, when assessing a portfolio’s credit risk, using stochastic
processes based on an underlying distribution that takes skewness and fat tail-behavior into account, adds an additional
level of safety to determining an adequate capital requirement.

6.2. CDO base correlation

In this section we will briefly compare our stochastic LGD approach to two models used in practice, i.e. the
Amraoui–Hitier [14]model (BNP Paribas) and the Andersen–Sidenius [10]model (Bank of America). Bothmodels are initially
developedwithin a CDOvaluation-context, with the goal of flattening the so called base-correlation curve. The latter is found
by calibrating, e.g., the Normal one-factor model, to the price of a first loss tranche (FLT), i.e. to the sum of all standardized
tranches up to an attachment point (e.g. the 0%–6% FLT follows from the sum of 0%–3% and 3%–6% tranches). The curve
of correlations obtained by calibrating to first loss tranches is called the base-correlation curve and turns out to be much
smoother and more stable than that obtained by calibrating to plain tranches.

We will start with a short discussion of the latter approaches and indicate the significant differences and shortcomings
w.r.t. our approach. Already by construction, our framework turns out to be both more general and more flexible. Next, we
will show that our model can easily reproduce the results generated by either of the former two models. In this respect,
in a CDO valuation-context it suffices to concentrate on the CLGD. Indeed, CDO pricing models are typically based on a
Monte-Carlo simulation, where in each iteration a level for the systematic factor(s) C is drawn, that is then used as an input
in the generation of the assets’ standardized return R1 (C, I; ρ1) and, assuming stochastic LGD, the generation of the LGD
conditional on C . Hence, we only need to verify if our model can reproduce random LGD(C)-curves generated by any of the
above discussed models. This then, heuristically, provides evidence to state that our framework can also be used to derive
stable (flat) base-correlation curves, with the same rate of success as the Amraoui–Hitier model and the Andersen–Sidenius
model.

6.2.1. A brief review
Recall that according to our framework (cf. Section 5.2)

LGD = Λ = h2(R3) = F [−1]
Λ


1 −

FR3,R1

R3,Hd

t


pdt


, (65)

and

E [ LGD| C = c] =

 λu
l=λl

Pr

R3 ≤ h[−1]

2 (l), R1 ≤ Hd
t

 C = c

dl

Pr

R1 ≤ Hd

t

 C = c
 , (66)

provided that inf(R1) ≤ R1 < Hd
t , where the random variable Λ is distributed according to a law D with bounded support

[λl, λu] ⊆ [0, 1]. Hence, our model can deal with any possible scenario of lower and/or upper bounds on the LGD. Moreover,
it is possible to cover all of these scenarios under the assumption that Λ follows a Beta (a, b) distribution, having support
[0, 1], by simply transforming the latter, such that

LGD = λl + (λu − λl)Λ,

where the parameters a, b > 0 are set in order to match predetermined values, e.g. based on historical observations, of the
expected value and variance of the LGD. Note that, theoretically,

a =
µΛ

σ 2
Λ

[µΛ (1 − µΛ)] ;

b =
1 − µΛ

σ 2
Λ

[µΛ (1 − µΛ)] ,
(67)

with

µΛ =
µLGD − λl

λu − λl
;

σ 2
Λ =


σLGD

λu − λl

2

,

with µX the expected value of X and σ 2
X the variance of X , for any random variable X .
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6.2.2. Amraoui and Hitier [14]
In this work, the LGD is linked directly to the common factor of the underlying Normal one-factor default model

through a deterministic function based on a recovery mark down (MD) argument and an appropriate transformation of
the (un)conditional default probability.

