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The reaction γ p → K 0
S Σ+ is studied in the photon energy range from threshold. Linearly polarised 

photon beams from coherent bremsstrahlung enabled the first measurement of photon beam asymmetries 
in this reaction up to Eγ = 1650 MeV. In addition, the recoil hyperon polarisation was determined 
through the asymmetry in the weak decay Σ+ → pπ0 up to Eγ = 2250 MeV. The data are compared 
to partial wave analyses, and the possible impact on the interpretation of a recently observed prominent 
structure in the cross section near the K ∗ thresholds is discussed.
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1. Introduction

The CBELSA/TAPS experiment at the Electron Stretcher Acceler-
ator ELSA is devoted to the investigation of the structure of the nu-
cleon at low energies. While the high energy and associated short 
distance dynamics are well understood and put into the commonly 
accepted frame of quantum chromodynamics (QCD), our knowl-
edge is still rather limited at the size/mass scale of the nucleon. 
The study of excitations is hoped to provide a clue to the intra-
nucleon/baryon interactions, in particular the degrees of freedom 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2014.09.039
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
mailto:jude@physik.uni-bonn.de
http://dx.doi.org/10.1016/j.physletb.2014.09.039
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2014.09.039&domain=pdf


R. Ewald et al. / Physics Letters B 738 (2014) 268–273 269
effective at work. These are not necessarily just quarks and gluons 
mediating the colour force between them. Due to the closeness of 
the chiral symmetry breaking scale to the nucleon mass/size scale, 
the associated Goldstone bosons also enter as effective “elemen-
tary” objects [1,2]. It therefore does not come as a surprise that 
in some aspects, models which include interactions of the light 
mesons with quarks are more successful than genuine three quark 
models with pure colour interactions in for example, the par-
ity ordering of the lowest nucleon excitations [1]. Meson–baryon 
interactions appear to play an important role in baryon excita-
tions [3–11]. Some of the states which persistently resisted a con-
ventional three-quark explanation, for example the N∗(1440)1/2+
“Roper resonance” or the Λ(1405), are likely “dynamically” gener-
ated through meson–baryon interactions at least to some extent. In 
addition to the interaction of pseudoscalar mesons with baryons, 
vector mesons should also contribute to dynamic resonance for-
mation [12–14]. Degenerate states of J P = 1/2−, 3/2− are then 
expected, in particular in the mass region around 2 GeV [15].

Recently, such states may have been found in the photopro-
duction reaction γ + p → K 0

SΣ+ [16,17]. A rapid fall of the cross 
section with increasing energy is observed in the vicinity of the 
K ∗Λ/Σ0 thresholds, changing from forward peaked to a flat angu-
lar distribution. The effect is strong enough to generate a promi-
nent structure in the total cross section. In Ref. [16] this is dis-
cussed as the possible changeover from a t-channel mechanism in 
K 0 photoproduction to the formation of an intermediate s-channel 
with L = 0 internal angular momentum formed by a K ∗ vector 
meson interacting with an intermediate Λ or Σ hyperon.

In order to further investigate the reaction mechanism between 
K 0 and K ∗ thresholds, the analysis of the data reported in Ref. [16]
was extended. In addition to the unpolarised cross sections, the 
photon beam asymmetry and the hyperon recoil polarisation were 
also extracted [18]. This paper is organised as follows: The next 
section gives a brief description of the experiment. Sections 3 and 
4 describe the extraction of beam asymmetry and recoil polarisa-
tion. The results are then discussed in Section 5, and the paper 
concludes with a summary and outlook.

2. Experiment

Using the combined Crystal Barrel [19] and TAPS [20,21]
detector system, the experiment was carried out at the Elec-
tron Stretcher Accelerator ELSA [22] of the University of Bonn’s
Physikalisches Institut. At an electron beam energy of E0 =
3.2 GeV, tagged photon beams were generated by coherent 
bremsstrahlung from a 500 μm thick diamond radiator. Linear 
polarisation is obtained within the coherent intensity peaks. The 
plane of linear polarisation and the energy of the coherent peaks 
were both chosen through the orientation of the radiator crys-
tal relative to the electron beam by means of a commercial go-
niometer. The coherent peaks were set at photon energies of 
Eγ = 1305, 1515, and 1610 MeV, with maximum photon polari-
sations of Pγ = 0.49, 0.42, and 0.39 respectively. The method of 
coherent bremsstrahlung and the performance of the setup are de-
scribed in detail in Ref. [23].

