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In this paper we show how discrete and continuous variables can be combined
using parametric conditional families of distributions and how the likelihood
weighting method can be used for propagating uncertainty through the network in
an efficient manner. To illustrate the method we use, as an example, the damage
assessment of reinforced concrete structures of buildings and we formalize the steps
to be followed when modeling probabilistic networks. We start with one set of con-
ditional probabilities. Then, we examine this set for uniqueness, consistency, and
parsimony. We also show that cycles can be removed because they lead to redun-
dant probability information. This redundancy may cause inconsistency, hence the
probabilities must be checked for consistency. This examination may require a
reduction to an equivalent set in standard canonical form from which one can
always construct a Bayesian network, which is the most convenient model. We also
perform a sensitivity analysis, which shows that the model is robust. � 1998

Academic Press
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1. INTRODUCTION

In recent years much attention has been focussed on the use of probabil-
ity models in expert systems. Today, probability models, especially those
associated with Bayesian networks, are successfully replacing other uncer-
tainty measures. Bayesian networks are effective and efficient instruments
for dealing with uncertainties in expert systems; see, for example, Pearl
(1986a), Lauritzen and Spiegelhalter (1988), Castillo and Alvarez (1991).
Most of the existing methods for exact propagating of uncertainty deal
with discrete or special cases of continuous random variables (see, for
example, Lauritzen and Wermuth (1989), Shachter and Kenley (1989),
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Normand and Tritchler (1992) or Lauritzen (1992)), but no exact general
method exists for propagating uncertainty in general mixed networks
(networks with discrete and continuous variables with some restrictions on
the conditional families). In this paper we show how continuous variables,
belonging to parametric families, can be combined with discrete variables
and how uncertainty can be propagated in the resulting networks by using
a well-known simulation algorithm, the likelihood weighting method
(Shachter and Peot, 1990, and Fung and Chang, 1990).

In addition, when modeling probabilistic networks, one of the key
problems is the specification of the joint probability distribution of the
nodes. When the number of nodes is large, direct specification of the joint
probability distribution is practically impossible. It is possible, however, to
specify the joint probability distribution indirectly by specifying a set of
conditional distributions. For this set to produce a bona fide and unique
joint probability distribution, it must satisfy certain compatibility and
uniqueness conditions. Gelman and Speed (1993), Castillo, Gutie� rrez and
Hadi (1993) and Arnold, Castillo, and Sarabia (1995) consider this
problem and give simple conditions for the given set of conditionals to be
compatible and lead to a unique joint probability distribution. These con-
ditions have many practical implications in modeling probabilistic
networks.

In this paper, we also formalize and discuss the steps to build a Bayesian
network. We start in Section 2 by a formulation of the model. As an
illustrative practical example, we use the damage assessment of reinforced
concrete structures of buildings. In Section 3, methods by which the
network and its associated set of conditional probabilities can be checked
for consistency, compatibility, and uniqueness are summarized. In Sec-
tions 4, 5, and 6 the network is set up for propagation of uncertainties
using the likelihood weighting method and certain questions regarding the
assessment of the damage of reinforced concrete structures of buildings are
answered. A sensitivity analysis is performed in Section 7 to analyze the
robustness of the selected model. Section 8 gives a summary and concluding
remarks.

2. FORMULATION OF THE MODEL

In the example we use in this paper, the objective is to assess the damage
of reinforced concrete beams of buildings. The example is taken from Liu
and Li (1994), but slightly modified for illustrative purposes. The first stage
of model formulation involves two steps: variable selection and identifica-
tion of dependencies.
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2.1. Variable Selection

Model formulation process usually starts with the selection or specifica-
tion of a set of variables of interest. This specification is dictated by the
subject matter specialists. In our example, the goal variable (the damage of
a reinforced concrete beam) is denoted by X1 . A civil engineer initially
identifies 16 variables (X9 , X10 , ..., X24) as the main variables influencing
the damage of reinforced concrete structures. In addition, the engineer
identifies seven intermediate conceptual variables (X2 , X3 , ..., X8) which
define some partial states of the structure and are known functions of some
of the above variables (see Section 4). Table 1 shows the list of variables
and their physical meanings. The table also shows whether each variable is
continuous or discrete and the possible values that each variable can take.
The variables are measured using a scale that is directly related to the goal

TABLE 1

Definitions of the Variables Related to Damage Assessment of Reinforced Concrete Structures