Assume, as before, that default is governed by the random variable R1(C, I; ρ1). Furthermore, let Rec denote the stripping
recovery, e.g. 40%, and gρ1 (p; c) the CPD, given C = c , corresponding to the unconditional default probability p. Then, the
LGD, conditional on C = c , is given by

LGD(c) = (1 − Rec(c)) =

1 − Rec gρ1 p̃dt ; c

gρ1

pdt ; c

 , (68)

with p̃dt =
1−Rec
1−Recpdt , such that the expected recovery conditional on default is the same as the mid recovery Rec, and

0 ≤ Rec ≤ Rec a recovery mark down.
Note that, contrary to our method, the above model does not require the specification of the recovery distribution.

This clearly reduces the analytical complexity, but comes at the cost of reduced model flexibility. Furthermore, mark that
LGD(c) ∈ [0, 1 − Rec] and is hence bounded from above by 1 − Rec, but there is no obvious way to bound the LGD from
below, unlike our model.

6.2.3. Andersen and Sidenius [10]
In line with the framework discussed in this text, the latter authors achieve stochastic LGD through a (multi-)factor

model, sharing one (or more) latent variable(s) with the structural model for default, which is then mapped onto [0, 1] by
some function F . In the case of the standard Gaussian copula model, F is set to be the standard Normal CDF, leading to

Z1 =


θasX +


1 − θasξ1;

Z2 = µas + ϑasX + νasξ2;

LGD = lmax (1 − Φ [Z2]) ,
(69)

with lmax ∈ (0, 1] an upper bound on the LGD, θas ∈ (0, 1), µas ∈ R, ϑas ∈ R, νas > 0 and X, ξ1, ξ2
i.i.d.
∼ N (0, 1). Recall

that default occurs when Z1 hits the default barrier Hd
t . Furthermore, notice that Φ [Z2] describes the recovery rate (Rec).

Note, also, that (69) is related to the Hillebrand [19]-type model, which, apart from the final mapping onto the LGD, can
be recovered by setting µas = 0, νas =


1 − ϑ2

as, assuming ϑas ∈ [0, 1]. Notice, however, that under the latter two
models, contrary to our framework (65) and the Amraoui–Hitier model (68), there is no explicit link between the LGD and
the unconditional default probability pdt .

Furthermore, assuming that Lt = 1 − Rec and that Pr

Lt = 0

1d
t = 0


= 1, it follows from Andersen and Sidenius [10]

that

E [LGD |X = x ] =

∫ lmax

l=0
Φ

[
Φ[−1] [1 − l] − µas − ϑasx

νas

]
dl. (70)

It should be mentioned that the latter authors actually derive an expression for the expected value of the Recovery-Given-
Default (RGD). In this respect, the above requirements w.r.t. Lt are necessary to ensure that E [LGD |X ] = 1 − E [RGD |X ].
Note that the latter expression closely resembles the corresponding formula in the Hillebrand [19]-type setting, under the
Normal one-factor model, of our general framework (cf. Appendix A.2.3). The only difference is in the use of Φ[−1] [1 − l]
instead of h[−1]

2 (l).
Some concluding remarks. Note, from (69), that it is unclear what the distribution of the LGD is. Furthermore, though the

factor lmax allows one to bound the LGD from above, also in this model there is no obvious consistent solution to bound the
LGD from below. Moreover, note from (69) that Z2 will generally not be standard Normally distributed and, as such, Φ [Z2]
will not be uniform on the entire interval [0, 1]. Hence, evenwhen lmax = 1, the LGDwill be restricted to a regionL ⊆ [0, 1].
Some of the latter issues may be solved, following the methodology exhibited in this text, by an additional mapping of the
image of the function F through the quantile function of a distribution with bounded support [λl, λu] ⊆ [0, 1]. Finally, as
for the use of the standard Normal distribution to map the recovery onto the interval [0, 1], the authors are aware that the
use of a cumulative Gaussian distribution may be unconventional, but note that the more traditional choice of a specification
in terms of the beta-distribution leads to a less tractable model. However, it is our opinion that the latter statement is rather
arbitrary.

