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a b s t r a c t

For the unknown positive parameter σ 2 in a general linear model M = {y, Xβ, σ 26},
the two commonly used estimations are the simple estimator (SE) and theminimum norm
quadratic unbiased estimator (MINQUE). In this paper, we derive necessary and sufficient
conditions for the equivalence of the SEs and MINQUEs of the variance component σ 2 in
the originalmodelM , the restrictedmodelMr = {y, Xβ | Aβ = b, σ 26}, the transformed
modelMt = {Ay, AXβ, σ 2A6A′}, and the misspecified modelMm = {y, X0β, σ 260}.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Consider a general linear model

M = {y,Xβ, σ 26}, (1.1)

where X ∈ Rn×p is a known matrix of arbitrary rank, y ∈ Rn×1 is an observable random vector with E(y) = Xβ and
Cov(y) = σ 26, β ∈ Rp×1 is a vector of unknown parameters,6 ∈ Rn×n is a known or unknown nonnegative definite matrix
of arbitrary rank, and σ 2, called the variance component, is a positive unknown parameter.
In the investigation of (1.1), the following two cases usually occur:

(a) An extraneous information is available on the unknown parameter vector β in the form of a consistent linear matrix
equation

Aβ = b, (1.2)
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where A is an m × p known matrix with rank(A) = m and b is an m × 1 known vector. This restriction often occurs,
for example, in hypothesis testing on the parameter vector in (1.1). The model (1.1) subject to (1.2) is called a restricted
linear model. In such a case, the model in (1.1) together with (1.2) can be written in the following compact form

Mr = {y, Xβ | Aβ = b, σ 26}. (1.3)

(b) A linear transformation of (1.1) is

Mt = {Ay,AXβ, σ 2A6A′}, (1.4)

where A ∈ Rm×n is a known matrix of arbitrary rank. This happens for regression models with grouped observations,
aggregated data or missing data, natural restrictions to parameters, sub-sample models, reduced models, etc. Some
special cases of (1.4) are given below:

(i) Partition the model matrix X in (1.1) as X =
[
X1
X2

]
, where X1 ∈ Rn1×p and X2 ∈ Rn2×p, and let the transformation

matrix in (1.4) be A = [In1 , 0] and A = [0, In2 ], respectively. Then, (1.4) reduces to the following two sub-sample
models:

Ms1 = {y1,X1β, σ 2611} and Ms2 = {y2,X2β, σ 2622}, (1.5)
where y1 ∈ Rn1×1, y2 ∈ Rn2×1, and 611 ∈ Rn1×n1 and 622 ∈ Rn2×n2 are the upper-left and lower-right corners of
the covariance matrix 6, respectively.

(ii) If A = X′, then (1.4) becomes
Mt = {X′y,X′Xβ, σ 2X′6X}. (1.6)

(iii) If A = E6, then (1.4) reduces to
Mt = {E6y, E6Xβ, 0}, (1.7)

that is to say, E6y = E6Xβ holds with probability 1. The equality is called the natural restriction to the parameters
in (1.1) in the literature.

(iv) Partition the mean vector Xβ in (1.1) as Xβ = X1β1 + X2β2, where X1 ∈ Rn×p1 and X2 ∈ Rn×p2 with p1 + p2 = p,
and let the transformation matrix A in (1.4) be A = EX2 and A = EX1 respectively. Then (1.4) becomes

Mr1 = {EX2y, EX2X1β1, σ
2EX26EX2}, Mr2 = {EX1y, EX1X2β2, σ

2EX16EX1}, (1.8)
respectively, both of which are called correctly reduced versions of (1.1), see Nurhonen and Puntanen [3], and
Puntanen [4].

Because the original model (1.1), the restricted model (1.3) and the transformed model (1.4) are different in structure,
estimations derived from (1.1), (1.3) and (1.4) are not necessarily equal. In particular, if only (1.4) is given, the unknown
parameters in (1.1) can only be estimated through (1.4). In this case, it is necessary to compare algebraic and statistical
properties of estimations derived from (1.1), (1.3) and (1.4).
As is well known, two commonly used estimators for themean vectorXβ in (1.1) are the ordinary least-squares estimator

