osteoarthritis (Kellgren-Lawrence score of 4) participated. Twenty-two persons without knee pain or radiographic evidence of arthritis comprised a healthy control group. Sagittal plane kinetics, knee adduction moment, sagittal plane knee excursion, ground reaction forces and knee joint reaction forces were calculated from 3-dimensional motion analysis at 1.0 m/s, self-selected and fastest tolerable walking speeds. Differences were analyzed using multivariate ANOVA and multivariate ANCOVA with speed as a covariate. A hierarchical regression was used to substantiate the results of the ANCOVA and to determine if radiographic severity of knee OA was related to changes in gait variables, even after accounting for differences in freely chosen walking speed.

Results: Persons with knee osteoarthritis showed significantly lower knee and ankle joint moments, ground reaction forces, knee reaction force and knee excursion when walking at freely chosen speeds. When differences walking in speed were accounted for in the analysis, the only difference found at all self-selected conditions was decreased knee joint excursion (Figure 1). The severity of knee OA was significantly related to the knee adduction moment and knee joint excursion, even when accounting for differences in walking speed.

Conclusions: Compared to a healthy control group, persons with knee OA demonstrate differences in joint kinetics and kinematics. Many of these differences in gait parameters may be a result of slower freely chosen walking speeds rather than a result of disease progression. In addition, persons with severe knee OA may have difficulty compensating when challenged to walk faster their self-selected speed.

143

CHANGES IN JOINT MOMENTS DUE TO KNEE OSTEOARTHROPSIS ARE MODEL-DEPENDENT

S.C. Brandon, K.J. Deluzio
Queen's Univ., Kingston, ON, Canada

Purpose: In dynamic studies of gait, a mathematical joint model is used to attach physiological meaning to joint moments. However, there is no standard joint model; this means that some differences found in joint moments for OA gait could be artifacts of the choice of joint model. The purpose of this study is to identify features of lower-limb joint moments that are characteristic of subjects with moderate medial knee OA regardless of the choice of joint model.

Methods: 44 subjects with medial knee osteoarthritis and 44 asymptomatic control subjects walked at a self-selected speed. Symptomatic subjects were assessed using the WOMAC and radiographic Kellgren-Lawrence (KL) grading scales. 3D gait analyses were performed using an Optotrac motion analysis system and an AMTI force platform operating at 100Hz and 1000Hz, respectively. Moments were calculated at the ankle, knee, and hip using a 3D inverse dynamics model of the lower extremity. Four alternative joint models were used to obtain clinically relevant moments: the proximal, distal, plane of progression, and joint coordinate system models. Moment features were extracted using both discrete peak estimates and principal component analysis (PCA). OA and control groups were compared using a two-way ANOVA with joint model as the repeated measure.

Results: Subjects with osteoarthropathies were taller, heavier, older, and had a greater BMI than control subjects. There was no difference in walking speed between the two groups. OA subjects had mean ± SD WOMAC pain scores of 7±4 and function scores of 23±13. All OA subjects demonstrated moderate radiographic medial knee osteoarthritis with KL scores between 1 and 3. Hip adduction moments were smaller for OA subjects at the late-stance peak, regardless of the choice of joint model. PCA also identified an overall reduction in magnitude across the entire stance phase. Knee adduction moments were larger at mid-stance in all joint models, but not significantly different at either the early- or late-stance peak. PCA detected an overall increase in magnitude throughout the stance phase in all joint models. Peak late-stance ankle dorsiflexion moments were significantly lower for OA subjects in all joint models, but no overall change was detected using PCA.

Conclusions: Gait analysis can provide objective measures of function that can be used as outcome measures in studies of OA. We found features of lower-limb joint moments that, regardless of the choice of joint model, were sensitive to gait changes associated with OA. However, we also found that some commonly-reported measures, such as the early- and late-stance knee adduction moment peaks are not reliable across joint models.