Possible
Variable Type Values Description

Goal X1 discrete 0, 1, 2, 3, 4 Damage assessment

Intermediate X2 continuous (0, 1) Cracking state
X3 continuous (0, 1) Cracking state in shear domain
X4 continuous (0, 1) Steel corrosion
X5 continuous (0, 1) Cracking state in flexure domain
X6 continuous (0, 1) Shrinkage cracking
X7 continuous (0, 1) Worst cracking state in flexure domain
X8 continuous (0, 1) Corrosion state

Main X9 continuous (0, 1) Weakness of the beam
X10 continuous (0, 1) Deflection of the beam
X11 continuous (0, 1) Position of the worst shear crack
X12 copntinuous (0, 1) Breadth of the worst shear crack
X13 continuous (0, 1) Position of the worst flexure crack
X14 continuous (0, 1) Breadth of the worst flexure crack
X15 continuous (0, 1) Length of the worst flexure cracks
X16 continuous (0, 1) Cover
X17 continuous (0, 1) Structure age
X18 continuous (0, 1) Humidity
X19 discrete 0, 1, 2 PH level in the air
X20 discrete 0, 1, 2 Chlorine content level in the air
X21 discrete 0, 1, 2, 3 Number of shear cracks
X22 discrete 0, 1, 2, 3 Number of flexure cracks
X23 discrete 0, 1, 2, 3 Shrinkage level
X24 discrete 0, 1, 2, 3 Corrosion level
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variable, that is, the higher the value of the variable the more the
possibility for damage. To generalize, let the set of variables be denoted by
X=[X1 , X2 , ..., Xn]. In this example, n=24.

2.2. Identification of Dependencies

The next step in model formulation is the identification of the
dependency structure among the selected variables. This identification is
also given by the subject matter specialists and is usually done by identify-
ing the minimum set of variables, N(Xi), for each variable Xi such that

P(Xi | X"[Xi])=P(Xi | N(Xi)), (1)

that is, given N(Xi), Xi is conditionally independent of X"N(Xi)"[Xi].
The set N(Xi) is referred to as the neighbors of Xi . It follows that if
Xj # N(Xi), then Xi # N(Xj).

Additionally, but optionally, the engineer can impose certain cause-effect
relationships among the variables, that is, specifying which variables
among the set N(Xi) are direct causes of Xi and which are direct effects of
Xi . The set of direct causes of Xi is referred to as the parents of Xi and is
denoted by Par(Xi). Similarly, the set of direct effects of Xi is referred to as
the Children of Xi and is denoted by C(Xi).

In our example, the engineer imposes the following cause-effect rela-
tionships. The goal variable, X1 , depends primarily on three factors, X9 ,
the weakness of the beam available in the form of a damage factor, X10 , the
deflection of the beam, and X2 , its cracking state. The cracking state, X2 ,
in turn is characterized by four variables: X3 , the cracking state in the
shear domain; X6 , the evaluation of the shrinkage cracking; X4 , the evalua-
tion of the steel corrosion; and X5 , the cracking state in the flexure domain.
Shrinkage cracking, X6 , depends on shrinkage, X23 , and the corrosion
state, X8 . Steel corrosion, X4 , is defined by X8 , X24 , and X5 . The cracking
state in the shear domain, X3 , depends on X11 , the position of the worst
shear crack; X12 , the breadth of the worst shear crack, X21 , the number of
shear cracks, and X8 . The cracking state in the flexure domain, X5 is deter-
mined by X13 , the position of the worst flexure crack, the worst cracking
state in the flexure domain without considering the position, X22 , the num-
ber of flexure cracks, and X7 , the worst cracking state in the flexure
domain. The variable X13 is influenced by X4 . The variable X7 is a function
of X14 , the breadth of the worst flexure crack, X15 , the length of the worst
flexure crack, X16 , the cover, X17 the structure age, and X8 , the corrosion
state. Node X8 is determined by X18 , the humidity, X19 , the PH value in
the air, and X20 , the content of chlorine in the air.

These causal-effect relationships among the variables are depicted in
Fig. 1. Each node in this diagram represents a variable. The relationships
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Fig. 1. Diagram of the damage assessment of reinforced concrete structure example as
initially seen by an engineer. The arrows define local dependencies between variables.

are represented by directed links (a directed line emanating from one node
and pointing to another). From Fig. 1 the sets of parents and neighbors
(parents and children) of each node in the model can be obtained. For
example, there are three arrows emanating from the nodes X9 , X10 , and X2

and pointing to X1 indicating that X1 depends on the three variables. Thus,
the nodes X2 , X9 , and X10 are the parents of X1 and X1 is the child of each
of X2 , X9 and X10 . The set of the children of Xi is C(Xi)=N(Xi)"Par(Xi).