(OLSE) and the best linear unbiased estimator (BLUE); while the two commonly used estimators for the unknown variance
component σ 2 in (1.1) are the simple estimator (SE) and the minimum norm quadratic unbiased estimator (MINQUE), both
of which are derived from the OLSE and BLUE of Xβ in (1.1), respectively. The two estimators are not necessarily the same in
general. Thus, itwould be of interest to study the relations between the SEs andMINQUEs, in particular, to give necessary and
sufficient conditions for the SEs andMINQUEs to equal. This topicwas also considered in the literature. For example, Groß [1]
gave necessary and sufficient conditions for the SE and MINQUE of σ 2 in (1.1) to equal; Wang et al. [11] compared the SE
and MINQUE of σ 2 in (1.1) through the MSEs of the estimators; Zhang [12] gave some necessary and sufficient conditions
for the MINQUEs of σ 2 in (1.1) and (1.4) to equal. The purpose of this paper is to derive identifying conditions for the SEs
and MINQUEs of the variance component σ 2 in (1.1), (1.3) and (1.4) to equal.
Throughout this paper, Rm×n stands for the collection of all m × n real matrices. The symbols A′, r(A) and R(A) stand

for the transpose, rank and range (column space) of a matrix A ∈ Rm×n, respectively. The Moore–Penrose inverse of A,
denoted by A+, is defined to be the unique solution X satisfying the four matrix equations AGA = A, GAG = G, (AG)′ = AG
and (GA)′ = GA. Further, let PA, EA and FA stand for the three orthogonal projectors PA = AA+, EA = Im − AA+ and
FA = In − A+A.
According to Rao [5], the linear modelM in (1.1) is said to be consistent if y ∈ R[X,6] holds with probability 1. In what

follows, we assume that (1.1) is consistent. Based on this fact, we use the following result to characterize relations between
two quadratic forms.

Lemma 1.1. Assume that the matrixM is symmetric. Then

y′My = 0 for all y ∈ R[X,6] ⇔ [X,6]′M[X,6] = 0.

In particular,

(a) Under MX = 0, the equality y′My = 0 holds for all y ∈ R[X,6] if and only if 6′M6 = 0.
(b) Under the condition r[X,6] = n, y′My = 0 holds for all y if and only if M = 0.
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Lemma 1.2. Assume that the matrixM is symmetric. Then[
y
b

]′
M
[
y
b

]
= 0 for all

[
y
b

]
∈ R

[
X 6

A 0

]
⇔

[
X 6

A 0

]′
M
[
X 6

A 0

]
= 0.

In particular,

(a) Under the conditionM
[
X
A

]
= 0, the equality

[
y
b

]′
M
[
y
b

]
= 0 holds for all y ∈ R[X,6] if and only if

[
6

0

]′
M
[
6

0

]
= 0.

(b) Under the condition r
[
X 6

A 0

]
= n+m, the equality

[
y
b

]′
M
[
y
b

]
= 0 holds for all y ∈ R[X,6] if and only if M = 0.

One of the most fundamental quantities in linear algebra is the rank of a matrix, which is a well understood and easy to
compute number. It has been realized in the past decades that the rank of matrix is a useful tool for simplifying complicated
matrix expressions or equalities. In order to simplify various matrix expressions involving the Moore–Penrose inverses of
matrices, we shall use the following rank formulas by Marsaglia and Styan [2, Theorem 19].

Lemma 1.3. Let A ∈ Rm×n, B ∈ Rm×k, C ∈ Rl×n and D ∈ Rl×k. Then

r[A, B] = r(A)+ r(EAB) = r(B)+ r(EBA), (1.9)

r
[
A
C

]
= r(A)+ r(CFA) = r(C)+ r(AFC), (1.10)

r
[
A B
C 0

]
= r(B)+ r(C)+ r(EBAFC). (1.11)

If R(B) ⊆ R(A) and R(C′) ⊆ R(A′), then

r
[
A B
C D

]
= r(A)+ r(D− CA+B). (1.12)

In general, the rank of the Schur complement D− CA+B can be calculated by the formula

r(D− CA+B) = r
[
A′AA′ A′B
CA′ D

]
− r(A), (1.13)

see Tian [7]. The following result was given by Tian [8].

Lemma 1.4. Let G1 and G2 be two outer inverses of a matrix A, i.e., G1AG1 = G1 and G2AG2 = G2. Then

r(G1 − G2) = r
[
G1
G2

]
+ r[G1,G2] − r(G1)− r(G2). (1.14)

In order to simplify the matrix operations occurred in the estimations, we use the following equalities

(EX6EX)
+
= EX(EX6EX)

+EX, (1.15)

R[(EX6EX)
+
] = R(EX6EX) = R(EX6), (1.16)

r(EX6EX) = r(EX6) = r[X,6] − r(X). (1.17)