6.2.4. Numerical results
In this section, we examine the impact of the systematic factor X (Yρ1 ) on the conditional expected value of the LGD, in

case of the Normal one-factor model (Gamma one-factor model). In the former case, the LGD(C)-curves will be compared
to the ones obtained with the models discussed in Sections 6.2.2 and 6.2.3.
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The following parameters are used:

• PD = 10%;
• E[LGD] = 60%;
• Var[LGD] = 4%;
• λl = 0%;
• λu = 90%;
• ρ1 = 20%;
• ρ2 = 20%;
• ρ3 ∈ {0%, 50%, 100%};
• αg = 1.

Moreover, regarding our framework, we will assume that Λ ∼ Beta (a, b), with a ≈ 2.333 and b ≈ 1.167 (cf. (67)).
Concerning the Amraoui–Hitier model, the above parametrization implies that Rec = 10% and Rec = 40%. Furthermore,
the parameters of the Andersen–Sidenius model are set in order to resemble the Hillebrand [19]-type model, i.e.

• µas = 0;
• ϑas =

√
ρ2;

• νas =

1 − ϑ2

as.

The resulting LGD(C)-curves, for the Normal one-factor model, are shown in Fig. 4. Fig. 3 gives the corresponding CPDs
g (p; c) (cf. (68)). For illustrative purposes, in case of the Amraoui–Hitier model, we plotted both the case without a mark
down (MD) and the case with a MD. In the former case, though the LGD is dependent on X , it is still bounded from above by
one minus the mid recovery, i.e. 1 − Rec = 60%, and even a ρ1 = 100% scenario would not be able to give spreads for the
[60% 100%] super duper tranche. The MD approach, as well as the Andersen–Sidenius model and the framework presented
in this text clearly overcome this problem, generating CLGDs in the entire spectrum between λl and λu that are consistent
with the movement of the systematic risk X , i.e. losses are negatively correlated to X (and hence to R1).

Furthermore, notice that both the Amraoui–Hitier MD approach and the comonotonic [6] model, i.e. ρ3 = 1, generate
(unrealistically) high CLGDs at levels of X corresponding to an almost zero CPD. This is a direct consequence of the rather
low exposure ρ1 = 20% to the systematic risk. This was already acknowledged by the former authors, who state thatWhen
default correlation tends to 0%, the curve tends to be flat and the recovery is fixed. When the correlation tends to 100%, the curves
are steep functions, and the recovery density has a Dirac atR, with weights such that the recovery conditional on default is R. It
is apparent that the Andersen–Sidenius model, the Hillebrand [19]-type model and intermediate ρ3 ∈ (0, 1) are less prone
to this effect, and produce more realistic, or at least more traditional, sigmoid LGD(C)-curves.

Finally, mark that the latter type of models appear to generate LGD(C)-curves that (generally) lie between the
corresponding curves produced by the Amraoui–Hitier model and the Andersen–Sidenius model. Hence, the latter can, to
some extent, be regarded as bounds on the former. It is also clear that the former’s LGD(C)-curves closely resemble the ones
by Andersen–Sidenius. Hence, it makes sense to implement our framework within CDO valuation models to obtain flat(ter)
base correlation curves.

W.r.t. the shifted Gamma one-factor model, Figs. 6 and 7, respectively, show the CPD and the CLGD as a function of the
common factor Yρ1 of the default driver A(1)T . Note that, given the above parameter setting, in the case ρ3 = 50% we actually
have two correlated systematic factors Y ρ1

2
and Yρ1 . In order to clearly isolate the impact of the latter, the former is replaced

by its conditional expected value, conditional on the latter, i.e. by

E

Y ρ1

2

Yρ1 = yρ1


=

 ρ1
2 µg

y=yρ1−
ρ1
2 µg

yγ ρ1
2 αg ,βg


ρ1
2 µg − yρ1 + y


γ ρ1

2 αg ,βg


ρ1
2 µg − y


dy

γρ1αg ,βg

ρ1µg − yρ1

 , (71)

for an arbitrary realization yρ1 of Yρ1 , where γm,n is the probability density function of the Gamma distribution with shape
parameter m and scale parameter n. The latter is graphed at Fig. 5. Note the very strong positive correlation, which can be
shown to be 1

√
2
, between both risk factors.