3. DIAGNOSING THE MODEL

Once the set of conditional probabilities as in (1) are given, the task of
the statistical expert begins. Before propagation of uncertainty can start,
the given set of conditional probabilities have to be checked for con-
sistency, compatibility, and uniqueness, i.e., the statistical expert determines
whether the set of conditional probabilities corresponds to a well defined
joint probability distribution of the variables in the network. To this pur-
pose we use some results given by Gelman and Speed(1993) and Arnold,
Castillo, and Sarabia (1995). We also show that cycles imply redundant
information and can always be removed.
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Theorem 1 (Canonical Representation; Gelman and Speed, 1993).
Suppose that

P#[P1(A1 | B1), ..., Pm(Am | Bm)]

is a given collection of conditional probabilities, where Ai , Bi are subsets of
X, such that Ai & Bi=,. Then from the above collection we can obtain an
equivalent representation such that all new sets Ai contain a single element
of X.

Note that when Bi=,, the conditional probability Pi (Ai | Bi) is simply
P(Ai), the marginal probability of Ai .

The resulting set of conditionals and marginals is known as the canonical
representation of the probability distribution of X. As a consequence of this
theorem, and without loss of generality, we assume in the following that
the set P is given in a canonical form. An examination of the set of
probabilities P in Table 2 shows that the set is already given in a canonical
form.

Given a set P in a canonical form, the set may or may not uniquely
define a joint probability distribution of all variables. Sufficient conditions
under which a given canonical representation uniquely defines a joint prob-
ability distribution are given below.

Theorem 2 (Uniqueness; Gelman and Speed, 1993). Given a collection
of conditional distributions in canonical form, and assuming that it is com-
patible with at least one joint distribution for X, this collection uniquely
determines the joint distribution of X if it, after possible permutation of the
variables, contains a nested sequence of probability functions of the form

Pi (Xi | Si) \Xi # X and Si #Hi=[Xi+1 , Xi+2 , ..., Xn]. (2)

If Si=Hi , for all i, then the consistency is guaranteed, otherwise, the set of
conditionals must be checked for consistency. When Si=Hi , for all i, a
canonical form is referred to a standard canonical form and the term
Pi (Xi | Hi) is referred to as a standard canonical component.

A practical and important consequence is that a minimum set of condi-
tionals of the form (2) is required to have uniqueness, that is, a well defined
(unambiguous) joint distribution of X. We therefore, make use of this
theorem as follows. If we can find an order of the nodes, say X1 , X2 , ..., Xn ,
compatible with the given cause-effect relationships, we define with respect
to this order a set of parents for each node Xi as

Par(Xi)=[Xj # N(Xi) : j>i], i=1, 2, ..., n, (3)
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then we have Hi #Par(Xi) and, by Theorem 2, the sequence Pi (Xi |
Par(Xi)) is consistent with a joint distribution of X. This can be
demonstrated as follows. Using the decomposition axiom of independence,
Eq. (1) can be written as

P(Xi | Par(Xi), C(Xi), Hi "Par(Xi))

=P(Xi | Par(Xi), C(Xi), X"N(Xi)"[Xi])

=P(Xi | Par(Xi), C(Xi)). (4)

Multiplying by P(C(Xi)) and integrating with respect to C(Xi) we get

P(Xi | Hi)=P(Xi | Par(Xi), Hi"Par(Xi))=P(Xi | Par(Xi)) ; \i. (5)

Note that if no cause-effect relationship are given, an ordering satisfying
(3) can always be found because we have no restriction on the choice of
parents, that is, any subsets of N(xi) can serve as Par(Xi). On the other
hand, if some cause-effect relationships are given, the ordering in (3) must
satisfy these relationships, that is, a child must receive a lower number than
all of its parents. It follows then that if the given cause-effect relationships
contain cycles, there exists no ordering which satisfies (3). Therefore, cycles
have to be removed because they lead to redundancy.