The bremsstrahlung electrons were momentum analysed in a 
magnetic “tagging” spectrometer, using a 480 channel scintillat-
ing fibre detector at high electron energies (corresponding to low 
photon energies, i.e. high rates), and a MWPC at low electron en-
ergies, i.e. low rates. A photon energy range of Eγ = 0.18–0.92E0
was covered with an energy resolution between 10 and 25 MeV, 
depending on the energy of the tagging electron. Accurate tagger 
timing information was provided by 14 slightly overlapping scin-
tillator bars. The tagging system was run at electron rates up to 
Fig. 1. Example of the azimuthal modulation of the K 0 yield in one bin (interval 
inset). From a fit of the function f (φ) = A(1 − B

A cos 2φ) the product PlinΣγ is 
determined as described in the text.

107 Hz. The absolute photon flux was measured [16], but practi-
cally cancelled out in the polarisation observables presented here.

The photon beam impinged upon a liquid hydrogen target con-
tained in a 5.3 cm long cell with 80 μm Kapton windows. The 
reaction products were observed in the Crystal Barrel and TAPS 
spectrometers, augmented by a cylindrical three layer scintillating 
fibre detector [24] inside the barrel. In total, the detector system 
covered a polar angular range of 5.8–165 degrees. Further details 
of setup and readout are given, for example, in Refs. [25,26].

The detector setup is ideally suited for multi-photonic final 
states. Therefore, the K 0Σ+ reaction was investigated in the neu-
tral decay modes K 0

s → π0π0 (B.R. 31.4%) and Σ+ → pπ0 (B.R. 
51.6%), yielding 6 photons and the proton. Event selection and data 
analysis were done as described in [16]. Here we concentrate on 
the aspects which are important to extract the polarisation observ-
ables.

3. Photon beam asymmetry

Accounting for a linearly polarised photon beam, the cross sec-
tion of photoproduction of pseudoscalar mesons off a nucleon can 
be written in the form [27]

dσ

dΩ
=

(
dσ

dΩ

)
0
(1 − PlinΣγ cos 2φ), (1)

where (dσ/dΩ)0 is the polarisation independent cross section, Plin
the degree of linear polarisation, and Σγ the photon beam asym-
metry. The product PlinΣγ determines the magnitude of modula-
tion of the cross section with the azimuthal angle φ between the 
plane of linear polarisation and the ejected meson. This φ-angular 
modulation was determined as described in Ref. [26] by separate 
fits of the function

f (φ) = A

(
1 − B

A
cos(2φ)

)
(2)

to the K 0 yield in three bins of photon energy (1050–1250, 
1250–1450, and 1450–1650 MeV) and five bins in the centre-
of-mass polar angle of the K 0 (θ cm

K ), each 0.4-wide in cos θ cm
K . 

An example is shown in Fig. 1. The beam asymmetry, Σγ , can 
be extracted once the degree of beam polarisation is determined 
from the form of the tagged electron spectrum as also described 
in Ref. [26].

While unpolarised background leaves the absolute amplitude 
of the azimuthal modulations unchanged, it affects the relative 
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Fig. 2. Angular distribution of the photon beam asymmetry Σγ in the three bins 
of photon energy indicated in the diagrams. The error bars attached to the data 
points are purely statistical, the systematic errors are indicated by the grey bars 
on the abscissa. Curves represent the results of the Bonn–Gatchina-PWA [29] so-
lutions, BG2011-02m (black dashed) and BG2011-02 (black solid), and the K-MAID 
[30] parametrisations, standard (red solid) and modified as in Ref. [16] to study the 
origin of the cross section anomaly at the K ∗ threshold (red dashed). The fourth 
energy bin is added to show the behaviour of the parametrisations across the K ∗
thresholds where there are no data yet available. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of 
this article.)

strength through the denominator of B/A in Eq. (2). Hence, back-
ground subtraction in the azimuthal yield spectra is as important 
as for cross section measurements and was performed as in [16]. 
Polarised background would even modify the angular modulation. 
Therefore, the dominating background channel of 2π0 production 
was investigated in this respect. It did not show any azimuthal 
asymmetries for invariant masses close to the K 0 mass distribu-
tion, so no correction of the absolute magnitude of the observed 
modulation was necessary.