We also use the following simple results on ranges and ranks of matrices

r(M−M2) = r(M)+ r(In −M)− n, (1.18)
R(A1) = R(A2) and R(B1) = R(B2)⇒ r[A1, B1] = r[A2, B2]. (1.19)

In order to derive closed-form formulas for ranks of partitionedmatrices, we use the following three types of elementary
block matrix operation (EBMO): (i) interchange two block rows (columns) in a partitioned matrix; (ii) multiply a block row
by a nonsingular matrix from the left-hand side (multiply a block column by a nonsingular matrix from the right-hand
side) in a partitioned matrix; (iii) multiply a block row by a matrix from the left-hand side and add it to another block row
(multiply a block column by a matrix from the right-hand side and add it to another block column) in a partitioned matrix.
It is obvious that the EBMOs do not change the rank of a matrix.
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2. Equality for the SE and MINQUE in the original model

Lemma 2.1. Let M be as given in (1.1). Then,
(a) The SE of σ 2 in (1.1), denoted by SEM (σ 2), is given by

SEM (σ 2) =
1
f
y′EXy, f = r[X,6] − r(X) > 0. (2.1)

(b) The MINQUE of σ 2 in (1.1), denoted byMINQUEM (σ 2), is given by

MINQUEM (σ 2) =
1
f
y′(EX6EX)

+y, f = r[X,6] − r(X) > 0. (2.2)

The SE of σ 2 in (2.1) is not necessarily unbiased for σ 2 in (1.1). If the random vector y in (1.1) is normally distributed,
then SEM (σ 2) has χ2(f )-distribution if and only if 6EX6EX6 = 6EX6, see Rao and Mitra [6]. More discussion on the
distributions of SEM (σ 2) and MINQUEM (σ 2) can be found in Groß [1]. Also note from (2.1) and (2.2) that the SE of the
variance component σ 2 involves no 6, but does the MINQUE. Hence, the SE is only an available estimator for σ 2 when 6 is
unknown or partially known. The following result gives identifying conditions for the two estimators to equal.

Theorem 2.2. Let SEM (σ 2) andMINQUEM (σ 2) be as given in (2.1) and (2.2). Then,
(a) The following statements are equivalent:

(i) SEM (σ 2) = MINQUEM (σ 2) holds with probability 1.
(ii) (EX6)

2
= EX6, i.e., EX6 is idempotent.

(iii) r
[
In − 6 X

X′ 0

]
= n+ 2r(X)− r[X,6].

(b) Under the condition r[X,6] = n, the following statements are equivalent:
(i) SEM (σ 2) = MINQUEM (σ 2) holds with probability 1.
(ii) EX6EX = EX.

(iii) r
[
In − 6 X

X′ 0

]
= 2r(X).

Proof. Note that both EX and (EX6EX)
+ are symmetric and EXX = 0 and (EX6EX)

+X = 0. Hence, it can be derived from
(2.1), (2.2) and Lemma 1.1 that SEM (σ 2) = MINQUEM (σ 2) holds with probability 1 if and only if 6EX6 = 6(EX6EX)

+6.
Applying (1.12), (1.15) to the difference of both sides of the equality and simplifying by EBMOs, we obtain

r[6EX6− 6(EX6EX)
+6] = r

[
EX6EX EX6
6EX 6EX6

]
− r(EX6EX)

= r
[

0 EX6− EX6EX6
6EX 0

]
− r(EX6)

= r[EX6− (EX6)
2
]

= r(EX6)+ r(In − EX6)− n (by (1.18))
= r[X,6] − r(X)+ r(In − 6+ XX+6)− n

= r[X,6] − 2r(X)+ r
[
X′X X′6
X 6− In

]
− n (by (1.12))

= r[X,6] − 2r(X)+ r
[
0 X′
X 6− In

]
− n.

Setting the right-hand sides to zero gives (a). Result (b) follows from (a). �

The equivalences of (i) and (ii) in Theorem 2.2(a) and (b) were given by Groß [1]. Theorem 2.2 shows that under the
conditions in (ii) and (iii), we can use the SE instead of the MINQUE, while the SE has the same optimal statistical properties
as the MINQUE. If 6 is unknown or partial known, then the two equalities in (ii) of Theorem 2.2(a) and (b) are in fact two
matrix equations for 6 to satisfy, while the two equalities in (iii) of Theorem 2.2(a) and (b) are two matrix rank equations
for 6 to satisfy.