Eq. (5) is an important condition implied by Eq. (1) that leads to unique-
ness of the joint distribution. Note that there are many joint distributions
that are compatible with the set of conditionals [P(Xi | Par(Xi)),
i=1, 2, ..., n] but at most one satisfies (5). From (5), and by the chain rule,
the joint probability distribution of X can be written as

P(X1 , X2 , ..., Xn)= `
n

i=1

P(Xi | Hi)= `
n

i=1

P(Xi | Par(Xi)). (6)

Thus, the engineer need to provide a set of conditional probabilities

P=[P(Xi | Par(Xi)) : i=1, 2, ..., n].

This set is given in Table 2, where the continuous variables are assumed to
have a Beta(a, b) distribution with the specified parameters. The reason for
this choice is that the beta distribution has finite bounds and also has a
variety of shapes depending on the choice of the parameters. The discrete
variables are assumed to be Binomial B(n, p). The intermediate variables
Xj ; j=2, ..., 8 are assumed to have a Dirac(h(Par(Xj))) function, where
h(x1 , x2 , ..., xn) is given by

h(x1 , x2 , ..., xn)= :
n

j=1

xj �uj

n
, (7)
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where uj is an upper-bound (e.g., the maximum value) of the random
variable Xj .

We have arranged the variables in Table 2 in the order required to check
uniqueness so that a permutation of the variables is not necessary. It can
be seen that the condition for consistency, Si=Hi , for all i, is satisfied for
all nodes except for X13 where X13 depends on X4 which is a variable
preceding it in the list. Thus, we have H13=[X14 , X15 , ..., X24] which is not
equal to S13=[X4] _ H13 . Therefore, the set of conditional distributions in
Table 2 needs to be checked for consistency.

Existence or Compatibility. The representation in (2) ensures only
uniqueness but it does not guarantee the existence of a joint probability
distribution for the set X. In fact, one can give contradictory conditional

TABLE 2

Beta and Binomial Marginal and Conditional Probability
Distributions for Variables X1 and X9 to X24

Node Probability Function Family

X1 f (X1 | X9 , X10 , X2) B(4, 0.3x9+0.1x10+0.6x2))

X2 f (X2 | X3 , X6 , X5 , X4) Dirac(h(x3 , x6 , x5 , x4))
X3 f (X3 | X11 , X12 , X21 , X8) Dirac(h(x11 , x12 , x21 , x8))
X4 f (X4 | X24 , X8 , X5) Dirac(h(x24 , x8 , x5))
X5 f (X5 | X13 , X22 , X7) Dirac(h(x13 , x22 , x7))
X6 f (X6 | X23 , X8) Dirac(h(x23 , x8))
X7 f (X7 | X14 , X15 , X16 , X17 , X8) Dirac(h(x14 , x15 , x16 , x17 , x8))
X8 f (X8 | X18 , X19 , X20) Dirac(h(x18 , x19 , x20))

X9 f (X9) Beta(2, 6)
X10 f (X10) Beta(1, 1)
X11 f (X11) Beta(0.9, 0.9)
X12 f (X12) Beta(1, 4)
X13 f (X13) Beta(2, 2)
X14 f (X14) Beta(1, 4)
X15 f (X15) Beta(1, 4)
X16 f (X16) Beta(1, 4)
X17 f (X17) Beta(6, 2)
X18 f (X18) Beta(6, 2)
X19 P(X19) B(2, 0.2)
X20 P(X20) B(2, 0.2)
X21 P(X21) B(3, 0.2)
X22 P(X22) B(3, 0.2)
X23 P(X23) B(3, 0.1)
X24 P(X24) B(3, 0.1)
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probabilities that have no joint probability distribution. Arnold et al.
(1995) provide a theorem by which one can determine whether a given set
of conditionals define a feasible joint probability distribution for X. They
also give an algorithm for checking the compatibility, one step at a time,
and for constructing a canonical form of the above type with Si=Hi ,
\i=1, 2, ..., n. Let Hi be as defined in (2) and H� i=[X1 , X2 , ..., Xi].

The compatibility and uniqueness results together imply that cycles can
be removed. Even more, if they are not removed, that is, if the correspond-
ing conditional probabilities are given, then consistency must first be
checked. In addition, removing the cycles allows specifying the conditional
probabilities with no restrictions (apart from the probability axioms that
each individual distribution must satisfy).

Thus, once the network and the associated set of conditional
probabilities are given, the statistical expert can perform the following
tasks:

1. Check that there are enough links (in the sense of satisfying the
uniqueness theorem, that is, that the nested sequence (2) is included in the
network.).

