Some equalities for estimations of variance components in a general linear model and its restricted and transformed models

Yongge Tiana,*, Chunmei Liub

a China Economics and Management Academy, Central University of Finance and Economics, Beijing 100081, China
b School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China

\textbf{A R T I C L E I N F O}

\begin{itemize}
\item Article history:
Received 23 November 2008
Available online 1 June 2010
\end{itemize}

\textbf{AMS 2000 subject classifications:}
62J05
62J10
62H12
15A09

\textbf{Keywords:}
Linear regression model
Restricted model
Transformed model
Sub-sample model
Reduced model
Simple estimator
Minimum norm quadratic unbiased estimator
Equality for estimators
Matrix rank method

\textbf{A B S T R A C T}

For the unknown positive parameter \(\sigma^2 \) in a general linear model \(\mathcal{M} = \{ \mathbf{y}, \mathbf{X}\beta, \sigma^2 \Sigma \} \), the two commonly used estimations are the simple estimator (SE) and the minimum norm quadratic unbiased estimator (MINQUE). In this paper, we derive necessary and sufficient conditions for the equivalence of the SEs and MINQUEs of the variance component \(\sigma^2 \) in the original model \(\mathcal{M} \), the restricted model \(\mathcal{M}_r = \{ \mathbf{y}, \mathbf{X}\beta \mid \mathbf{A}\beta = \mathbf{b}, \sigma^2 \Sigma \} \), the transformed model \(\mathcal{M}_t = \{ \mathbf{A}\mathbf{y}, \mathbf{AX}\beta, \sigma^2 \mathbf{A}\Sigma \mathbf{A}' \} \), and the misspecified model \(\mathcal{M}_m = \{ \mathbf{y}, \mathbf{X}\beta_0, \sigma^2 \Sigma_0 \} \).

\(\odot \) 2010 Elsevier Inc. All rights reserved.

1. Introduction

Consider a general linear model
\begin{equation}
\mathcal{M} = \{ \mathbf{y}, \mathbf{X}\beta, \sigma^2 \Sigma \},
\end{equation}
where \(\mathbf{X} \in \mathbb{R}^{n \times p} \) is a known matrix of arbitrary rank, \(\mathbf{y} \in \mathbb{R}^{n \times 1} \) is an observable random vector with \(E(\mathbf{y}) = \mathbf{X}\beta \) and \(\text{Cov}(\mathbf{y}) = \sigma^2 \Sigma, \beta \in \mathbb{R}^{p \times 1} \) is a vector of unknown parameters, \(\Sigma \in \mathbb{R}^{n \times n} \) is a known or unknown nonnegative definite matrix of arbitrary rank, and \(\sigma^2 \), called the variance component, is a positive unknown parameter.

In the investigation of (1.1), the following two cases usually occur:

(a) An extraneous information is available on the unknown parameter vector \(\beta \) in the form of a consistent linear matrix equation
\begin{equation}
\mathbf{A}\beta = \mathbf{b},
\end{equation}
where A is an $m \times p$ known matrix with $\text{rank}(A) = m$ and b is an $m \times 1$ known vector. This restriction often occurs, for example, in hypothesis testing on the parameter vector in (1.1). The model (1.1) subject to (1.2) is called a restricted linear model. In such a case, the model in (1.1) together with (1.2) can be written in the following compact form

$$
\mathcal{M}_r = \{y, X\beta \mid A\beta = b, \sigma^2 \Sigma\}.
$$

(1.3)

(b) A linear transformation of (1.1) is

$$
\mathcal{M}_t = \{Ay, AX\beta, \sigma^2 A\Sigma A'\},
$$

(1.4)

where $A \in \mathbb{R}^{m \times n}$ is a known matrix of arbitrary rank. This happens for regression models with grouped observations, aggregated data or missing data, natural restrictions to parameters, sub-sample models, reduced models, etc. Some special cases of (1.4) are given below:

(i) Partition the model matrix X in (1.1) as $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$, where $X_1 \in \mathbb{R}^{n_1 \times p}$ and $X_2 \in \mathbb{R}^{n_2 \times p}$, and let the transformation matrix in (1.4) be $A = [I_{n_1}, 0]$ and $A = [0, I_{n_2}]$, respectively. Then, (1.4) reduces to the following two sub-sample models:

$$
\mathcal{M}_{s1} = \{y_1, X_1\beta, \sigma^2 \Sigma_{11}\}
$$

and

$$
\mathcal{M}_{s2} = \{y_2, X_2\beta, \sigma^2 \Sigma_{22}\},
$$

(1.5)

where $y_1 \in \mathbb{R}^{n_1 \times 1}$, $y_2 \in \mathbb{R}^{n_2 \times 1}$, and $\Sigma_{11} \in \mathbb{R}^{n_1 \times n_1}$ and $\Sigma_{22} \in \mathbb{R}^{n_2 \times n_2}$ are the upper-left and lower-right corners of the covariance matrix Σ, respectively.

(ii) If $A = X'$, then (1.4) becomes

$$
\mathcal{M}_t = \{X'y, X'X\beta, \sigma^2 X' \Sigma X\}.
$$

(1.6)

(iii) If $A = E_X$, then (1.4) reduces to

$$
\mathcal{M}_t = \{E_Xy, E_X'X\beta, 0\},
$$

(1.7)

that is to say, $E_X'y = E_X'X\beta$ holds with probability 1. The equality is called the natural restriction to the parameters in (1.1) in the literature.

(iv) Partition the mean vector $X\beta$ in (1.1) as $X\beta = \beta_1 + \beta_2$, where $X_1 \in \mathbb{R}^{n \times p_1}$ and $X_2 \in \mathbb{R}^{n \times p_2}$ with $p_1 + p_2 = p$, and let the transformation matrix A in (1.4) be $A = E_{X_1}$ and $A = E_{X_2}$, respectively. Then (1.4) becomes

$$
\mathcal{M}_{r1} = \{E_{X_1}y, E_{X_1}'X_1\beta_1, \sigma^2 E_{X_1}X_1 \Sigma E_{X_1}\}
$$

and

$$
\mathcal{M}_{r2} = \{E_{X_2}y, E_{X_2}'X_2\beta_2, \sigma^2 E_{X_2}X_2 \Sigma E_{X_2}\},
$$

(1.8)

respectively, both of which are called correctly reduced versions of (1.1), see Nurhonen and Puntanen [3], and Puntanen [4].