Now, returning to Figs. 6 and 7, several remarks can be made. First of all, both the CPD and the CLGD increase much
faster as a function of the systematic risk than their equivalents under the Normal one-factor model. As compared to the
latter framework, in the former case, the curves are convex/concave, instead of showing the typical sigmoid shape. This
explains why the DLGDs and the capital charges generated by the latter model are much higher than their Normal one-
factor equivalents (cf. Section 6.1).

Furthermore, notice, in this respect, that the CPD almost immediately hits 100% and that the models with ρ3 > 0 show
some unexpected behavior to the right of this Armageddon point. Indeed, in the area where the CPD is less than 100%, under
the latter models, the CLGD is positively correlated to Yρ1 . Moreover, comparing the curves corresponding to ρ3 = 50% and
ρ3 = 100% shows that this effect is manifested more significantly for increasing values of the latter parameter, reaching its
peak at the comonotonic (Tasche) model. However, though unexpected and potentially unwelcome, one should not worry
over this behavior, as it is completely ruled out after multiplying the CLGD with the CPD, to obtain the conditional loss
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Fig. 3. CPD as a function of the systematic risk X (Normal one-factor model).

rate (CL), which, in the end, is the true variable of interest. The latter is shown, as a function of Yρ1 , in Fig. 8. Note that the
previously discussed effect has vanished completely.

Finally, to get some intuition about the combined effect of the pair

Yρ1 , Y ρ12


of risk factors, in Figs. 9 and 10, we plotted

the CLGD and the CL as a function of the latter pair. From the former figure, it is apparent that Yρ1 is dominating the CLGD,
which is obviously negatively correlated to the latter, whereas Y ρ1

2
has almost no impact, unless at very small values, where

it appears to be positively correlated to the CLGD. The conclusion changes when looking at the CL, which appears to bemore
sensitive to Y ρ1

2
. Furthermore, the CL is clearly negatively correlated to both Y ρ1

2
and Yρ1 , reaching a maximum when both

factors approach their respective infimum.

7. Conclusion

In this text we have introduced a flexible framework to extend the traditional structural models for assessing (portfolio)
credit risk and pricing financial derivatives in order to take into account stochastic LGD, regardless of the latter’s distribution,
provided its support is a compact subset of [0, 1]. Ourmethod essentially relies on a common dependence of the LGD and the
PD on a latent variable, representing the systemic risk. The latter dependence is governed by three correlation parameters
ρ1, ρ2 and ρ3 which allow one to capture a whole spectrum of stochastic LGD models.

We argued that most of the existing models for stochastic LGD can be cast in the framework presented in this text
and, moreover, that the latter framework produces results, w.r.t. capital charges and DLGDs, that are consistent both with
the Basel II Capital Accord and with recently developed models. Furthermore, it is apparent that, construction-wise, our
framework induces greater flexibility and that regarding numerical efficiency, it certainly does not underperform currently
existing methods.

Not only does our framework produce results consistent with existing methods, it also sheds light on the impact of
using stochastic processes based on fat-tailed underlying distributions. The dramatic increase of the capital charges and
the DLGD, caused by the latter models, accentuates the importance of granting sufficient weight to extreme downward
movements of the economy, whether globally, regionally or within a certain industry. Traditional models, based on the
Normal distribution, are clearly incapable of capturing these shocks and as such, even though accounting for stochastic
LGD, often severely underestimate the required economic capital. A paradigm which has been proven right by the current
global financial crisis. Therefore, we claim that extending the contemporary models to be able to deal with downturn LGD
is insufficient. Only models based on the combined force of a fat-tailed underlying distribution and stochastic LGD can yield
adequate capital requirements.