2. Remove all cycles, if present. Note that given a cycle one can
remove it by just removing one of its links or changing the direction of
some arrows. When removing a link, however, one must be careful not to
remove any of the dependence relationships stated by the human spe-
cialists. For example, if the link X4&X13 is removed, this would imply that
P(X4 | X5 , X13)=P(X4 | X5), that is, X4 is independent of X13 , given X5 ,
which is in contradiction with the engineer's specification.

3. Remove redundant links (in the sense explained by the com-
patibility theorem).

4. Propagate uncertainties.

5. Answer queries posed by the engineer regarding the probabilities
of the goal variable given the data (the evidence set).

As can be observed, the diagram in Fig. 1 contains one cycle, which is
indicated as a shadowed region and thick arrows. It involves nodes X5 , X4 ,
and X13 . This implies that in the engineer's mind, the cracking state in the
flexure domain influences the steel corrosion, the steel corrosion influences
position of the worst flexure crack and the worst flexure crack influences
the cracking state in the flexure domain.

However, as it has been indicated above, cycles represent redundant con-
ditional probability information which can lead to incompatibility. Thus,
we can remove cycles without affecting the joint probability assignment
and avoiding compatibility checks. We have reversed the direction of the
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Fig. 2. The network in Fig. 2 after reversing the link from X4 to X13 . Now it becomes a
directed acyclic graph.

link X4 � X13 thus obtaining another graph without cycles (Fig. 2) which
allow us to define the joint distribution of all nodes without restrictions in
the selection of the conditional probabilities. Note that reversing this link
requires changing the conditional probabilities for X4 and X13 in Table 2
from h(X24 , X8 , X5) to h(X24 , X8 , X5 , X13), and from P(X13 | X4) to
P(X13)=B(2, 2), respectively. Thus, we arrive at a set of conditionals in a
standard canonical form and the probability assignment does not cause
any compatibility problems, i.e., we obtain a Bayesian network model
which arises in a natural way.

4. SPECIFICATION OF CONDITIONAL DISTRIBUTIONS

To simplify the probability assignment, the engineer assumes that the
conditional probabilities belong to some parametric families (e.g., Binomial,
Beta, etc.). Table 2 specifies a parametric family for each of the nodes in the
network. The variable X1 can assume only one of five values (states):
0, 1, 2, 3, 4, with 0 meaning the building is free of damage and 4 meaning
the building is seriously damaged. The values in between are intermediate
states of damage. All other variables are defined similarly using a scale that
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is directly related to the goal variable, that is, the higher the value of the
variable the more possibility for damage.

All discrete variables are assumed to have a binomial distribution with
parameters N and p, with N+1 being the number of possible states of each
variable. These distributions, however, can be replaced by any other
suitable distributions. The parameter 0� p�1, associated with node X1 , is
specified as follows.

p(x1 , x2 , ..., xn)= :
n

j=1

:j
xj

uj
, with :

n

j=1

:j=1; :j�0, (8)

where :j is a weight associated with Xj . Thus p(x1 , x2 , ..., xn) is a weighted
function of x1 , x2 , ..., xn . Figure 3 shows the probability density functions
(pdf) of some of the Beta functions used in the example. A Beta (0.9, 0.9)
and a Beta (2, 2) have been chosen for the positions of the worst shear and
flexure cracks, respectively, to reflect the fact that the largest shear forces
and bending moments occur at the end points and the center of the beam,
respectively. A Beta (1, 4) has been selected for both the breadth of the
worst shear and flexure cracks to reproduce the fact that large cracks are
less frequent than small cracks. Similarly, a Beta (1, 1) (uniform) has been
used for the deflection of the beam because all deflections occur in reality,
more or less with the same frequency. Finally, a Beta (6, 2) is used for the

Fig. 3. Pdfs of several beta models used in the example.
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age and the humidity because there are more old structures than young
ones and high humidity is more common than low humidity.

On the other hand, the beta random variable has been used by its
smoothness and flexibility to concentrate a maximum probability on a
given zone. The parameter values associated with variables X19 to X24 have
been selected according to the accumulated practical experience.

We should point out here that other models described in the literature
could also be used here but some of these models require some assump-
tions that might not be valid in this case. For example, the mixed graphical
association model given by Lauritzen (1992) is based on the assumption
that the conditional distributions of the continuous variables given any
combination of discrete variables is multivariate Gaussian. This normality
condition is too strong in view of the fact that all variables considered
in this example are non-negative. The beta family together with the
dependence functions in (7) seem to be more adequate.