144

THE RELATION OF DYNAMIC MECHANICAL LOADING TO BONE MARROW LESIONS IN MEDIAL KNEE OSTEOARTHRITIS

K. Bennell 1, M. Creaby 1, T. Wrigley 1, K.-A. Bowles 1, R. Hinnman 1, F. Cicuttini 2, D. Hunter 3
1 Univ. of Melbourne, Melbourne, Australia; 2 Monash Univ., Melbourne, Australia; 3 New England Baptist Hosp., Boston, MA

Purpose: Bone marrow lesions (BMLs) are a characteristic feature of knee osteoarthritis (OA) that are associated with pain and increased rapidity of disease progression. To date however their etiopathogenesis remains unclear. Some hypothesise that BMLs are related to excessive mechanical loading. The aim of this study was to assess the relationship between measures of the external knee adduction moment (KAM) during walking (dynamic indicators of medial tibiofemoral compartment load) and presence of BMLs in people with symptomatic medial knee OA.

Methods: 91 (46 F, 45 M) participants with mild to moderate (KL grades 2 & 3) medial compartment knee OA were recruited. A Vicon motion analysis system and force plates were used to measure the external KAM as participants walked in usual footwear at their usual comfortable pace for 5 trials. The variables of interest were the overall peak KAM (Nm/BW*HT%) and the positive KAM angular impulse (Nm.s/BW*HT%) which is equivalent to the positive area under the adduction moment-time graph. BMLs were measured from a knee MRI scan taken in the sagittal plane on a 1.5-T whole body MRI unit with use of a commercial transmit-receive extremity coil. The image sequence was a coronal T2-weighted fat-saturated acquisition. BMLs were assessed by the same reader blinded to gait measurements using BLOKS semi-quantitative scoring system (intra-rater reliability - weighted kappa 0.88). For this analysis only BML grade for size in the medial weight bearing femur and medial tibia were used. Static knee alignment
was measured from a standing semiflexed posteroanterior knee x-ray and converted to mechanical axis using a prediction equation with a lower value representing greater varus malalignment. We performed logistic regression analyses with presence (Grade 1-3)/absence (Grade 0) of medial tibial or medial femoral BMLs as the outcome and with peak KAM or KAM impulse as the independent variable. Covariates included age, gender, body mass index, static knee alignment and walking speed.

Results: The participants’ mean (SD) age was 65.8 (7.6) years, body mass index was 28.9 (4.4) m/kg2 and static alignment was, 178.3° (2.0°). Medial tibial BMLs were found in 58 (64%) participants and medial femoral BMLs in 55 (60%). The results of the unadjusted and fully adjusted logistic regression analyses are shown in the Table.

Results of unadjusted and adjusted logistic regression analyses

<table>
<thead>
<tr>
<th>Variables</th>
<th>Medial femur</th>
<th>Medial tibia</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR 95% CI</td>
<td>p value</td>
<td>OR 95% CI</td>
</tr>
<tr>
<td>Peak KAM</td>
<td>1.97 1.13-3.45 0.0171</td>
<td>1.97 1.11-3.49 0.0202</td>
</tr>
<tr>
<td>Peak KAM*</td>
<td>1.83 0.92-3.64 0.0396</td>
<td>2.22 1.06-4.66 0.0150</td>
</tr>
<tr>
<td>KAM impulse</td>
<td>14.98 3.0-72.98 0.0008</td>
<td>12.54 2.63-59.69 0.0015</td>
</tr>
<tr>
<td>KAM impulse*</td>
<td>14.39 2.31-89.76 0.0106</td>
<td>9.36 1.53-57.20 0.0097</td>
</tr>
</tbody>
</table>

*Adjusted for age, gender, body mass index, static knee alignment and walking speed.

Conclusions: Our study clearly demonstrates a strong independent relationship between KAM measures and medial compartment BMLs. As the KAM is a valid and reliable dynamic indicator of medial compartment loading, our results confirm the hypothesis that greater mechanical loading is related to BMLs in people with OA. Further, this relation was strongest for KAM impulse providing further validity to the use of this KAM measure to assess medial compartment loading.

