The initial response of Frithia humilis Burgoyne, an endangered edaphic specialist, translocated to non-typical geologies

E. Harris, S.J. Siebert, J.H.L. Smit

1P.O. Box 2607, Lichtenburg 2740, South Africa
2Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
3Exxaro Resources: Service Department, P.O. Box 9229, Pretoria 0001, South Africa

Frithia humilis is an endangered succulent threatened by coal mining in the Mpmumlanga grasslands. This endemic species is an edaphic specialist, preferring sandstone outcrops of the Ecca and Dwyka Groups (Karoo Supergroup). One severely threatened population was translocated to three geologically distinct habitats, only one of which corresponds to the origin. A monitoring programme was launched in 2010 to track the post-translocation progress of the populations, as well as to assess the viability of translocation to atypical geologies. Although translocation success can generally only be gauged after decades of monitoring, this study aimed to monitor the initial response of the translocated population to different habitats, by measuring ‘vital signs’: survival, individual plant growth and fecundity. Population age structure and flowering was measured, and censuses were conducted biannually, with demographic data gathered per 1 m² according to relative age (number of leaves per plant) and flower production. Age structure of the translocated populations was compared to trends observed in a natural, benchmark population. Repeated Measures Analysis of Variance (ANOVA) was applied to determine significant variance in age structure and flowering between populations. The two populations that were translocated to foreign geologies showed a 30-45% decline of individuals over time, indicating population deterioration. The population on Ecca and Dwyka geologies is expanding: population growth was 13.47% over three years. Flowering in all translocated populations had increased significantly over time, boosting reproductive potential. As one of the first translocation projects of its kind in South Africa, these early responses of populations to different geologies can inform the potential of future efforts to relocate edaphic specialists of the Mesembryanthemaceae.

doi:10.1016/j.sajb.2013.02.111

A new record of rodent pollination in the holoparasitic genus Cyttinus

N. Hobbahn, S.D. Johnson

School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa

The enigmatic root-holoparasitic genus Cyttinus occurs in the Mediterranean (2 monoecious species), South Africa (3 dioecious species), and Madagascar (1 dioecious species). Pollination by insects has been documented in the Mediterranean C. hypocistis, and by rodents and elephant shrews in the recently described South African species C. visseri, which is found in the grasslands of the Mpmumlanga province. Flowers of the Western Cape species Cyttinus sanguineus appear adapted to bird pollination as they are bright scarlet, scentless, and produce copious nectar in open, easily accessible flowers. By contrast, flowers of the other Cape species, Cyttinus capensis, are dark maroon and remain tightly closed throughout their life. The discovery of a large population of plants tentatively identified as C. capensis despite this population’s occurrence outside the known distribution range of this species, the Cape Peninsula, enabled us to carry out detailed pollination studies. Motion-sensor camera recordings revealed visitation exclusively by nocturnal rodents, which are attracted by the strong, vanilla-like scent of flowers and feed on nectar. Rodents access the copious nectar by pushing down individual petals along pre-formed hinges, and transfer pollen on the fur around their snouts. Insects do not visit the flowers. We compare aspects of the reproductive biology of this Cyttinus species with others in the genus.

doi:10.1016/j.sajb.2013.02.112

Ant-repelling pollinators: Unique pollination strategy of the ant-plant Macaranga (Euphorbiaceae)

E. Yamasaki, Y. Inui, S. Sakai

Center for Ecological Research, Kyoto University, Hirano 520–2113, Otsu, Shiga 520–2113, Japan

In the tropics, some plants known as ant-plants have tight mutualistic relationships with ants. These plants offer food, such as extrafloral nectar and food-bodies, for symbiotic ants. In turn, the ants protect the plants by excluding herbivores. On flowers, however, the plants often face a conflict when ants exclude not only herbivores but also pollinators. In this study, we investigated how this conflict is addressed in the genus Macaranga (Euphorbiaceae). Macaranga includes approximately 30 ant-plant species that are inhabited by species-specific Crematogaster ants. They are pollinated by thrips Dolichothrips spp., tiny insects that are 2–3 mm in length. The thrips feed on nectaries on bracteoles and breed on the inflorescences of Macaranga. To investigate whether the ants deter pollination, we excluded ants from inflorescences and compared the number of thrips to control inflorescences. The number of thrips did not differ between ant-excluded and control inflorescences. We observed pollinator thrips secreting liquid from their anus and conducted bioassays to determine if chemical substances secreted by pollinator thrips function as ant repellents. Ants were brought into contact with individual thrips or 5 mm Teflon rods on which hexane (control), thrip anal secretions, or decanoic acid (a chemical found in the secretions) were applied. Ants were deterred more often by thrips than from controls, especially when the thrips raised their abdomens. The ants also retreated more often from thrip secretions and decanoic acid than from the controls. These results suggest that the plants avoid pollination deterrence by ants by being pollinated by ant-repelling...