Because the original model (1.1), the restricted model (1.3) and the transformed model (1.4) are different in structure, estimations derived from (1.1), (1.3) and (1.4) are not necessarily equal. In particular, if only (1.4) is given, the unknown parameters in (1.1) can only be estimated through (1.4). In this case, it is necessary to compare algebraic and statistical properties of estimations derived from (1.1), (1.3) and (1.4).

As is well known, two commonly used estimators for the mean vector $X\beta$ in (1.1) are the ordinary least-squares estimator (OLSE) and the best linear unbiased estimator (BLUE); while the two commonly used estimators for the unknown variance component σ^2 in (1.1) are the simple estimator (SE) and the minimum norm quadratic unbiased estimator (MINQUE), both of which are derived from the OLSE and BLUE of $X\beta$ in (1.1), respectively. The two estimators are not necessarily the same in general. Thus, it would be of interest to study the relations between the SEs and MINQUEs, in particular, to give necessary and sufficient conditions for the SEs and MINQUEs to equal. This topic was also considered in the literature. For example, Groß [1] gave necessary and sufficient conditions for the SE and MINQUE of σ^2 in (1.1) to equal; Wang et al. [11] compared the SE and MINQUE of σ^2 in (1.1) through the MSEs of the estimators; Zhang [12] gave some necessary and sufficient conditions for the MINQUEs of σ^2 in (1.1) and (1.4) to equal. The purpose of this paper is to derive identifying conditions for the SEs and MINQUEs of the variance component σ^2 in (1.1), (1.3) and (1.4) to equal.

Throughout this paper, $\mathbb{R}^{m \times n}$ stands for the collection of all $m \times n$ real matrices. The symbols A', $r(A)$ and $\mathcal{A}(A)$ stand for the transpose, rank and column space (of A) \in $\mathbb{R}^{m \times n}$, respectively. The Moore–Penrose inverse of A, denoted by A^+, is defined to be the unique solution X satisfying the four matrix equations $AGA = A$, $GAG = G$, $(AG)' = AG$ and $(GA)' = GA$. Further, let P_A, E_A and F_A stand for the three orthogonal projectors $P_A = AA^+$, $E_A = I_m - AA^+$ and $F_A = I_p - A^+A$.

According to Rao [5], the linear model \mathcal{M} in (1.1) is said to be consistent if $y \in \mathcal{A}(X, \Sigma)$ holds with probability 1. In what follows, we assume that (1.1) is consistent. Based on this fact, we use the following result to characterize relations between two quadratic forms.

Lemma 1.1. Assume that the matrix M is symmetric. Then

$$
y'My = 0 \ \text{for all} \ y \in \mathcal{A}(X, \Sigma) \quad \Leftrightarrow \quad [X, \Sigma]'M[X, \Sigma] = 0.
$$

In particular,

(a) Under $MX = 0$, the equality $y'My = 0$ holds for all $y \in \mathcal{A}(X, \Sigma)$ if and only if $\Sigma'M\Sigma = 0$.

(b) Under the condition $r[X, \Sigma] = n$, $y'My = 0$ holds for all y if and only if $M = 0$.

Lemma 1.2. Assume that the matrix M is symmetric. Then
\[
\begin{bmatrix} y' \\ b \end{bmatrix} M \begin{bmatrix} y' \\ b \end{bmatrix} = 0 \quad \text{for all} \quad \begin{bmatrix} y' \\ b \end{bmatrix} \in R \begin{bmatrix} X & \Sigma' \\ A & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} X & \Sigma' \\ A & 0 \end{bmatrix}' M \begin{bmatrix} X & \Sigma' \\ A & 0 \end{bmatrix} = 0.
\]

In particular,

(a) Under the condition $M \begin{bmatrix} x' \\ A \end{bmatrix} = 0$, the equality $\begin{bmatrix} y' \\ b \end{bmatrix}' M \begin{bmatrix} y' \\ b \end{bmatrix} = 0$ holds for all $y \in R[X, \Sigma]$ if and only if $\begin{bmatrix} \Sigma' \\ 0 \end{bmatrix} M \begin{bmatrix} \Sigma' \\ 0 \end{bmatrix} = 0$.

(b) Under the condition $r \begin{bmatrix} x' \\ \Sigma \end{bmatrix} = n + m$, the equality $\begin{bmatrix} y' \\ b \end{bmatrix}' M \begin{bmatrix} y' \\ b \end{bmatrix} = 0$ holds for all $y \in R[X, \Sigma]$ if and only if $M = 0$.

One of the most fundamental quantities in linear algebra is the rank of a matrix, which is a well understood and easy to compute number. It has been realized in the past decades that the rank of matrix is a useful tool for simplifying complicated matrix expressions or equalities. In order to simplify various matrix expressions involving the Moore–Penrose inverses of matrices, we shall use the following rank formulas by Marsaglia and Styan [2, Theorem 19].

Lemma 1.3. Let $A \in R^{m \times n}$, $B \in R^{m \times k}$, $C \in R^{l \times n}$ and $D \in R^{l \times k}$. Then
\[
\begin{align*}
r(A, B) &= r(A) + r(E_A B) = r(B) + r(E_B A), \quad (1.9) \\
r \begin{bmatrix} A' & B' \\ C & D \end{bmatrix} &= r(A) + r(D - CA^+ B), \quad (1.12)
\end{align*}
\]
If $R(B) \subseteq R(A)$ and $R(C) \subseteq R(A')$, then
\[
r \begin{bmatrix} A' & B' \\ C & D \end{bmatrix} = r(A) + r(D - CA^+ B).
\]
In general, the rank of the Schur complement $D - CA^+ B$ can be calculated by the formula
\[
r(D - CA^+ B) = r \begin{bmatrix} A' A' & A' B' \\ C A' & D \end{bmatrix} - r(A), \quad (1.13)
\]
see Tian [7]. The following result was given by Tian [8].