3. Equalities for the SEs and the MINQUEs in the original model and its restricted models

A popular transformation in the literature on the restricted model in (1.3) is combining (1.1) and (1.2) into the following
implicitly restricted model

Mc = {yc,Xcβ, σ 26c}, (3.1)

where yc =
[
y
b

]
, Xc =

[
X
A

]
and 6c =

[
6 0
0 0

]
.
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Lemma 3.1. Let Mc be as given in (3.1). Then,

(a) The SE of σ 2 in (3.1) is given by

SEMc (σ
2) =

1
fc
y′cEXcyc, fc = r[Xc,6c] − r(Xc) > 0. (3.2)

(b) The MINQUE of σ 2 in (3.1) is given by

MINQUEMc (σ
2) =

1
fc
y′c(EXc6cEXc )

+yc, fc = r[Xc,6c] − r(Xc) > 0. (3.3)

Also note that SEM (σ 2) and MINQUEM (σ 2) in (2.1) and (2.2) can be represented as

SEM (σ 2) =
1
f
y′EXy =

1
f
y′c

[
EX 0
0 0

]
yc, (3.4)

MINQUEM (σ 2) =
1
f
y′(EX6EX)

+y =
1
f
y′c

[
(EX6EX)

+ 0
0 0

]
yc . (3.5)

Applying Lemma 1.2 to the estimators in (3.2)–(3.5) gives the following results.

Theorem 3.2. Let SEM (σ 2) and SEMc (σ
2) be as given in (2.1) and (3.1). Then,

(a) f SEM (σ 2) = fcSEMc (σ
2) holds with probability 1 if and only if r

[
A′A X′X 0
X′X −X′X X′6
0 6X 0

]
= r(Xc)+ r(X).

(b) Under the condition r
[
X 6

A 0

]
= n+m, f SEM (σ 2) = fcSEMc (σ

2) holds with probability 1 if and only if R(X′)∩R(A′) =
{0}.

Proof. Note that both
[
EX 0
0 0

]
Xc = 0 and EXcXc = 0. Hence, it can be seen from (3.2), (3.4) and Lemma 1.2(a) that

f SEM (σ 2) = fcSEMc (σ
2) holds with probability 1 if and only if[

6

0

]′ [EX 0
0 0

] [
6

0

]
=

[
6

0

]′
EXc

[
6

0

]
.

Applying (1.13) to the difference of both sides of this equality and simplifying by EBMOs, we obtain

r
([
6

0

]′ [EX 0
0 0

] [
6

0

]
−

[
6

0

]′
EXc

[
6

0

])
= r

(
[6, 0]XcX+c

[
6

0

]
− 6XX+6

)

= r

[X′cXc 0 X′6
0 −X′X X′6
6X 6X 0

]
− r(Xc)− r(X)

= r

[A′A X′X 0
X′X −X′X X′6
0 6X 0

]
− r(Xc)− r(X). (3.6)

Setting the right-hand side of (3.6) to zero leads to (a). Result (b) is derived from Lemma 1.2(b). �

Theorem 3.3. Let MINQUEM (σ 2) andMINQUEMc (σ
2) be as given in (3.5) and (3.3) . Then,

(a) fMINQUEM (σ 2) = fcMINQUEMc (σ
2) holds with probability 1 if and only if r

[
X 6

A 0

]
= r

[
X
A

]
+ r[X,6] − r(X).

(b) Under the condition r
[
X 6

A 0

]
= n + m, fMINQUEM (σ 2) = fcMINQUEMc (σ

2) holds with probability 1 if and only if

R(X′) ∩ R(A′) = {0}.

Proof. From Lemma 1.2(a), fMINQUEM (σ 2) = fcMINQUEMc (σ
2) holds with probability 1 if and only if[

6

0

]′ [
(EX6EX)

+ 0
0 0

] [
6

0

]
=

[
6

0

]′
(EXc6cEXc )

+

[
6

0

]
.
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It is easy to verify that both sides of this equality are outer inverses of 6+. In this case, applying (1.14) and simplifying by
(1.10), (1.15)–(1.17) and (1.19) gives

r
([
6

0

]′ [
(EX6EX)

+ 0
0 0

] [
6

0

]
−

[
6

0

]′
(EXc6cEXc )

+

[
6

0

])
= 2r

[
6(EX6EX)

+6, [6, 0](EXc6cEXc )
+

[
6

0

]]
− r[6(EX6EX)

+6] − r
(
[6, 0](EXc6cEXc )

+

[
6

0

])
= 2r

[
6EX, [6, 0]EXc

]
− r(6EX)− r

(
[6, 0]EXc

)
= 2r

[
6 6 0
X′ 0 0
0 X′ A′

]
− r

[
6

X′
]
− r

[
6 0
X′ A′

]
− r(X)− r(Xc)