5. PROPAGATING UNCERTAINTY

In this paper we deal with both continuous and discrete random
variables that are combined in the same network. Also, the network in
Fig. 2 contains many loops. For example, there is a loop involving the
variables X2 , X6 , X8 , X4 , X2 and another loop involving X2 , X3 , X8 , X7 ,
X5 , X2 . Thus, we need an uncertainty propagation mechanism to allow for
this general type of network.

Exact propagation methods are available for networks in which variables
are discrete or belong to simple families such as the normal family (see, for
example, Lauritzen and Spiegelhalter (1988), Pearl (1991), and Normand
and Trichler (1992)), but no exact general method exists when all the
variables are continuous, or they are combined with discrete variables and
an arbitrary joint distribution is selected (for a particular case see Lauritzen
(1992)). Several simulation methods have been proposed as an alternative
for exact propagation in discrete networks, e.g., probabilistic logic sampling
(Henrion, 1988), likelihood weighting (Shachter and Peot (1990) and Fung
and Chang (1990)), Gibbs sampling (Pearl, 1986b), etc. Because of its
computational efficiency (see Shachter and Peot (1990) and Cousins et al.
(1991)), we use the likelihood weighting method in this paper for the
propagation of evidence. Note that the logic sampling is less efficient than
the likelihood weighting method since it simulates even the evidence values
and consequently leads to a higher rejection rate, and the Gibbs sampling
is not suitable in this case because it requires the specification of full condi-
tionals which is not available in this case.
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The main idea of the likelihood weighting algorithm consists of repre-
senting the joint probability, PX (x), in the form

PX (x)=Cg(x) h(x), (9)

where C>1 and

g(x)= `
j # E

Pj (xj0 | H*j ),

(10)
h(x)= `

i # V&E

Pi (xi | H*i ),

where E is the evidence set, xj0 is the known evidence associated with the
variable xj , and H*i is the set Hi with all the evidences instantiated. Note
that this is equivalent to assuming Pj (xj0 | H*j )=1. Clearly, 0< g(x)<1,
and h(x) is a probability density function (pdf).

In the light of the above, we may use the following algorithm to simulate
the pseudo-random variables corresponding to the density PX (x):

1. Using the corresponding conditional distribution, that is,
Pi (xi | H*i ) for xi , generate the random variables not in the evidence set E,
one by one and in the reversed order.

2. Calculate the associated sample score g(x)=>j # E Pj (xj0 | H*j )
and accumulate it over the samples.

3. Repeat the above two steps for a specified number of replications.

4. Calculate the marginals by adding the scores associated with the
feasible values and normalizing by the sunny of all scores.

It is worthwhile mentioning that this likelihood weighting procedure
allows not only the univariate but the multivariate marginals to be
obtained. In fact, in the above algorithm, in addition to the scores, we store
the frequencies of all feasible values-of the discrete variables and all
simulated values of the continuous variables. Both can be used to plot
estimates of the resulting marginal distributions given the evidence.

6. ANSWERING QUERIES

To illustrate the uncertainty propagation and to answer certain queries
prompted by the engineer, we assume that the engineer examines a given
concrete beam and obtain the values x9 , x10 , ..., x24 corresponding to the
observable variables X9 , X10 , ..., X24 . Note that these values can be
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measured sequentially. In this case, the inference can also be made sequen-
tially. As illustrative examples, suppose we wish to assess the damage (the
goal variable, X1) in each of the following hypothetical situations:

Q1. Before Observing Evidence. We are given only the conditional and
marginal probabilities in Table 2 without any evidence (i.e.,, without
knowledge of the values x9 , x10 , ..., x24).

A1. Tables 3 and 4 show the probabilities of the damage X1 of a given
beam for various types of evidence ranging from no knowledge at all to the
knowledge of all the observed values x9 , x10 , ..., x24 . Thus, the answer to
Q1 is given in the row corresponding to the cumulative evidence ``None.''
Thus, for example, the probability that a randomly selected building has no
damage (X1=0) is 0.2313 and the probability that the building is seriously
damaged (X1=4) is 0.0129. These probabilities can be interpreted as 230
of the buildings in the area are safe and 1.290 are seriously, damaged.
Other values in Table 3 are explained and interpreted below.