Lemma 1.4. Let G_1 and G_2 be two outer inverses of a matrix A, i.e., $G_1 A G_1 = G_1$ and $G_2 A G_2 = G_2$. Then
\[
r(G_1 - G_2) = r \begin{bmatrix} G_1' \\ G_2' \end{bmatrix} + r[G_1, G_2] - r(G_1) - r(G_2). \quad (1.14)
\]

In order to simplify the matrix operations occurred in the estimations, we use the following equalities
\[
(E_X \Sigma E_X)^+ = E_X (E_X \Sigma E_X)^+ E_X, \quad (1.15)
R[A', C] = R(A') \quad \text{and} \quad R[B', C] = R(B') \Rightarrow r[A', B'] = r[A', B'], \quad (1.19)
\]
We also use the following simple results on ranges and ranks of matrices
\[
r(M - M^\perp) = r(M) + r(I_n - M) - n, \quad (1.18)
\]
In order to derive closed-form formulas for ranks of partitioned matrices, we use the following three types of elementary block matrix operation (EBMO): (i) interchange two block rows (columns) in a partitioned matrix; (ii) multiply a block row by a nonsingular matrix from the left-hand side (multiply a block column by a nonsingular matrix from the right-hand side) in a partitioned matrix; (iii) multiply a block row by a matrix from the left-hand side and add it to another block row (multiply a block column by a matrix from the right-hand side and add it to another block column) in a partitioned matrix. It is obvious that the EBMOs do not change the rank of a matrix.
2. Equality for the SE and MINQUE in the original model

Lemma 2.1. Let \(\mathcal{A} \) be as given in (1.1). Then,
(a) The SE of \(\sigma^2 \) in (1.1), denoted by \(\text{SE}_{\mathcal{A}}(\sigma^2) \), is given by
\[
\text{SE}_{\mathcal{A}}(\sigma^2) = \frac{1}{f} y^T E_x y, \quad f = r[X, \Sigma] - r(X) > 0. \tag{2.1}
\]
(b) The MINQUE of \(\sigma^2 \) in (1.1), denoted by \(\text{MINQUE}_{\mathcal{A}}(\sigma^2) \), is given by
\[
\text{MINQUE}_{\mathcal{A}}(\sigma^2) = \frac{1}{f} y^T (E_x \Sigma E_x)^+ y, \quad f = r[X, \Sigma] - r(X) > 0. \tag{2.2}
\]

Applying (2.1), (2.2) and Lemma 1.1, the following result gives identifying conditions for the two estimators to equal.

Theorem 2.2. Let \(\text{SE}_{\mathcal{A}}(\sigma^2) \) and \(\text{MINQUE}_{\mathcal{A}}(\sigma^2) \) be as given in (2.1) and (2.2). Then,
(a) The following statements are equivalent:
(i) \(\text{SE}_{\mathcal{A}}(\sigma^2) = \text{MINQUE}_{\mathcal{A}}(\sigma^2) \) holds with probability 1.
(ii) \((E_x \Sigma)^2 = E_x \Sigma \), i.e., \(E_x \Sigma \) is idempotent.
(iii) \(r\begin{bmatrix} I_n - \Sigma & X \\ 0 & 0 \end{bmatrix} = n + 2r(X) - r[X, \Sigma] \).
(b) Under the condition \(r[X, \Sigma] = n \), the following statements are equivalent:
(i) \(\text{SE}_{\mathcal{A}}(\sigma^2) = \text{MINQUE}_{\mathcal{A}}(\sigma^2) \) holds with probability 1.
(ii) \(E_x \Sigma E_x = E_x \).
(iii) \(r\begin{bmatrix} I_n - \Sigma & X \\ 0 & 0 \end{bmatrix} = 2r(X) \).

Proof. Note that both \(E_x \) and \((E_x \Sigma E_x)^+ \) are symmetric and \(E_x X = 0 \) and \((E_x \Sigma E_x)^+ X = 0 \). Hence, it can be derived from (2.1), (2.2) and Lemma 1.1 that \(\text{SE}_{\mathcal{A}}(\sigma^2) = \text{MINQUE}_{\mathcal{A}}(\sigma^2) \) holds with probability 1 if and only if \(E_x \Sigma = \Sigma (E_x \Sigma E_x)^+ \Sigma \).

Applying (1.12), (1.15) to the difference of both sides of the equality and simplifying by EBMOs, we obtain
\[
\begin{align*}
0 = r & E_x \Sigma E_x - E_x \Sigma E_x \\
& - r(\Sigma E_x) = r|E_x \Sigma - E_x \Sigma E_x|^+ - r(\Sigma E_x)
\end{align*}
\]
\[
= r[|E_x \Sigma| - (E_x \Sigma)^2] = r(E_x \Sigma) + r(I_n - E_x \Sigma) - n \text{ (by } (1.18))
\]
\[
= r[X, \Sigma] - r(X) + r(I_n - \Sigma + XX^+ \Sigma) - n
\]
\[
= r[X, \Sigma] - 2r(X) + r\begin{bmatrix} X'X & X' \Sigma \\ 0 & \Sigma - I_n \end{bmatrix} - n \text{ (by } (1.12))
\]
\[
= r[X, \Sigma] - 2r(X) + r\begin{bmatrix} 0 & X' \\ X & \Sigma - I_n \end{bmatrix} - n.
\]

Setting the right-hand side to zero gives (a). Result (b) follows from (a). \(\square \)

The equivalences of (i) and (ii) in Theorem 2.2(a) and (b) were given by Groß [1]. Theorem 2.2 shows that under the conditions in (ii) and (iii), we can use the SE instead of the MINQUE, while the SE has the same optimal statistical properties as the MINQUE. If \(\Sigma \) is unknown or partially known, then the two equalities in (ii) of Theorem 2.2(a) and (b) are in fact two matrix equations for \(\Sigma \) to satisfy, while the two equalities in (iii) of Theorem 2.2(a) and (b) are two matrix rank equations for \(\Sigma \) to satisfy.