Appendix

In this Appendix we summarize the expressions for
• the relation h2 between Lt and R3;
• the conditional distribution function of the loss given default, conditional on C = c;
• the conditional expected value of the loss given default, conditional on C = c ,
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Fig. 4. CLGD as a function of the systematic risk X (Normal one-factor model).

Fig. 5. Conditional expected value of Y ρ1
2

given Yρ1 (Gamma one-factor model).

in

(1) the general case, i.e. ρ1 ∈ [0, 1) and ρ2, ρ3 ∈ [0, 1];

(2) the comonotonic case, i.e. ρ1 ∈ [0, 1) and ρ3 = 1;

(3) the model of Hillebrand [19], i.e. ρ2 ∈ [0, 1) and ρ3 = 0;

(4) the three-factor model, i.e. ρ1 ∈ [0, 1), ρ3 ∈ [0, 1] and ρ2 = 0.

Appendix A.1 provides themodel independent formulas, assuming the LGD follows a distribution FΛwith support [λl, λu] ⊆

[0, 1]. Appendices A.2 and A.3, in turn, implement the formulas for the Normal one-factor model and the Gamma one-factor
model, assuming the LGD follows a distribution FΛ with support [λl, λu] ⊆ [0, 1].
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Fig. 6. CPD as a function of the systematic risk Yρ1 (Gamma one-factor model).

Fig. 7. CLGD as a function of the systematic risk Yρ1 (Gamma one-factor model).

A.1. Model independent formulas

A.1.1. The general case
Note that

R3
not.
= R3 (R1, R2; ρ3) ,

with

R1
not.
= R1 (C, I; ρ1) ;

R2
not.
= R2 (C, J; ρ2) .
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Fig. 8. Conditional loss rate as a function of the systematic risk Yρ1 (Gamma one-factor model).

Fig. 9. CLGD as a function of the systematic risks Yρ1 and Y ρ1
2

(Gamma one-factor model).

We have,

Lt = h2(R3) =

F [−1]
Λ


1 −

FR3,R1

R3,Hd

t


pdt


; inf(R1) ≤ R1 < Hd

t ;

0; Hd
t ≤ R1 ≤ sup(R1),

Pr

Lt ≤ l| R1 ≤ Hd

t , C = c


= 1 −

Pr

R3 ≤ h[−1]

2 (l), R1 ≤ Hd
t

 C = c


Pr

R1 ≤ Hd

t

 C = c
 ,

Pr [ Lt ≤ l| C = c] = 1 − Pr

R3 ≤ h[−1]

2 (l), R1 ≤ Hd
t

 C = c

,

E

Lt | R1 ≤ Hd

t , C = c


=

 λu
l=λl

Pr

R3 ≤ h[−1]

2 (l), R1 ≤ Hd
t

 C = c

dl

Pr

R1 ≤ Hd

t

 C = c
 .
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Fig. 10. Conditional loss rate as a function of the systematic risks Yρ1 and Y ρ1
2

(Gamma one-factor model).

A.1.2. The comonotonic case [6]
Note that R3 ≡ R1.

We have,

Lt = h2(R3) =

F [−1]
Λ


1 −

FR3(R3)

pdt


; inf(R1) ≤ R1 < Hd

t ;

0; Hd
t ≤ R1 ≤ sup(R1),

Pr

Lt ≤ l| R1 ≤ Hd

t , C = c


= 1 −

Pr

R3 ≤ h[−1]

2 (l)
 C = c


Pr

R1 ≤ Hd

t

 C = c
 ,

Pr [ Lt ≤ l| C = c] = 1 − Pr

R3 ≤ h[−1]

2 (l)
 C = c


,

E

Lt | R1 ≤ Hd

t , C = c


=

 λu
l=λl

Pr

R3 ≤ h[−1]

2 (l)
 C = c


dl

Pr

R1 ≤ Hd

t

 C = c
 .

A.1.3. Hillebrand [19]-type model
Note that R3 ≡ R2.