145

SCRATCHING THE SURFACE: STRUCTURAL AND FUNCTIONAL CHANGES OF THE ARTICULAR CARTILAGE SURFACE CAN BE MEASURED WITH ATOMIC FORCE MICROSCOPY IN AN EXPERIMENTAL MODEL OF EARLY OSTEOARTHRITIS

J. Desrochers, M.A. Amrein, J.R. Matyas
Univ. of Calgary, Calgary, AB, Canada

Purpose: Late-stage osteoarthritis is characterized by the disruption and loss of articular cartilage, the smooth glossy surface that covers the ends of long bones, but changes begin in the tissue long before a reduction in tissue thickness can be diagnosed. Articular cartilage changes typically appear first at the articular surface before progressing towards the deep zone; hence, the integrity of the surface seems paramount to cartilage health. The aim of this study is to evaluate changes in surface microstructure and indentation stiffness of control vs. treated articular cartilage in a canine model of early experimental OA using scanning atomic force microscopy (AFM).

Methods: Experimental Model. Unilateral cranial cruciate ligament transection was performed on the hind limbs of 5 mixed breed dogs. The contralateral joint served as an internal control. The animals were sacrificed at roughly 14 weeks after surgery (95±9 days). One limb was dissected immediately after necropsy; the other was stored intact at 4°C overnight. Osteochondral explants were harvested from the medial aspect of the femoral condyle. The cartilage surface was continually irrigated with PBS to maintain hydration and care was taken not to touch the cartilage surface during sample preparation. Specimens roughly 5×10 mm and 2–3 mm thick were carefully excised. The bony surface was then fixed with cyanoacrylate to a glass slide. Once the glue was dry, the sample was immersed in PBS, and allowed to equilibrate for 20–40 minutes while the AFM was set up.

Atomic force microscopy. Experiments were conducted using a NanoWizard III AFM (JPK Instruments, Berlin). AFM probes were constructed by gluing a borosilicate glass sphere with a nominal radius of 2.5μm onto the end of a tipless silicon cantilever whose nominal spring constant was approximately 40 nN/m. The following outcome measures were evaluated for at least 3 separate locations on each explant. Surface topography was evaluated for 50μm×50μm (128×128 pixels) contact mode scans acquired at a constant tip force of 0.5μN, and a scan speed of 25μm/s. Surface roughness was calculated as the average of the RMS roughness for each of the 128 scan lines. Indentation stiffness was evaluated for 128 cyclic load - deformation curves acquired at 2Hz directly following topographical imaging. Four load magnitudes were evaluated: 0.5, 1, 2 and 5 μN. The indentation stiffness, k, was calculated from the slope of a tangent drawn through the upper 50% of the force - deformation curve, and an estimated Young’s Modulus was calculated using a Hertz contact model (JPK Image Processing, JPK Instruments, Berlin) with Poisson’s ratio set to 0.4.

Results: Significant differences were observed in both surface roughness and indentation stiffness. Surface roughness over the 50μm×50μm image area increased from 390±216nm to 1095±340nm for contralateral compared to treated specimens (Figure 1).

Table 1. Mean indentation stiffness and modulus for 2μN indentation force

<table>
<thead>
<tr>
<th>Mean Indentation Stiffness Mean Estimated Young’s Modulus</th>
<th>ACL transected</th>
<th>Contralateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>[N/m]</td>
<td>[kPa]</td>
<td></td>
</tr>
<tr>
<td>ACL transected</td>
<td>1.84±0.034</td>
<td>2.64±0.044</td>
</tr>
<tr>
<td>Contralateral</td>
<td>238±57</td>
<td>610±144</td>
</tr>
</tbody>
</table>

Conclusions: AFM is a sensitive tool for detecting both functional and structural biomechanical changes at the micron scale. Results from this study suggest that AFM can be used to detect significant functional changes in cartilage surface behaviour before overt macroscopic fibrillation is evident.