3. Equalities for the SEs and the MINQUEs in the original model and its restricted models

A popular transformation in the literature on the restricted model in (1.3) is combining (1.1) and (1.2) into the following implicitly restricted model
\[
\mathcal{A}_\Sigma = \{ y_c, X_c \beta, \sigma^2 \Sigma_c \}, \tag{3.1}
\]
where \(y_c = \begin{bmatrix} y \\ b \end{bmatrix} \), \(X_c = \begin{bmatrix} X \\ A \end{bmatrix} \) and \(\Sigma_c = \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} \).
Lemma 3.1. Let \(\mathcal{M} \) be as given in (3.1). Then,

(a) The SE of \(\sigma^2 \) in (3.1) is given by

\[
\text{SE}_{\mathcal{M}c}(\sigma^2) = \frac{1}{f_c} y_c'(E_x \Sigma^{-1} E_x)^+ y_c, \quad f_c = r[X_c, \Sigma_c] - r(X_c) > 0.
\]

(b) The MINQUE of \(\sigma^2 \) in (3.1) is given by

\[
\text{MINQUE}_{\mathcal{M}c}(\sigma^2) = \frac{1}{f_c} y_c'(E_x \Sigma E_x)^+ y_c, \quad f_c = r[X_c, \Sigma_c] - r(X_c) > 0.
\]

Also note that \(\text{SE}_{\mathcal{M}c}(\sigma^2) \) and \(\text{MINQUE}_{\mathcal{M}c}(\sigma^2) \) in (2.1) and (2.2) can be represented as

\[
\text{SE}_{\mathcal{M}c}(\sigma^2) = \frac{1}{f_c} y_c'(E_x \Sigma^{-1} E_x)^+ y_c, \quad f_c = r[X_c, \Sigma_c] - r(X_c) > 0.
\]

\[
\text{MINQUE}_{\mathcal{M}c}(\sigma^2) = \frac{1}{f_c} y_c'(E_x \Sigma E_x)^+ y_c, \quad f_c = r[X_c, \Sigma_c] - r(X_c) > 0.
\]

Applying Lemma 1.2 to the estimators in (3.2)–(3.5) gives the following results.

Theorem 3.2. Let \(\text{SE}_{\mathcal{M}c}(\sigma^2) \) and \(\text{MINQUE}_{\mathcal{M}c}(\sigma^2) \) be as given in (2.1) and (3.1). Then,

(a) \(f \text{SE}_{\mathcal{M}c}(\sigma^2) = f_c \text{SE}_{\mathcal{M}c}(\sigma^2) \) holds with probability 1 if and only if \(r\begin{bmatrix} X & \Sigma \end{bmatrix} = n + m, f \text{SE}_{\mathcal{M}c}(\sigma^2) = f_c \text{SE}_{\mathcal{M}c}(\sigma^2) \) holds with probability 1 if and only if \(\mathcal{R}(X) \cap \mathcal{R}(\Sigma) = \{0\} \).

(b) Under the condition \(r\begin{bmatrix} X & \Sigma \end{bmatrix} = n + m, f \text{SE}_{\mathcal{M}c}(\sigma^2) = f_c \text{SE}_{\mathcal{M}c}(\sigma^2) \) holds with probability 1 if and only if \(\mathcal{R}(X) \cap \mathcal{R}(\Sigma) = \{0\} \).

Proof. Note that both \(\begin{bmatrix} E_x & 0 \\ 0 & 0 \end{bmatrix} \) and \(E_x, X = 0 \). Hence, it can be seen from (3.2), (3.4) and Lemma 1.2(a) that \(f \text{SE}_{\mathcal{M}c}(\sigma^2) = f_c \text{SE}_{\mathcal{M}c}(\sigma^2) \) holds with probability 1 if and only if

\[
\begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} \text{E}_x \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix}.
\]

Applying (1.13) to the difference of both sides of this equality and simplifying by EBMOs, we obtain

\[
\begin{align*}
& r \left(\begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} \text{E}_x \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} \right) \\
& = r \left(\begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} - X \Sigma X^+ \Sigma X^+ \Sigma \\ 0 & 0 \right) \\
& = r \left(\begin{bmatrix} X \Sigma X & 0 \\ 0 & X \Sigma X \end{bmatrix} - r(X_c) - r(X) \\ 0 & 0 \right) \\
& = r \begin{bmatrix} X \Sigma X & 0 \\ 0 & X \Sigma X \end{bmatrix} - r(X_c) - r(X).
\end{align*}
\]

Setting the right-hand side of (3.6) to zero leads to (a). Result (b) is derived from Lemma 1.2(b).

Theorem 3.3. Let \(\text{MINQUE}_{\mathcal{M}c}(\sigma^2) \) and \(\text{MINQUE}_{\mathcal{M}c}(\sigma^2) \) be as given in (3.5) and (3.3). Then,

(a) \(f \text{MINQUE}_{\mathcal{M}c}(\sigma^2) = f_c \text{MINQUE}_{\mathcal{M}c}(\sigma^2) \) holds with probability 1 if and only if \(r\begin{bmatrix} X & \Sigma \end{bmatrix} = n + m, f \text{MINQUE}_{\mathcal{M}c}(\sigma^2) = f_c \text{MINQUE}_{\mathcal{M}c}(\sigma^2) \) holds with probability 1 if and only if \(\mathcal{R}(X) \cap \mathcal{R}(\Sigma) = \{0\} \).