= 2r

[ 0 6 0
X′ 0 0
0 X′ A′

]
− r

[
6

X′
]
− r

[
6 0
X′ A′

]
− r(X)− r(Xc)

= r
[
X 6

A 0

]
− r

[
X
A

]
− r[X,6] + r(X). (3.7)

Setting the right-hand side of (3.7) to zero leads to (a). Result (b) is derived from Lemma 1.2(b). �

4. Equalities for the SEs and the MINQUEs in the original model and its transformed models

Lemma 4.1. Let Mt be as given in (1.4). Then,
(a) The SE of σ 2 in (1.4) is given by

SEMt (σ
2) =

1
ft
y′A′EAXAy, ft = r[AX,A6] − r(AX) > 0. (4.1)

(b) The MINQUE of σ 2 in (1.4) is given by

MINQUEMt (σ
2) =

1
ft
y′A′(EAXA6A′EAX)

+Ay, ft = r[AX,A6] − r(AX) > 0. (4.2)

Theorem 4.2. Let SEM (σ 2) and SEMt (σ
2) be as given in (2.1) and (4.1). Then the following statements are equivalent:

(a) f SEM (σ 2) = ftSEMt (σ
2) holds with probability 1.

(b) 6EX6 = 6A′EAXA6.

(c) r(P′NP) = r(X)+ r(AX), where P = diag(X,AX,6) and N =
[In 0 In

0 −In In
In In In − A′A

]
.

Proof. Note that both EX and EX(EX6EX)
+EX are symmetric and EXX = 0 and EAXAX = 0. Hence, it can be seen from (2.1),

(4.1) and Lemma 1.1 that f SEM (σ 2) = ftSEMt (σ
2) holds with probability 1 if and only if 6EX6 = 6A′EAXA6, as required

for (b). Applying (1.12), X+ = (X′X)+X′ and (AX)+ = [(AX)′(AX)]+(AX)′ to the difference of both sides of the equality and
simplifying by EBMOs, we obtain

r(6EX6− 6A′EAXA6)
= r[62 − 6A′A6− 6XX+6+ 6A′AX(AX)+A6]
= r{62 − 6A′A6− 6X(X′X)+X′6+ 6A′AX[(AX)′(AX)]+(AX)′A6}

= r

X′X 0 X′6
0 −(AX)′AX (AX)′A6
6X 6A′AX 62 − 6A′A6

− r(X)− r(AX)
= r(P′NP)− r(X)− r(AX).

Setting the right-hand side to zero leads to the equivalence of (b) and (c). �

The results in Theorem 4.2 seem complicated under the general assumptions in (1.1) and (1.4). However, if the
transformation matrix A is given with some special forms, or the covariance matrix 6 is positive definite, then the rank
equality in Theorem 4.2(c) can simplify further.

Corollary 4.3. Let SEM (σ 2) and SEMt (σ
2) be as given in (2.1) and (4.1) and assume that r[X,6] = n. Then the following

statements are equivalent:
(a) f SEM (σ 2) = ftSEMt (σ

2).
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(b) EX = A′EAXA.
(c) r

[
X′X X′

X In − A′A

]
= r(X)+ r(AX).

Proof. It can be seen from Lemma 1.1(b) that under the condition r[X,6] = n, the equality f SEM (σ 2) = ftSEMt (σ
2) holds

if and only if the equality in (b) holds. Applying (1.12) to EX − A′EAXA and simplifying by EBMOs, we obtain

r(EX − A′EAXA) = r{In − A′A− X(X′X)+X′ + A′AX[(AX)′(AX)]+(AX)′A}

= r

X′X 0 X′
0 −(AX)′AX (AX)′A
X A′AX In − A′A

− r(X)− r(AX)
= r

X′X X′X X′
0 0 (AX)′A
X X In − A′A

− r(X)− r(AX)
= r

X′X X′X X′
X′X X′X X′
X X In − A′A

− r(X)− r(AX)
= r

[
X′X X′
X In − A′A

]
− r(X)− r(AX).

Hence, (b) and (c) are equivalent. �

Corollary 4.3 shows that the covariance matrix 6 in (1.1) is not included in the verification of the equality in (a). If the
transformed matrix A satisfies A′A = In, then we have the following result.

Corollary 4.4. Let SEM (σ 2) and SEMt (σ
2) be as given in (2.1) and (4.1) and assume A′A = In. Then,

(a) f SEM (σ 2) = ftSEMt (σ
2) holds with probability 1 if and only if r(6X) = r(X), i.e., R(X′6) = R(X′).