The extracted azimuthal asymmetries are generally susceptible 
to detector (and/or analysis) inefficiencies which vary with φ. Such 
instrumental effects were extensively studied in Refs. [26,28] and 
were investigated in the same way for the K 0Σ+ channel: A pure 
cos 2φ distribution as is expected from the reaction cross section 
carries redundant information in the two intervals φ = [0, π ] and 
[π, 2π ]. Therefore fitted individually, both intervals are expected 
to yield the same result for the fit parameters A and B of Eq. (2). 
Deviations are taken as contributions to the systematic error. To 
avoid large statistical fluctuations in these deviations, the system-
atic error contribution is averaged over each energy bin with the 
adjacent bins and weighted according to the statistical error. Un-
certainties in background subtraction were found to be less impor-
tant and uncertainties in the beam polarisation were determined 
as 2% [23], which was considered negligible to the extracted asym-
metries.

The results for the beam asymmetries are shown in Fig. 2. 
Attached to the data points are the statistical errors. The grey bars 
on the abscissa indicate the systematic errors which are obtained 
by adding the individual contributions in quadrature.
The curves in Fig. 2 show parametrisations of γ p → K 0
SΣ+

photoproduction. The Bonn–Gatchina PWA [29] and K-MAID [30]
are both represented in two versions: The Bonn–Gatchina solu-
tion BG2011-02 (black solid) includes γ p → K 0

SΣ
+ recoil polarisa-

tion data of previous CBELSA/TAPS measurements [31], however no 
photon asymmetry data. BG2011-02m (black dashed, see Ref. [25]
for a detailed description) is an improved variant of the Bonn–
Gatchina solution BG2011-02, including our beam asymmetry data 
in Fig. 2 and new CLAS γ p → K 0

SΣ+ recoil polarisation data [32]. 
K-MAID with standard parameters is shown as the solid red line, 
and with ‘modified’ parameters in red. The modification is dis-
cussed in Ref. [16]. Essentially, the K ∗ t-channel exchange was 
switched off to study the effect on the cross section in the region 
of the cusp-like anomaly at the K ∗ threshold, cf. [16]. A (re-) fit of 
the data was not attempted with K-MAID, neither in the standard 
nor the modified version.

Our measurement is the first one yet of the photon beam asym-
metry in this reaction channel. Therefore, no comparison to other 
data can be made in Fig. 2. The data show interesting behaviour. At 
threshold the photon beam asymmetry is negative,7 then compat-
ible with zero throughout the intermediate energy bin. At higher 
energies the beam asymmetry changes sign and turns clearly pos-
itive, except at forward directions where it becomes strongly neg-
ative. The highest energy bin shown in Fig. 2 illustrates the be-
haviour of the parameterisations across the K ∗ thresholds, which 
are at Eγ = 1678.2 MeV (Ecm = 2007.4 MeV) for the K ∗+Λ final 
state, and at Eγ = 1848.1 MeV (Ecm = 2085.5 MeV) for K ∗0Σ+ . 
Unfortunately, there are no data yet. The same data of Fig. 2 are
presented in dependence of the photon beam energy, Eγ , in Fig. 3.

4. Recoil polarisation

In meson photoproduction the recoiling baryons generally carry 
polarisation. With linearly polarised photon beams, sin 2ϕ and 
cos 2ϕ modulations of the recoil polarisation are obtained [33]. The 
angle ϕ denotes the azimuth between the plane of linear polarisa-
tion and the reaction plane which is spanned by the ejected kaons 
and hyperons. Due to the lack of statistics however, in the present 
analysis all relative orientations of polarisation and reaction planes 
were integrated over. This, effectively, corresponds to unpolarised 
photons, in which case only one polarisation component remains 
non-zero. This is usually called the recoil polarisation, �P , and due 
to parity conservation it is oriented normal to the reaction plane.