(b) Under the condition \(r\begin{bmatrix} X & \Sigma \end{bmatrix} = n + m, f \text{MINQUE}_{\mathcal{M}c}(\sigma^2) = f_c \text{MINQUE}_{\mathcal{M}c}(\sigma^2) \) holds with probability 1 if and only if \(\mathcal{R}(X) \cap \mathcal{R}(\Sigma) = \{0\} \).

Proof. From Lemma 1.2(a), \(f \text{MINQUE}_{\mathcal{M}c}(\sigma^2) = f_c \text{MINQUE}_{\mathcal{M}c}(\sigma^2) \) holds with probability 1 if and only if

\[
\begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} \text{E}_x \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} + \text{E}_x \Sigma E_x \Sigma E_x + \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix}.
\]
It is easy to verify that both sides of this equality are outer inverses of Σ^+. In this case, applying (1.14) and simplifying by (1.10), (1.15)–(1.17) and (1.19) gives

$$
\begin{align*}
& r \left(\begin{bmatrix} \Sigma \\ 0 \end{bmatrix} \left[\begin{bmatrix} (E_X \Sigma E_X)^+ & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Sigma & (E_X \Sigma E_X)^+ \Sigma \end{bmatrix} \right] \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} \right) \\
= & 2r \left[\begin{bmatrix} \Sigma & 0 \end{bmatrix} - r \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} \right] - r \left[\begin{bmatrix} \Sigma \\ 0 \end{bmatrix} \right] - r \left(\begin{bmatrix} \Sigma \\ 0 \end{bmatrix} \right) \\
= & 2r \left[\begin{bmatrix} \Sigma & 0 \end{bmatrix} - r \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} \right] - r (X) - r (X_c)
\end{align*}
$$

(3.7)

Setting the right-hand side of (3.7) to zero leads to (a). Result (b) is derived from Lemma 2.1(b). \(\Box\)

4. Equalities for the SEs and the MINQUEs in the original model and its transformed models

Lemma 4.1. Let \mathcal{M}_t be as given in (1.4). Then,

(a) The SE of σ^2 in (1.4) is given by

$$
SE_{\mathcal{M}_t} (\sigma^2) = \frac{1}{f_t} y^t A^t E_{AX} A y, \quad f_t = r [AX, A \Sigma] - r (AX) > 0.
$$

(4.1)

(b) The MINQUE of σ^2 in (1.4) is given by

$$
MINQUE_{\mathcal{M}_t} (\sigma^2) = \frac{1}{f_t} y^t A^t (E_{AX} A \Sigma A^t E_{AX})^+ A y, \quad f_t = r [AX, A \Sigma] - r (AX) > 0.
$$

(4.2)

Theorem 4.2. Let SE$_{\mathcal{M}}$ (σ^2) and SE$_{\mathcal{M}_t}$ (σ^2) be as given in (2.1) and (4.1). Then the following statements are equivalent:

(a) $f SE_{\mathcal{M}} (\sigma^2) = f SE_{\mathcal{M}_t} (\sigma^2)$ holds with probability 1.

(b) $\Sigma E_X \Sigma = \Sigma A^t E_{AX} A \Sigma$.

(c) $r (P^t N P) = r (X) + r (AX)$, where $P = \text{diag}(X, AX, \Sigma)$ and $N = \begin{bmatrix} I_n & 0 & I_n \\ 0 & -I_n & I_n \\ I_n & I_n & I_n - A^t A \end{bmatrix}$.

Proof. Note that both E_X and $E_X (E_X \Sigma E_X)^+ E_X$ are symmetric and $E_X X = 0$ and $E_{AX} AX = 0$. Hence, it can be seen from (2.1), (4.1) and Lemma 4.1 that $f SE_{\mathcal{M}} (\sigma^2) = f SE_{\mathcal{M}_t} (\sigma^2)$ holds with probability 1 if and only if $\Sigma E_X \Sigma = \Sigma A^t E_{AX} A \Sigma$, as required for (b). Applying (1.12), $X^+ = (X^t X)^+ X^t$ and $(AX)^+ = [(AX^t AX)]^+ (AX)$ to the difference of both sides of the equality and simplifying by EBMOS, we obtain

$$
r (\Sigma E_X \Sigma - \Sigma A^t E_{AX} A \Sigma) = r (\Sigma - \Sigma A^t A \Sigma - \Sigma X X^t + \Sigma A^t A X (AX)^+ A \Sigma)
$$

$$
= r (\Sigma^2 - \Sigma A^t A \Sigma - \Sigma (XX^t)^+ X^t + \Sigma A^t A X [(AX^t AX)]^+ (AX)^+ A \Sigma)
$$

$$
= r \begin{bmatrix} X^t X & 0 \\ 0 & -AX^t AX (AX)^+ A \Sigma \\ SX & \Sigma A^t AX \\ \Sigma^2 - \Sigma A^t A \Sigma \end{bmatrix} - r (X) - r (AX)
$$

Setting the right-hand side to zero leads to the equivalence of (b) and (c). \(\Box\)

The results in Theorem 4.2 seem complicated under the general assumptions in (1.1) and (1.4). However, if the transformation matrix A is given with some special forms, or the covariance matrix Σ is positive definite, then the rank equality in Theorem 4.2(c) can simplify further.

Corollary 4.3. Let SE$_{\mathcal{M}}$ (σ^2) and SE$_{\mathcal{M}_t}$ (σ^2) be as given in (2.1) and (4.1) and assume that $r [X, \Sigma] = n$. Then the following statements are equivalent:

(a) $f SE_{\mathcal{M}} (\sigma^2) = f SE_{\mathcal{M}_t} (\sigma^2)$.