TABLE 3

The Probability Distribution of the Damage, X1 , Given the Accumulated
Evidence of x9 , x10 , ..., x24 as Indicated in the Table. The Results Are Based

on 10,000 Replications

Known Variables Damage of the Beam

0 1 2 3 4

None 0.2313 0.3977 0.2665 0.0916 0.0129
X9 =1.00 0.0468 0.2153 0.3663 0.2806 0.0910
X10=1.00 0.0321 0.1630 0.3501 0.3325 0.1223
X11=1.00 0.0246 0.1540 0.3352 0.3466 0.1396
X12=1.00 0.0178 0.1292 0.3149 0.3673 0.1708
X13=1.00 0.0107 0.0858 0.2769 0.4012 0.2254
X14=1.00 0.0081 0.0779 0.2697 0.4152 0.2291
X15=1.00 0.0085 0.0681 0.2532 0.4134 0.2568
X16=1.00 0.0070 0.0673 0.2473 0.4152 0.2632
X17=1.00 0.0070 0.0639 0.2487 0.4165 0.2639
X18=1.00 0.0064 0.0607 0.2312 0.4078 0.2939
X19=2.00 0.0026 0.0355 0.1812 0.4231 0.3576
X20=2.00 0.0007 0.0198 0.1380 0.3970 0.4445
X21=3.00 0.0006 0.0122 0.0976 0.3668 0.5228
X22=3.00 0.0001 0.0030 0.0486 0.2953 0.6530
X23=3.00 0.0000 0.0002 0.0056 0.1203 0.8739
X24=3.00 0.0000 0.0000 0.0000 0.0003 0.9997

61MODELING PROBABILISTIC NETWORKS



File: DISTIL 170915 . By:CV . Date:16:02:98 . Time:13:59 LOP8M. V8.B. Page 01:01
Codes: 2849 Signs: 1967 . Length: 45 pic 0 pts, 190 mm

TABLE 4

The Probability Distribution of the Damage, X1 , Given the Accumulated
Evidence of the Variables as Indicated in the Table

Known Variables Damage of the Beam

0 1 2 3 4

None 0.2313 0.3977 0.2665 0.0916 0.0129
X9 =0.70 0.1006 0.2997 0.3560 0.1977 0.0460
X10=0.80 0.0768 0.2721 0.3684 0.2317 0.0510
X17=0.80 0.0797 0.2674 0.3670 0.2308 0.0551
X13=0.90 0.0569 0.2307 0.3755 0.2653 0.0716
X20=1.00 0.0513 0.2208 0.3677 0.2812 0.0789
X21=2.00 0.0386 0.1963 0.3685 0.3059 0.0907

Note. The results are based on 10,000 replications.

Q2. Evidence of High Damage. Now, suppose that we have the data
for all the observable variables as given in Table 3, but the data are measured
sequentially in the order given in the table.

A2. The answer is given in Table 3, where the probabilities in the i th
row is computed using x9 , x10 , ..., xi , that is, they are based on
accumulated evidence. Except for the key variables X9 and X10 , the values
of all other variables attain high values resulting in high probabilities of
damage. For example, as can be seen in the last row of the table, when all
the evidences are considered, P(X1=4)&1 an indication that the building
is seriously damaged.

Q3. Observing Partial Evidence. Finally, suppose that the data we
have available is only for a subset of the observable variables as given in
Table 4.

A3. The probabilities are reported in Table 4 and can be interpreted in
a similar way.

It can be seen from the above examples that any query posed by the
engineer can be answered simply by propagating uncertainties using the
evidence given. Note also that it is possible for the inference to be made
sequentially. An advantage of the sequential inference is that we may be
able to make a decision concerning the state of damage of a given building
immediately after observing only a subset of the variables. Thus, for example,
once a very high value of X9 or X10 is observed, the inspection can stop at
this point and the building is declared to be seriously damaged.
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7. SENSITIVITY ANALYSIS

In this section we discuss the sensitivity of the model to the specified
parameter values. Several methods exists for efficient sensitivity analysis in
discrete Bayesian networks (see Castillo, Gutie� rrez, and Hadi (1995, 1996)
and Laskey (1995)). In the case of mixed networks using a simulation

TABLE 5

Means and Variances of Node X1 for 4 Different Evidence Situations
for Different Parameter Modifications