In the studied reaction, the weak decay of the final state Σ+
enables the reconstruction of the magnitude of its recoil polarisa-
tion, P . The decay angular distribution has the form

W (θp) = 1

2
(1 + α0 P cos θp) (3)

with α0 denoting the so-called decay parameter, and θp the angle 
between the decay proton direction and the normal of the reaction 
plane. Consequently, a count rate asymmetry

N↑ − N↓
N↑ + N↓

= 1

2
α0 P (4)

is obtained relative to the reaction plane, where N↑ and N↓ repre-
sent the event numbers above and below, respectively. A particular 
benefit of the Σ+ → π0 p decay observed in our experiment is the 
large decay parameter α0 = −0.980 [34]. According to Eq. (4) it re-
sults in large asymmetries from which the recoil polarisation was 
then determined.

7 Note that it is bounded to zero at | cosθ | = 1.
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Fig. 3. Energy dependence of the photon beam asymmetry, Σγ , in the measured 
five bins of cos θ cm

K . Errors and curves are as in Fig. 2. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version 
of this article.)

In Fig. 4 our results are compared to previous measurements of 
the CBELSA/TAPS Collaboration, where a similar detector setup but 
unpolarised beam was used [31], and of SAPHIR [35]. The errors 
attached to the data points are purely statistical, the shaded bands 
on the abscissa give an estimate of the systematic uncertainties. 
Since, according to Eq. (4), the recoil polarisation is determined 
from a ratio of event rates, some of the systematic effects can-
cel out which may affect cross section or beam asymmetry mea-
surements. Among those are photon flux, detector inefficiencies 
and beam polarisation. Remaining systematic errors were studied 
by variations of the cuts applied in the analysis as described in 
Ref. [16].

The SAPHIR data shown in Fig. 4 have different binning from 
our experiment, as stated in the figure. The SAPHIR results are 
compared in the bins where the weighted mean energy is clos-
est. The previous measurements of the CBELSA/TAPS Collaboration
binned the data into finer intervals. The data shown in Fig. 4 have 
the same mean energies as this new data and the energy intervals 
are given in the figure. In general the data sets agree fairly well, 
with the older CBELSA/TAPS data appearing slightly low in compar-
ison, but still within errors. The errors of the present measurement 
Fig. 4. Recoil polarisation of the Σ+ in the four bins of photon energy indicated in 
the diagrams. The results of the present measurement (black dots) are compared to 
the previous CBELSA/TAPS (red crosses) [31] and SAPHIR [35] (blue squares) data. 
The latter data sets have different binning as indicated. Vertical bars represent the 
statistical errors, the horizontal lines attached to our data points are the bin widths 
in cos θ cm

K . The systematic errors are indicated by the grey bars on the abscissa. 
Curves are the same as in Fig. 2. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

represent a significant improvement, in particular at lower ener-
gies. In some energy regions this is also partly due to the use of 
coherent bremsstrahlung. Even though the beam polarisation was 
integrated over, the coherent peaks still yielded a differential in-
crease of photon flux.

5. Discussion

The photon beam asymmetry and recoil polarisation are both 
observables indispensable to extract the reaction amplitudes [36], 
and hence the partial wave amplitudes, in a reliable manner. The 
curves in Figs. 2–4 demonstrate the level of agreement with the 
present polarisation data which can be obtained by K-MAID [30]
and the Bonn–Gatchina coupled channels PWA [29].

Throughout the measured kinematic range neither version of 
K-MAID reproduces the recoil polarisation data. There is bet-
ter agreement with the PWA solution BG2011-02m in particular, 
which, in contrast to K-MAID, used the present data of recoil polar-
isation and beam asymmetry as input for the fits. Through interfer-
ences, the recoil polarisation is very sensitive to even small partial 
wave contributions. Hence, the observed discrepancies point to a 
yet incomplete resonance basis in K-MAID.

The general features of the new beam asymmetry data are 
reasonably described by the different parameterisations. Both the 
K 0Σ+ recoil polarisation and beam asymmetry data are important 
inputs for the Bonn–Gatchina PWA. The BG2011-02 solution pre-
viously found a large contribution from a J P = 3/2+ partial wave 
and almost negligible contribution from J P = 3/2− . The inclusion 
of the new data however requires a significant J P = 3/2− contri-
bution over a large energy range. Two very similar solutions were 
found, almost within statistical error: In the first solution, a larger 
contribution from J P = 3/2− than J P = 3/2+ describes the asym-
metry data better than the recoil asymmetry data. The opposite 
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Fig. 5. t-exchange diagram for K 0 photoproduction, with an intermediate K 0 and 
pion rescattering through subthreshold K ∗ decay.

was true for the second solution. The pole structure, which is also 
defined by the differential cross section, remains nearly stable in 
both solutions.