We have,

Lt = h2(R3) =

F [−1]
Λ


1 −

FR3,R1

R3,Hd

t


pdt


; inf(R1) ≤ R1 < Hd

t ;

0; Hd
t ≤ R1 ≤ sup(R1),

Pr

Lt ≤ l

R1 ≤ Hd
t , C = c


= 1 − Pr


R3 ≤ h[−1]

2 (l)
 C = c


,

Pr [ Lt ≤ l| C = c] = Pr

Lt ≤ l

R1 ≤ Hd
t , C = c


pd,ct +


1 − pd,ct


,

E

Lt
R1 ≤ Hd

t , C = c


=

∫ λu

l=λl
Pr

R3 ≤ h[−1]

2 (l)
 C = c


dl.

Note, from the second equation, that in the Hillebrand [19]-type model the conditional distribution of the LGD, given a level
of the common factor, is independent of the random variable R1 driving default.

A.1.4. The three-factor model
Note that R3

not.
= R3 (R1, J; ρ3).

Note that R3 and R1 are still dependent, even conditional on C = c , since they also share the random variable I , i.e. within a
fixed obligor, defaults and losses are dependent through the shared idiosyncratic factor. Hence, setting ρ2 = 0 only changes



G. Van Damme / Journal of Computational and Applied Mathematics 235 (2011) 2523–2550 2547

the dependency structure between R1 and R3 (without necessarily making them independent) and therefore the formulas
from Appendix A.1.1 can’t generally be simplified.

A.2. Normal one-factor model

A.2.1. The general case
Note that

Z3
not.
= Z3 (Z1, Z2; ρ3) =

√
ρ3Z1 +


1 − ρ3Z2,

with, for i = 1, 2,

Zi
not.
= Zi (X, ξi; ρi) =

√
ρiX +


1 − ρiξi,

where X, ξ1 and ξ2 are i.i.d. standard Normally distributed. We have,

Lt = h2(Z3) =

F [−1]
Λ


1 −

Φ2
µ3,1,Σ3,1


Z3,Hd

t


Φ

Hd

t
 

; −∞ ≤ Z1 < Hd
t ;

0; Hd
t ≤ Z1 ≤ +∞,

Pr

Lt ≤ l

Z1 ≤ Hd
t , X = x


= 1 −

Φ2
µx
3,1,Σ

x
3,1


h[−1]
2 (l),Hd

t


Φ


Hd
t −

√
ρ1x

√
1−ρ1

 ,

Pr [ Lt ≤ l| X = x] = 1 − Φ2
µx
3,1,Σ

x
3,1


h[−1]
2 (l),Hd

t


,

E

Lt
Z1 ≤ Hd

t , X = x


=

 λu
l=λl

Φ2
µx
3,1,Σ

x
3,1


h[−1]
2 (l),Hd

t


dl

Φ


Hd
t −

√
ρ1x

√
1−ρ1

 ,

with,

µ3,1 = (0, 0)′ ;

Σ3,1 =


σ 2
3 ρ3,1σ3σ1

ρ3,1σ3σ1 σ 2
1


;

σ1 = 1;

σ3 =


1 + 2


ρ1ρ2ρ3(1 − ρ3);

ρ3,1 =

√
ρ3 +

√
ρ1ρ2(1 − ρ3)

1 + 2
√
ρ1ρ2ρ3(1 − ρ3)

;

µx
3,1 =


√
ρ1ρ3 +


ρ2 (1 − ρ3)


x,

√
ρ1x
′

;

Σx
3,1 =

 
σ x
3

2
ρx
3,1σ

x
3σ

x
1

ρx
3,1σ

x
3σ

x
1


σ x
1

2


;

σ x
1 =


1 − ρ1;

σ x
3 =


ρ3 (1 − ρ1)+ (1 − ρ3) (1 − ρ2);

ρx
3,1 =

1
1 +

(1−ρ2)(1−ρ3)
ρ3(1−ρ1)

.

A.2.2. The comonotonic case [6]
Note that Z3 ≡ Z1.