(b) f SEM (σ 2) = ftSEMt (σ
2) if r[X,6] = n.

Theorem 4.5. Let MINQUEM (σ 2) andMINQUEMt (σ
2) be as given in (2.2) and (4.2). Then,

(a) fMINQUEM (σ 2) = ftMINQUEMt (σ
2) holds with probability 1 if and only if f = ft .

(b) MINQUEM (σ 2) = MINQUEMt (σ
2) holds with probability 1 if r(A) = n.

Proof. Note that both (EX6EX)
+ and A′(EAXA6A′EAX)

+A are symmetric, and

(EX6EX)
+X = 0 and A′(EAXA6A′EAX)

+AX = 0.

Hence, it can be seen from (2.2), (4.2) and Lemma 1.1(b) that fMINQUEM (σ 2) = ftMINQUEMt (σ
2) holds with probability

1 if and only if

6(EX6EX)
+6 = 6A′(EAXA6A′EAX)

+A6. (4.3)

It is easy to verify that both 6(EX6EX)
+6 and 6A′(EAXA6A′EAX)

+A6 are outer inverses of 6+. In this case, applying (1.14)
to the difference of both sides of (4.3) and simplifying by EBMOs gives

r[6(EX6EX)
+6− 6A′(EAXA6A′EAX)

+A6]
= 2r[6(EX6EX)

+6,6A′(EAXA6A′EAX)
+A6] − r(EX6EX)− r(EAXA6A′EAX)

= 2r[6EX,6A′EAX] − r(EX6)− r(EAXA6) (by (1.17) and (1.19))

= 2r
[
X 0 6

0 AX A6

]
− r[X,6] − r[AX,A6] − r(X)− r(AX) (by (1.9) and (1.10))

= 2r
[
X 0 6

0 AX 0

]
− r[X,6] − r[AX,A6] − r(X)− r(AX)

= r[X,6] + r(AX)− r[AX,A6] − r(X)
= f − ft .

Setting the right-hand side to zero results in (a). Result (b) is a direct consequence of (a). �

The condition ft = f is easy to verify, under which we can use MINQUEM (σ 2) instead of MINQUEMt (σ
2). In what

follows, we give some applications of the previous theorems and corollaries to the sub-sample models and reduced models
in (1.5) and (1.8).
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Let

fs1 = r[X1,611] − r(X1) > 0, and fs2 = r[X2,622] − r(X2) > 0.

Then it can be derived from (4.1) that the SEs of σ 2 in the two sub-sample models in (1.5) are given by

SEMs1(σ
2) =

1
fs1

y′1EX1y1, SEMs2(σ
2) =

1
fs2

y′2EX2y2, (4.4)

and from (4.2) that the MINQUEs of σ 2 in the two sub-sample models in (1.5) are given by

MINQUEMs1(σ
2) =

1
fs1

y′1(EX1611EX1)
+y1, MINQUEMs2(σ

2) =
1
fs2

y′2(EX2622EX2)
+y2. (4.5)

Applying Theorems 4.2 and 4.5 to (4.4) and (4.5) gives the following results.

Theorem 4.6. Let SEM (σ 2), SEMs1(σ
2) and SEMs2(σ

2) be as given in (2.1) and (4.4), and let 61 = [611,612] and 62 =
[621,622]. Then,

(a) f SEM (σ 2) = fs1SEMs1(σ
2) holds with probability 1 if and only if

r

X′X 0 X′6
0 −X′1X1 X′161
6′X 6′1X1 6′262

 = r(X)+ r(X1).
(b) f SEM (σ 2) = fs2SEMs2(σ

2) holds with probability 1 if and only if

r

X′X 0 X′6
0 −X′2X2 X′262
6′X 6′2X2 6′161

 = r(X)+ r(X2).
(c) Under the condition that 6 is positive definite,

f SEM (σ 2) = fs1SEMs1(σ
2)⇔ R(X′1) ∩ R(X′2) = {0} and r(X2) = n2,

f SEM (σ 2) = fs2SEMs2(σ
2)⇔ R(X′1) ∩ R(X′2) = {0} and r(X1) = n1.

Theorem 4.7. Let MINQUEM (σ 2),MINQUEMs1(σ
2) andMINQUEMs2(σ

2) be as given in (2.2) and (4.5). Then

(a) fMINQUEM (σ 2) = fs1MINQUEMs1(σ
2) holds with probability 1 if and only if f = fs1.