Theorem 4.2 and Corollary 4.3 indicate that the transformation and the estimation of σ^2 may depend on each other. This further indicates that the estimation of σ^2 may be improved by using the transformed model.
Lemma 1.1 (b) that under the condition \(r[\mathbf{X}, \Sigma] = n \), the equality \(f_{SE_{\mathbf{X}}} (\sigma^2) = f_{SE_{\mathbf{AX}}} (\sigma^2) \) holds if and only if the equality in (b) holds. Applying (1.12) to \(\mathbf{E}_X - \mathbf{A}' \mathbf{E}_{\mathbf{AX}} \mathbf{A} \) and simplifying by EBMOs, we obtain

\[
\mathbf{E}_X = \mathbf{A}' \mathbf{E}_{\mathbf{AX}} \mathbf{A},
\]

\[
(r[\mathbf{X}, \Sigma] = n, \sigma^2) = f_{SE_{\mathbf{X}}} (\sigma^2) \text{ is easy to verify under which we can use MINQUE}_{\mathbf{X}} (\sigma^2) \text{ instead of MINQUE}_{\mathbf{AX}} (\sigma^2).
\]

In what follows, we give some applications of the previous theorems and corollaries to the sub-sample models and reduced models in (1.5) and (1.8).
Let
\[f_{i1} = r(X_1, \Sigma_1) - r(X_1) > 0, \quad \text{and} \quad f_{i2} = r(X_2, \Sigma_{22}) - r(X_2) > 0.\]
Then it can be derived from (4.1) that the SEs of \(\sigma^2\) in the two sub-sample models in (1.5) are given by
\[
SE_{\mathcal{M}_1}(\sigma^2) = \frac{1}{f_{i1}} y'_1 E_{x_1} y_1, \quad SE_{\mathcal{M}_2}(\sigma^2) = \frac{1}{f_{i2}} y'_2 E_{x_2} y_2.
\]
(4.4)
and from (4.2) that the MINQUEs of \(\sigma^2\) in the two sub-sample models in (1.5) are given by
\[
\text{MINQUE}_{\mathcal{M}_1}(\sigma^2) = \frac{1}{f_{i1}} y'_1 (E_{x_1} \Sigma_1 E_{x_1})^{-1} y_1, \quad \text{MINQUE}_{\mathcal{M}_2}(\sigma^2) = \frac{1}{f_{i2}} y'_2 (E_{x_2} \Sigma_{22} E_{x_2})^{-1} y_2.
\]
(4.5)
Applying Theorems 4.2 and 4.5 to (4.4) and (4.5) gives the following results.

Theorem 4.6. Let \(SE_{\mathcal{M}}(\sigma^2), SE_{\mathcal{M}_1}(\sigma^2)\) and \(SE_{\mathcal{M}_2}(\sigma^2)\) be as given in (2.1) and (4.4), and let \(\Sigma_1 = [\Sigma_{11}, \Sigma_{12}]\) and \(\Sigma_2 = [\Sigma_{21}, \Sigma_{22}]\). Then,
(a) \(f SE_{\mathcal{M}}(\sigma^2) = f_{i1} SE_{\mathcal{M}_1}(\sigma^2)\) holds with probability 1 if and only if
\[
\begin{bmatrix} X'X & 0 & X'S \\ 0 & -X'X_1 & X'_1 \Sigma_1 \\ X'S & X'_1 \Sigma_1 & X'_1 \Sigma_2 \end{bmatrix} = r(X) + r(X_1).
\]
(b) \(f SE_{\mathcal{M}}(\sigma^2) = f_{i2} SE_{\mathcal{M}_2}(\sigma^2)\) holds with probability 1 if and only if
\[
\begin{bmatrix} X'X & 0 & X'S \\ 0 & -X'X_2 & X'_2 \Sigma_2 \\ X'S & X'_2 \Sigma_2 & X'_2 \Sigma_1 \end{bmatrix} = r(X) + r(X_2).
\]
(c) Under the condition that \(\Sigma\) is positive definite,
\[
\begin{align*}
&f SE_{\mathcal{M}}(\sigma^2) = f_{i1} SE_{\mathcal{M}_1}(\sigma^2) \Leftrightarrow \mathcal{M}(X'_1) \cap \mathcal{M}(X'_2) = \{0\} \quad \text{and} \quad r(X_2) = n_2, \\
&f SE_{\mathcal{M}}(\sigma^2) = f_{i2} SE_{\mathcal{M}_2}(\sigma^2) \Leftrightarrow \mathcal{M}(X'_1) \cap \mathcal{M}(X'_2) = \{0\} \quad \text{and} \quad r(X_1) = n_1.
\end{align*}
\]

Theorem 4.7. Let MINQUE_{\mathcal{M}}(\sigma^2), MINQUE_{\mathcal{M}_1}(\sigma^2) and MINQUE_{\mathcal{M}_2}(\sigma^2) be as given in (2.2) and (4.5). Then
(a) \(f \text{MINQUE}_{\mathcal{M}}(\sigma^2) = f_{i1} \text{MINQUE}_{\mathcal{M}_1}(\sigma^2)\) holds with probability 1 if and only if \(f = f_{i1}\).
(b) \(f \text{MINQUE}_{\mathcal{M}}(\sigma^2) = f_{i2} \text{MINQUE}_{\mathcal{M}_2}(\sigma^2)\) holds with probability 1 if and only if \(f = f_{i2}\).
(c) Under the condition that \(\Sigma\) is positive definite,
\[
\begin{align*}
&f \text{MINQUE}_{\mathcal{M}}(\sigma^2) = f_{i1} \text{MINQUE}_{\mathcal{M}_1}(\sigma^2) \Leftrightarrow \mathcal{M}(X'_1) \cap \mathcal{M}(X'_2) = \{0\} \quad \text{and} \quad r(X_2) = n_2, \\
&f \text{MINQUE}_{\mathcal{M}}(\sigma^2) = f_{i2} \text{MINQUE}_{\mathcal{M}_2}(\sigma^2) \Leftrightarrow \mathcal{M}(X'_1) \cap \mathcal{M}(X'_2) = \{0\} \quad \text{and} \quad r(X_1) = n_1.
\end{align*}
\]
Let \(f = r(X, \Sigma) - r(X) > 0\). Then it can be derived from (4.1) and (4.2) that the SEs of \(\sigma^2\) in the two reduced models in (1.8) are given by
\[
SE_{\mathcal{M}_1}(\sigma^2) = \frac{1}{f} y'E_{(x_2 x_1)} y, \quad SE_{\mathcal{M}_2}(\sigma^2) = \frac{1}{f} y'E_{(x_2 x_1)} y.
\]
(4.6)
while the MINQUEs of \(\sigma^2\) in the two reduced models in (1.8) are given by
\[
\begin{align*}
&\text{MINQUE}_{\mathcal{M}_1}(\sigma^2) = \frac{1}{f} y'E_{x_2} (E_{x_2} X_1) E_{x_1} \Sigma E_{x_2} E_{(x_2 x_1)} E_{x_2} X_1 + E_{x_1} y, \\
&\text{MINQUE}_{\mathcal{M}_2}(\sigma^2) = \frac{1}{f} y'E_{x_2} (E_{x_2} X_1) E_{x_1} \Sigma E_{x_1} E_{(x_2 x_1)} E_{x_2} X_1 + E_{x_1} y.
\end{align*}
\]
(4.7)
(4.8)