We have,

Lt = h2(Z3) =

F [−1]
Λ


1 −

Φ(Z3)
Φ(Hd

t )


; −∞ ≤ Z1 < Hd

t ;

0; Hd
t ≤ Z1 ≤ +∞,
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Pr

Lt ≤ l

Z1 ≤ Hd
t , X = x


= 1 −

Φ

[
h[−1]
2 (l)−

√
ρ1x

√
1−ρ1

]
Φ


Hd
t −

√
ρ1x

√
1−ρ1

 ,

Pr [ Lt ≤ l| X = x] = 1 − Φ


h[−1]
2 (l)−

√
ρ1x

√
1 − ρ1


,

E

Lt
Z1 ≤ Hd

t , X = x


=

 λu
l=λl

Φ

[
h[−1]
2 (l)−

√
ρ1x

√
1−ρ1

]
dl

Φ


Hd
t −

√
ρ1x

√
1−ρ1

 .

A.2.3. Hillebrand [19]-type model
Note that Z3 ≡ Z2. Hence, ρ3,1 = ρ3,2 =

√
ρ1ρ2, ρ

x
3,1 = 0 and µx

3,1 =
√
ρ2x,

√
ρ1x
′.

We have,

Lt = h2(Z3) =

F [−1]
Λ


1 −

Φ2
µ3,1,Σ3,1


Z3,Hd

t


Φ

Hd

t
 

; −∞ ≤ Z1 < Hd
t ;

0; Hd
t ≤ Z1 ≤ +∞,

Pr

Lt ≤ l| Z1 ≤ Hd

t , X = x


= 1 − Φ


h[−1]
2 (l)−

√
ρ2x

√
1 − ρ2


,

Pr [ Lt ≤ l| X = x] = Pr

Lt ≤ l

Z1 ≤ Hd
t , X = x


pd,ct +


1 − pd,ct


,

E

Lt
Z1 ≤ Hd

t , X = x


=

∫ λu

l=λl
Φ


h[−1]
2 (l)−

√
ρ2x

√
1 − ρ2


dl.

A.2.4. The three-factor model
Note that Z3 =

√
ρ3Z1 +

√
1 − ρ3J . The formulas from Appendix A.2.1 apply, with ρ3,1 =

√
ρ3, ρ3,2 =

√
1 − ρ3, ρ

x
3,1 =

√
ρ3

ρ3+
1−ρ3
1−ρ1

and µx
3,1 =

√
ρ1ρ3x,

√
ρ1x
′.

A.3. Gamma one-factor model

A.3.1. The general case
Note that

A(3)T
not.
= A(3)T


A(1)T , A

(2)
T ; ρ3


= A(1)ρ3T + A(2)(1−ρ3)T ,

with, for i = 1, 2,

A(i)t
not.
= A(i)t


Y , χ (i); ρi


= Yρi tT + χ

(i)
(1−ρi)

t
T
,

where Y , χ (1) and χ (2) are i.i.d. shifted Gamma processes, with parameters αg , βg =
√
αg and µg =

αg
βg

. We have,

Lt = h2


A(3)T


=

F [−1]
Λ
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
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
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
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
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
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A(1)T ≤ Hd
t , Y = y (ω)


=
0ϱ1αg ,βg [g (u1, v1, w1)] − 0ϱ1αg ,βg ,ϱ2αg ,βg ,ρ [g (u1, v1, w1) , g (u2, v2, w2)]

1 − 0ϱ2αg ,βg [g (u2, v2, w2)]
,

Pr [Lt ≤ l |Y = y (ω) ]
= 0ϱ1αg ,βg [g (u1, v1, w1)] + 0ϱ2αg ,βg [g (u2, v2, w2)] − 0ϱ1αg ,βg ,ϱ2αg ,βg ,ρ [g (u1, v1, w1) , g (u2, v2, w2)] ,
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E

Lt
A(1)T ≤ Hd

t , Y = y (ω)