At a mass of approximately 1880 MeV, the PWA indicates a 
doublet of negative parity J P = 1/2− and 3/2− states [37], as ex-
pected by chiral symmetry restoration in high mass states [38]. 
These two nucleon resonances can be interpreted as partners of 
the J P = 1/2+ and 3/2+ positive parity doublet at nearly the same 
mass or, alternatively, as members of the SU(6) 56-plet expected in 
the third excitation band of the nucleon [37,39]. At higher energies 
in the regime of the K ∗ thresholds the 3/2− partial wave still ap-
pear significant. This is also expected for the reaction mechanism 
hypothesised in Ref. [16], where the intermediate K ∗ and Λ or Σ
couple in an S-wave (Fig. 5) to form a quasi-bound state.

While the parametrisations of the photon beam asymmetry 
agree reasonably well with the new data at intermediate angles, 
the highest energy data in the forward bins in particular, appear 
more negative than expected (Fig. 3 bottom right and Fig. 2 bottom 
left). The statistical accuracy of the data and steep energy depen-
dence of the parameterisations at these angles preclude any defi-
nite conclusions, however, this is an interesting region for further 
investigation as it is just below the prominent structure observed 
in the forward cross section [16].

Close to the K ∗ threshold, quasibound K ∗-hyperon states are 
expected in chiral unitary approaches through the interaction of 
the nonet of vector mesons with the octet of baryons [14]. If a 
quasi-bound vector meson–hyperon state was formed, the beam 
asymmetry would be expected to show structures which are sen-
sitive to this. No model calculations have yet investigated the effect 
on the beam asymmetry in detail. However, there are recent calcu-
lations [17] to study the observed cross section anomaly in K 0Σ+
photoproduction [16]. Subthreshold K ∗ production and subsequent 
rescattering may be responsible for the strong downturn of the 
K 0Σ+ cross section at the K ∗ thresholds. The effect appears asso-
ciated with a delicate interference between K ∗Λ and K ∗Σ inter-
mediate states which is found strongly destructive off the proton, 
but much less off the neutron. This offers a way to test the model. 
Our new data, in particular the photon asymmetry, provide a fur-
ther testing ground for such models.

It is desirable to further extend the data base. The energy range 
of the presented beam asymmetry data is still restricted to some-
what below the K ∗ thresholds. To shed more light on the reaction 
mechanism and the possible formation of a dynamically generated 
vector meson–baryon state, it will be mandatory to extend mea-
surements over and beyond the K ∗ thresholds, where the PWA 
solutions have the largest discrepancies.

6. Summary and outlook

Single polarisation observables in K 0Σ+ photoproduction off 
the proton were measured. The recoil polarisation, P , was de-
termined from threshold to Eγ = 2250 MeV, agreeing well with 
previous measurements. While the description by the K-MAID 
parametrisation without attempting to fit the new data remains 
unsatisfactory, new fits bring the Bonn–Gatchina PWA into good 
agreement with the measured recoil polarisations [37].

The photon beam asymmetry was measured for the first time 
in K 0Σ+ photoproduction. The Bonn–Gatchina PWA, as well as 
the original and a modified version of K-MAID describe the data 
fairly well in the intermediate angular range. In the most for-
ward direction the beam asymmetry shows the interesting fea-
ture that it turns strongly negative just below the K ∗ threshold, 
where a strong decline of the forward cross section was observed 
[16]. A recent calculation in the chiral unitary framework indicates 
that this effect may be related to a dynamically generated vector 
meson–hyperon state [17]. Whether this model is able to repro-
duce the polarisation data remains to be seen.

Definite conclusions on the reaction mechanism at the promi-
nent structure in the K ∗Λ and K ∗Σ threshold region will require 
the beam asymmetry to be measured across the K ∗ threshold. 
In addition, beam-target and beam-recoil double polarisation ob-
servables will be necessary to reveal the helicity structure in that 
energy regime. Such measurements will be subject to future inves-
tigations using the CBELSA/TAPS and particularly the new BGO-OD 
detector setup [40–42] at ELSA.
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