Known Variables

No Evidence Evidence 1 Evidence 2 Evidence 3

Node Parameter Mean Var Mean Var Mean Var Mean Var

None 1.26 0.91 0.94 0.75 0.76 0.63 0.00 0.00
X9 Beta(p, q) 1.22 0.91 0.94 0.75 0.74 0.62 0.00 0.00
X10 Beta(p, q) 1.21 0.88 0.94 0.75 0.73 0.61 0.00 0.00
X11 Beta(p, q) 1.24 0.91 0.95 0.75 0.74 0.63 0.00 0.00
X12 Beta(p, q) 1.24 0.91 0.95 0.75 0.73 0.61 0.00 0.00
X13 Beta(p, q) 1.23 0.91 0.95 0.77 0.75 0.64 0.00 0.00
X14 Beta(p, q) 1.22 0.90 0.94 0.75 0.74 0.62 0.00 0.00
X15 Beta(p, q) 1.25 0.91 0.94 0.73 0.74 0.63 0.00 0.00
X16 Beta(p, q) 1.25 0.92 0.93 0.75 0.74 0.62 0.00 0.00
X17 Beta(p, q) 1.25 0.92 0.94 0.75 0.74 0.63 0.00 0.00
X18 Beta(p, q) 1.25 0.92 0.93 0.76 0.74 0.63 0.00 0.00
X9 Beta(p, q) 1.25 0.90 0.94 0.77 0.75 0.62 0.00 0.00
X10 Beta(p, q) 1.26 0.92 0.97 0.77 0.75 0.62 0.00 0.00
X11 Beta(p, q) 1.26 0.94 0.95 0.75 0.76 0.65 0.00 0.00
X12 Beta(p, q) 1.22 0.91 0.95 0.77 0.74 0.63 0.00 0.00
X13 Beta(p, q) 1.25 0.91 0.96 0.75 0.76 0.63 0.00 0.00
X14 Beta(p, q) 1.27 0.93 0.95 0.77 0.75 0.62 0.00 0.00
X15 Beta(p, q) 1.23 0.90 0.94 0.76 0.75 0.62 0.00 0.00
X16 Beta(p, q) 1.23 0.88 0.95 0.76 0.74 0.63 0.00 0.00
X17 Beta(p, q) 1.24 0.91 0.96 0.77 0.75 0.63 0.00 0.00
X18 Beta(p, q) 1.27 0.93 0.94 0.75 0.75 0.65 0.00 0.00
X19 B(n, p) 1.27 0.92 0.97 0.78 0.78 0.65 0.00 0.00
X20 B(n, p) 1.27 0.95 0.97 0.76 0.77 0.65 0.00 0.00
X21 B(n, p) 1.27 0.93 0.95 0.76 0.76 0.63 0.00 0.00
X22 B(n, p) 1.28 0.93 0.96 0.77 0.77 0.63 0.00 0.00
X23 B(n, p) 1.27 0.90 0.98 0.78 0.79 0.67 0.00 0.00
X24 B(n, p) 1.26 0.93 0.96 0.75 0.75 0.62 0.00 0.00

Note. The modified parameters are written in boldface. Binomial p parameters are
increased by 0.1 and beta parameters are decreased by 0.2 with respect to the model
parameters. Evidence 1 corresponds to X9=0. Evidence 2 corresponds to X9=X10=0.
Evidence 3 corresponds to X9= } } } =X24=0.
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algorithm to propagate evidence, things are more complicated and these
methods are not applicable. Here we repeated the simulations by changing
the parameters one parameter at a time. The Binomial \ parameters are
increased by 0.1 and the Beta parameters are decreased by &0.2. Note that
changing the parameters implies changing the shape of the distribution.
This is specially so for the beta distribution. The resulting means and
variances of the X1 variable are shown in Table 5, where one can see that
although the changes in the parameters are large, the changes in the means
and variances are small. This is an indication that the method is robust
with respect to the parameter values.

8. SUMMARY AND CONCLUDING REMARKS

In this paper we formalize the different steps to be followed when model-
ing probabilistic networks involving discrete and continuous variables. The
set of relationships among the variables leads to a set of conditional dis-
tributions. Sufficient conditions for having a unique joint distribution com-
patible with this set are given and used to remove possible cycles which are
shown to lead to redundancy and consequently to compatibility problems.
The likelihood weighting method has been shown to be powerful for
propagating uncertainty in the resulting Bayesian network. This methodol-
ogy has been illustrated by its application to an example of damage assess-
ment of reinforced concrete strucutres with a detailed explanation of the
entire process: identification of variables, determination of dependencies,
probability assessment and uncertainty propagation.
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