= λu − λl −

 λu
l=λl


0ϱ1αg ,βg [g (u1, v1, w1)] − 0ϱ1αg ,βg ,ϱ2αg ,βg ,ρ [g (u1, v1, w1) , g (u2, v2, w2)]


dl

1 − 0ϱ2αg ,βg [g (u2, v2, w2)]
,

with

ϱ1 = (1 − ρ1) ρ3 + (1 − ρ2) (1 − ρ3) ∈ (0, 1) ,
ϱ2 = (1 − ρ1) ∈ (0, 1) ,

ρ = ρ3


ϱ2

ϱ1
∈ (0, 1) ,

ui = ϱiµg , i = 1, 2,

v1 = h(−1)
2 (l),

v2 = Hd
t ,

w1 = yρ1ρ3 + yρ2(1−ρ3),
w2 = yρ1 ,
g (u, v, w) = u − v + w,

0m,n the CDF of Gamma distribution with shape parameter m > 0 and scale parameter n > and 0m1,n1,m2,n1,ρ the joint CDF
of a pair (G1,G2), with Corr [G1,G2] = ρ, where Gi follows a Gamma distribution with shape parameter mi > 0 and scale
parameter ni > 0.

A.3.2. The comonotonic case [6]
Note that A(3)T ≡ A(1)T .

We have,

Lt = h2


A(3)T


=

F [−1]
Λ

1 −

1 − 0αg ,βg


µg − A(3)T


1 − 0αg ,βg


µg − Hd

t

 ; −∞ ≤ A(1)T < Hd

t ;

0; Hd
t ≤ A(1)T ≤ µg ,

Pr

Lt ≤ l

A(1)T ≤ Hd
t , Yρ1 = yρ1


= 1 −

1 − 0(1−ρ1)αg ,βg


(1 − ρ1)µg + yρ1 − h[−1]

2 (l)


1 − 0(1−ρ1)αg ,βg

(1 − ρ1)µg + yρ1 − Hd

t
 ,

Pr

Lt ≤ l

Yρ1 = yρ1


= 0(1−ρ1)αg ,βg


(1 − ρ1)µg + yρ1 − h[−1]

2 (l)

,

E

Lt
A(1)T ≤ Hd

t , Yρ1 = yρ1


=

λu − λl −
 λu
l=λl

0(1−ρ1)αg ,βg


(1 − ρ1)µg + yρ1 − h[−1]

2 (l)

dl

1 − 0(1−ρ1)αg ,βg

(1 − ρ1) µg + yρ1 − Hd

t
 .

A.3.3. Hillebrand [19]-type model
Note that A(3)T ≡ A(2)T .

We have,

Lt = h2


A(3)T


=

F [−1]
Λ

1 −

FA(3)T ,A(1)T


A(3)T ,H

d
t


1 − 0αg ,βg


µg − Hd

t

 ; −∞ ≤ A(1)T < Hd

t ;

0; Hd
t ≤ A(1)T ≤ µg ,

Pr

Lt ≤ l

A(1)T ≤ Hd
t , Yρ2 = yρ2


= 0(1−ρ2)αg ,βg


(1 − ρ2)µg + yρ2 − h[−1]

2 (l)

,

Pr

Lt ≤ l

Yρ2 = yρ2


= Pr

Lt ≤ l

A(1)T ≤ Hd
t , Yρ2 = yρ2


pd,ct +


1 − pd,ct


,

E

Lt
A(1)T ≤ Hd

t , Yρ2 = yρ2


= λu − λl −

∫ λu

l=λl
0(1−ρ2)αg ,βg


(1 − ρ2)µg + yρ2 − h[−1]

2 (l)

dl.
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A.3.4. The three-factor model
Note that A(3)T = A(1)ρ3T + χ

(2)
1−ρ3

. The formulas from Appendix A.3.1 apply, with ρ2 = 0, where, by the properties of the
Gamma process, y0 = 0.
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