(b) fMINQUEM (σ 2) = fs2MINQUEMs2(σ
2) holds with probability 1 if and only if f = fs2.

(c) Under the condition that 6 is positive definite,

fMINQUEM (σ 2) = fs1MINQUEMs1(σ
2)⇔ R(X′1) ∩ R(X′2) = {0} and r(X2) = n2,

fMINQUEM (σ 2) = fs2MINQUEMs2(σ
2)⇔ R(X′1) ∩ R(X′2) = {0} and r(X1) = n1.

Let f = r[X,6] − r(X) > 0. Then it can be derived from (4.1) and (4.2) that the SEs of σ 2 in the two reduced models in
(1.8) are given by

SEMr1(σ
2) =

1
f
y′E(EX2X1)y, SEMr2(σ

2) =
1
f
y′E(EX1X2)y, (4.6)

while the MINQUEs of σ 2 in the two reduced models in (1.8) are given by

MINQUEMr1(σ
2) =

1
f
y′EX2(E(EX2X1)EX26EX2E(EX2X1))

+EX2y, (4.7)

MINQUEMr2(σ
2) =

1
f
y′EX1(E(EX1X2)EX16EX1E(EX1X2))

+EX1y. (4.8)

Corollary 4.8. Let SEM (σ 2), SEMr1(σ
2) and SEMr2(σ

2) be as given in (2.1) and (4.6). Then,

(a) SEM (σ 2) = SEMr1(σ
2) holds with probability 1 if and only if

r

[X′X 0 X′6
0 −X′1EX2X1 X′1EX26
6X 6EX2X1 6PX26

]
= 2r(X)− r(X2).
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(b) SEM (σ 2) = SEMr2(σ
2) holds with probability 1 if and only if

r

[X′X 0 X′6
0 −X′2EX1X2 X′2EX16
6X 6EX1X2 6PX16

]
= 2r(X)− r(X1).

(c) SEM (σ 2) = SEMr1(σ
2) = SEMr2(σ

2) if 6 is positive definite.

Corollary 4.9 (Zhang [12]). Let MINQUEM (σ 2),MINQUEMr1(σ
2) andMINQUEMr2(σ

2) be as given in (2.2), (4.7) and (4.8).
Then the equalities

MINQUEM (σ 2) = MINQUEMr1(σ
2) = MINQUEMr2(σ

2)

hold with probability 1.

5. Equalities for the SEs and the MINQUEs of σ2 in the original model and its misspecified models

In the theory of regression analysis, assumptions on error terms play an important role. Suppose that themodel matrix X
in (1.1) is misspecified asX0, and the covariancematrix6 in (1.1) is misspecified as60. Then the correspondingmisspecified
model of (1.1) is given by

Mm = {y,X0β, σ 260}. (5.1)

In this case, the SE of σ 2 in (5.1) is

SEMm(σ
2) =

1
fm

y′EX0y, fm = r[X0,60] − r(X0) > 0, (5.2)

and the MINQUE of σ 2 in (5.1) is

MINQUEMm(σ
2) =

1
fm

y′EX0(EX060EX0)
+EX0y, fm = r[X0,60] − r(X0) > 0. (5.3)

Because (5.1) is a misspecified model of (1.1), the estimator in (5.3) is not necessarily a minimum norm quadratic unbiased
estimator of σ 2. In this section, we give necessary and sufficient conditions for the SEs andMINQUEs in (2.1), (2.2), (5.2) and
(5.3) to be equal.

Theorem 5.1. Let SEM (σ 2) and SEMm(σ
2) be as given in (2.1) and (5.2). Then,

(a) The following statements are equivalent:
(i) f SEM (σ 2) = fmSEMm(σ

2) holds with probability 1.
(ii) R(X) ⊆ R(X0) and R(X′0X) ⊆ R(X′06).

(b) Under the condition r[X,6] = n, the following statements are equivalent:
(i) f SEM (σ 2) = fmSEMm(σ

2) holds with probability 1.
(ii) R(X) = R(X0).