Corollary 4.8. Let \(SE_{\mathcal{M}}(\sigma^2), SE_{\mathcal{M}_1}(\sigma^2)\) and \(SE_{\mathcal{M}_2}(\sigma^2)\) be as given in (2.1) and (4.6). Then,
(a) \(SE_{\mathcal{M}}(\sigma^2) = SE_{\mathcal{M}_1}(\sigma^2)\) holds with probability 1 if and only if
\[
\begin{bmatrix} X'X & 0 & X'S \\ 0 & -X'X_1 & X'_1 \Sigma_1 \\ \Sigma X & X'E_{x_1} X_1 & \Sigma P_{x_2} \Sigma \end{bmatrix} = 2r(X) - r(X_2).
\]
(b) \(\text{SE}_{\mathcal{M}} (\sigma^2) = \text{SE}_{\mathcal{M}', \mathcal{M}''} (\sigma^2) \) holds with probability 1 if and only if
\[
\begin{bmatrix}
X'X & 0 & X'S
\end{bmatrix} = 2r(X) - r(X_0).
\]

(c) \(\text{SE}_{\mathcal{M}} (\sigma^2) = \text{SE}_{\mathcal{M}', \mathcal{M}''} (\sigma^2) \) if \(\Sigma \) is positive definite.

Corollary 4.9 (Zhang [12]). Let MINQUE \(\mathcal{M} (\sigma^2) \), MINQUE \(\mathcal{M}', \mathcal{M}'' (\sigma^2) \) and MINQUE \(\mathcal{M}', \mathcal{M}'' (\sigma^2) \) be as given in (2.2), (4.7) and (4.8). Then the equalities
\[
\text{MINQUE}_{\mathcal{M}} (\sigma^2) = \text{MINQUE}_{\mathcal{M}', \mathcal{M}''} (\sigma^2) = \text{MINQUE}_{\mathcal{M}', \mathcal{M}''} (\sigma^2)
\]
hold with probability 1.

5. **Equalities for the SEs and the MINQUEs of \(\sigma^2 \) in the original model and its misspecified models**

In the theory of regression analysis, assumptions on error terms play an important role. Suppose that the model matrix \(X \) in (1.1) is misspecified as \(X_0 \), and the covariance matrix \(\Sigma \) in (1.1) is misspecified as \(\Sigma_0 \). Then the corresponding misspecified model of (1.1) is given by
\[
\mathcal{M}_m = \{ y, X_0 \beta, \sigma^2 \Sigma_0 \}.
\] (5.1)

In this case, the SE of \(\sigma^2 \) in (5.1) is
\[
\text{SE}_{\mathcal{M}_m} (\sigma^2) = \frac{1}{f_m} y'E_{X_0}y, \quad f_m = r[X_0, \Sigma_0] - r(X_0) > 0.
\] (5.2)

and the MINQUE of \(\sigma^2 \) in (5.1) is
\[
\text{MINQUE}_{\mathcal{M}_m} (\sigma^2) = \frac{1}{f_m} y'E_{X_0}[E_{X_0}\Sigma_0E_{X_0}]^{-1}E_{X_0}y, \quad f_m = r[X_0, \Sigma_0] - r(X_0) > 0.
\] (5.3)

Because (5.1) is a misspecified model of (1.1), the estimator in (5.3) is not necessarily a minimum norm quadratic unbiased estimator of \(\sigma^2 \). In this section, we give necessary and sufficient conditions for the SEs and MINQUEs in (2.1), (2.2), (5.2) and (5.3) to be equal.

Theorem 5.1. Let \(\text{SE}_{\mathcal{M}} (\sigma^2) \) and \(\text{SE}_{\mathcal{M}_m} (\sigma^2) \) be as given in (2.1) and (5.2). Then,

(a) The following statements are equivalent:

(i) \(fSE_{\mathcal{M}} (\sigma^2) = f_mSE_{\mathcal{M}_m} (\sigma^2) \) holds with probability 1.

(ii) \(\mathcal{M} \subseteq \mathcal{M}_m \) and \(\mathcal{M}_m \subseteq \mathcal{M}_m \).

(b) Under the condition \(r[X, \Sigma] = n \), the following statements are equivalent:

(i) \(fSE_{\mathcal{M}} (\sigma^2) = f_mSE_{\mathcal{M}_m} (\sigma^2) \) holds with probability 1.

(ii) \(\mathcal{M} \subseteq \mathcal{M}_m \).