Proof. Note that both EX and EX0 are symmetric. Hence, it can be seen from (2.1), (5.2) and Lemma 1.1 that f SEM (σ 2) =

fmSEMm(σ
2) holds with probability 1 if and only if

[X,6]′EX[X,6] = [X,6]′EX0 [X,6]. (5.4)

Comparing both sides leads to

X′EX0X = 0, X′EX06 = 0, 6EX6 = 6EX06. (5.5)

The first equality in (5.5) is obviously equivalent to EX0X = 0, i.e., R(X) ⊆ R(X0). In this case, the second equality in (5.5)
holds as well. Applying (1.13) and simplifying by EBMOs and R(X) ⊆ R(X0), we obtain

r(6EX6− 6EX06) = r(6XX
+6− 6X0X+0 6)

= r

[X′X 0 X′6
0 −X′0X0 X′06
6X 6X0 0

]
− r(X)− r(X0)

= r

[X′X 0 X′6
X′0X −X′0X0 X′06
0 6X0 0

]
− r(X)− r(X0)
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= r

[ 0 X′X0 0
X′0X −X′0X0 X′06
0 6X0 0

]
− r(X)− r(X0)

= r

[X′0X0 X′0X X′06
X′X0 0 0
6X0 0 0

]
− r(X)− r(X0)

= r[X′0X0 X
′

0X,X
′

06] + r[X
′

0X,X
′

06] − r(X)− r(X0)
= r[X′0X,X

′

06] − r(X)
= r[X′0X,X

′

06] − r(X
′

0X).

Setting the rank equality to zero leads to the equivalence of (i) and (ii) in (a). Under the condition r[X,6] = n, (5.3) is
equivalent to EX = EX0 , i.e., R(X) = R(X0), establishing the equivalence of (i) and (ii) in (b). �

Theorem 5.2. Let MINQUEM (σ 2) andMINQUEMm(σ
2) be as given in (2.2) and (5.3) with X = X0. Then,

(a) The following statements are equivalent:
(i) fMINQUEM (σ 2) = fmMINQUEMm(σ

2) holds with probability 1.
(ii) (EX60EX)

+ is a g-inverse of EX6EX.
(iii) r[60EX(6− 60)EX60] = r(EX60)− r(EX6).

(b) Under the condition r[X,6] = n, the following statements are equivalent:
(i) fMINQUEM (σ 2) = fmMINQUEMm(σ

2) holds with probability 1.
(ii) EX60EX = EX6EX.

(iii) r
[
60 − 6 X

X′ 0

]
= 2r(X).

Proof. Note that both EX(EX6EX)
+EX and EX(EX60EX)

+EX are symmetric. Therefore, it can be seen from (2.2), (5.3) and
Lemma 1.1 that fMINQUEM (σ 2) = fmMINQUEMm(σ

2) holds with probability 1 if and only if

6EX(EX6EX)
+EX6 = 6EX(EX60EX)

+EX6. (5.6)

Pre- and post-multiplying EX on both sides of (5.6) gives

EX6EX = EX6EX(EX60EX)
+EX6EX. (5.7)

Pre- and post-multiplying 6EX(EX6EX)
+ and (EX6EX)

+EX6 on both sides of (5.7) gives (5.6). Thus, (5.6) and (5.7) are
equivalent. Applying (1.13) to (5.7) and simplifying by EBMOs, we obtain

r[EX6EX − EX6EX(EX60EX)
+EX6EX]

= r
[
(EX60EX)

3 EX60(EX6EX)
(EX6EX)60EX EX6EX

]
− r(EX6EX)

= r
[
EX60EX60EX60EX − EX60EX6EX60EX 0

0 EX6EX

]
− r(EX6EX)

= r[EX60EX(6− 60)EX60EX] + r(EX6EX)− r(EX60EX)

= r[60EX(6− 60)EX60] + r(EX6)− r(EX60).

By setting the right-hand sides equal to zero, we obtain the equivalence in (a). Under the condition r[X,6] = n, the equality
fMINQUEM (σ 2) = fmMINQUEMm(σ

2) holds with probability 1 if and only if

EX(EX6EX)
+EX = EX(EX60EX)

+EX,

which is equivalent to EX6EX = EX60EX by (1.15), establishing the equivalence of (i) and (ii) in (b). Applying (1.11) to the
equality leads to the equivalence of (ii) and (iii) in (b). �

6. Concluding remarks

We gave necessary and sufficient conditions for some equalities of the SEs and MINQUEs of the variance component σ 2
in (1.1), (1.3) and (1.4) to hold through simplifying matrix expressions associated with the equalities by ranks of matrices.
The results obtained demonstrate a variety of new properties of the SEs and MINQUEs of the variance components.
In regression analysis, various possible equalities and decompositions of quadratic forms of random variables can be

proposed, and necessary and sufficient conditions for the equalities and decompositions to hold need to be established.
In these events, the matrix rank method can efficiently be used to characterize various equalities and decompositions of
quadratic forms. Some recent work on the matrix rank method in showing the well-known Cochran’s theorem and its
extensions was given by Tian and Styan [9,10].
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