Proof. Note that both \(E_X \) and \(E_{X_0} \) are symmetric. Hence, it can be seen from (2.1), (5.2) and Lemma 1.1 that \(fSE_{\mathcal{M}} (\sigma^2) = f_mSE_{\mathcal{M}_m} (\sigma^2) \) holds with probability 1 if and only if
\[
[X, \Sigma]'E_X[X, \Sigma] = [X, \Sigma]'E_{X_0}[X, \Sigma].
\] (5.4)

Comparing both sides leads to
\[
X'E_{X_0}X = 0, \quad X'E_{X_0} \Sigma = 0, \quad \Sigma E_X \Sigma = \Sigma E_{X_0} \Sigma.
\] (5.5)

The first equality in (5.5) is obviously equivalent to \(E_X X = 0 \), i.e., \(\mathcal{M} \subseteq \mathcal{M}_m \). In this case, the second equality in (5.5) holds as well. Applying (1.13) and simplifying by EBMOs and \(\mathcal{M} \subseteq \mathcal{M}_m \), we obtain
\[
\begin{align*}
\begin{bmatrix}
X'X & 0 & X'S
\end{bmatrix}
& = r(\Sigma XX' + \Sigma X_0 \Sigma) - r(X) - r(X_0) \\
& = r\begin{bmatrix}
X'X & 0 & X'S
\end{bmatrix}
- r(X) - r(X_0)
\end{align*}

\[
\begin{bmatrix}
X'X & 0 & X'S
\end{bmatrix}
- r(X) - r(X_0)
\]
Let $\Sigma = X'X = \Sigma X_0'X_0 \Sigma'$. Then, \(\Sigma X_0 X_0'\Sigma = 0\) holds with probability 1. Under the condition \(r[X, \Sigma] = n\), (5.3) is equivalent to $E_X = E_{X_0}$, i.e., $\mathcal{F}(X) = \mathcal{F}(X_0)$, establishing the equivalence of (i) and (ii) in (1). □

Theorem 5.2. Let $\text{MINQUE}_{\mathcal{F}}(\sigma^2)$ and $\text{MINQUE}_{\mathcal{F}_{00}}(\sigma^2)$ be as given in (2.2) and (5.3) with $X = X_0$. Then,

(a) The following statements are equivalent:

(i) $f_{\text{MINQUE}_{\mathcal{F}}}(\sigma^2) = f_{\text{MINQUE}_{\mathcal{F}_{00}}}(\sigma^2)$ holds with probability 1.

(ii) $(E_X \Sigma_0 X_0)\Sigma'$ is a g-inverse of $E_X \Sigma X_0$.

(iii) $r[X_0, \Sigma_0 X_0] = r(E_X \Sigma_0) = r(E_X \Sigma).

(b) Under the condition $r[X, \Sigma] = n$, the following statements are equivalent:

(i) $f_{\text{MINQUE}_{\mathcal{F}}}(\sigma^2) = f_{\text{MINQUE}_{\mathcal{F}_{00}}}(\sigma^2)$ holds with probability 1.

(ii) $E_X \Sigma_0 X_0 = E_X \Sigma X_0$.

(iii) $r[X_0, \Sigma'] = 2r(X)$.

Proof. Note that both $E_X (E_X \Sigma X_0)' + E_X (E_X X_0 E_X)' + E_X$ and $E_X (E_X \Sigma_0 X_0)' + E_X \Sigma$ are symmetric. Therefore, it can be seen from (2.2), (5.3) and Lemma 1.1 that $f_{\text{MINQUE}_{\mathcal{F}}}(\sigma^2) = f_{\text{MINQUE}_{\mathcal{F}_{00}}}(\sigma^2)$ holds with probability 1 if and only if

\[
\Sigma E_X (E_X \Sigma X_0)' + E_X \Sigma = \Sigma E_X (E_X \Sigma_0 X_0)' + E_X \Sigma.
\]

(5.6)

Pre- and post-multiplying E_X on both sides of (5.6) gives

\[
E_X \Sigma E_X = E_X \Sigma E_X (E_X \Sigma_0 X_0)' + E_X \Sigma E_X.
\]

(5.7)

Pre- and post-multiplying $\Sigma E_X (E_X \Sigma_0 X_0)' + E_X \Sigma_0 X_0'$ and $(E_X \Sigma_0 X_0)' + E_X \Sigma$ on both sides of (5.7) gives (5.6). Thus, (5.6) and (5.7) are equivalent. Applying (1.11) to (5.7) and simplifying by EBMOs, we obtain

\[
\begin{align*}
\text{Pre- and post-multiplying:} & \quad \Sigma E_X (E_X \Sigma_0 X_0)' + E_X \Sigma_0 X_0' \\
\text{and:} & \quad (E_X \Sigma_0 X_0)' + E_X \Sigma \quad \text{on both sides of (5.7) gives (5.6). Thus, (5.6) and (5.7) are equivalent. Applying (1.11) to (5.7) and simplifying by EBMOs, we obtain}
\end{align*}
\]

By setting the right-hand sides equal to zero, we obtain the equivalence in (a). Under the condition $r[X, \Sigma] = n$, the equality $f_{\text{MINQUE}_{\mathcal{F}}}(\sigma^2) = f_{\text{MINQUE}_{\mathcal{F}_{00}}}(\sigma^2)$ holds with probability 1 if and only if

\[
E_X (E_X \Sigma X_0)' + E_X = E_X (E_X \Sigma_0 X_0)' + E_X,
\]

which is equivalent to $E_X \Sigma X_0' = E_X \Sigma_0 X_0$ by (1.15), establishing the equivalence of (i) and (ii) in (b). Applying (1.11) to the equality leads to the equivalence of (ii) and (iii) in (b). □

6. Concluding remarks

We gave necessary and sufficient conditions for some equalities of the SEs and MINQUEs of the variance component σ^2 in (1.1), (1.3) and (1.4) to hold through simplifying matrix expressions associated with the equalities by ranks of matrices. The results obtained demonstrate a variety of new properties of the SEs and MINQUEs of the variance components.

In regression analysis, various possible equalities and decompositions of quadratic forms of random variables can be proposed, and necessary and sufficient conditions for the equalities and decompositions to hold need to be established. In these events, the matrix rank method can efficiently be used to characterize various equalities and decompositions of quadratic forms. Some recent work on the matrix rank method in showing the well-known Cochran’s theorem and its extensions was given by Tian and Styan [9,10].
Acknowledgments

The authors thank two anonymous referees for their helpful comments and suggestions on this paper.

References