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Abstract

In machine-learning, maximizing the sample margin can reduce the learning generalization error. Samples on which the target
function has a large margin (�) convey more information since they yield more accurate hypotheses. Let X be a finite domain and
S denote the set of all samples S ⊆ X of fixed cardinality m. Let H be a class of hypotheses h on X. A hyperconcept h′ is defined
as an indicator function for a set A ⊆ S of all samples on which the corresponding hypothesis h has a margin of at least �. An
estimate on the complexity of the class H′ of hyperconcepts h′ is obtained with explicit dependence on �, the pseudo-dimension
of H and m.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Over the course of the last decade the field of learning theory has benefited from a rich body of work and the inception
of a few key mathematical quantities which concisely capture and describe the complexity of accurate learning. Among
those that characterize the problem of learning pattern classification is the Vapnik–Chervonenkis (VC) dimension.
Based on the VC-dimension, upper bounds on the worst-case deviation of the learner’s error from the optimal error
may be obtained. The bounds are a function of the sample size m and a complexity term which is dependent on the
VC-dimension of the function class. They are independent of the actual training sample and hence become useful,
i.e., have a value between 0 and 1, only for very large sample sizes (see [11]). Thus in this respect they are weak.
More recently, sample-dependent bounds have been shown to be stronger [9,2,3,8]. They hold when the learner finds
a hypothesis which maximizes the margin on a training sample over a class of functions.

As large-margin samples may yield better hypotheses (having lower error estimates) they convey more information
about the target. Intuitively, this should result in fewer possible hypotheses. Since each hypothesis is associated with a
particular set of training samples based on which the learner may be able to infer it to within a fixed given accuracy
then we expect fewer possible sets of samples with an increasing amount of information, i.e., with an increase in
the margin.

As part of a more comprehensive on-going work to formalize the worth of information for learning [7], we take here
a combinatorial approach whereby we aim to estimate the cardinality of the class of sets of large-margin samples (each
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set is associated with a hypothesis). Its logarithm is taken as the (descriptional) complexity of any such sample. Our
main result (Theorem 3) provides an estimate of this quantity.

We start with some notations and definitions.

2. Basic notations and definitions

Let X be a domain. For a ∈ R, define sgn(a) = +1 if a�0 and −1 if a < 0. The following definitions can be
found for instance in [1]. For a class A of real-valued functions on X the Pseudo-dimension, denoted as dimp(A),
is defined as the maximum cardinality m of a sample S = {xi1 , . . . , xim} ⊂ X such that there exists a translate
vector r = [r1, r2, . . . , rm] ∈ Rm where for each vector v ∈ {−1, 1}m there is a function av(·) ∈ A that satisfies
sgn(av(xij ) − rj ) = vj for 1�j �m. The sample S is said to be shattered by A. In the special case where A consists
of mappings from X → {−1, 1} and rj = 0, 1�j �m, then dimp(A) is called the Vapnik–Chervonenkis dimension
of A and is denoted by V C(A).

For any � > 0 the �-dimension of A, denoted as fat�(A), is defined as the maximum cardinality m of a sample
S = {xi1 , . . . , xim} ⊂ X such that there exists r = [r1, r2, . . . , rm] ∈ Rm where for each vector v ∈ {−1, 1}m there is a
function av(·) ∈ A that satisfies av(xij )�rj + � if vj = 1 and av(xij )�rj − � if vj = −1, for 1�j �m. The sample
S is said to be �-shattered by A.

For B > 0 let H denote a class of real-valued functions h from X into [0, B]. Let S = Xm consist of all sets S ⊂ X

with cardinality |S| = m. For any S = {xi1 , . . . , xim} define the margin of h on S to be

dS(h) = min{xij
:1� j �m} |h(xij ) − B/2|.

Let A ⊆ X and denote by I(A) the indicator function which takes the value 1 for any x ∈ A and zero otherwise.
For brevity, we sometimes write I(|h(x) − B/2| − c) instead of I({x ∈ X : |h(x) − B/2| − c�0}). Henceforth, X is
assumed to be finite and well ordered.

3. Overview of the problem of learning

The generalized probably-approximately-correct (PAC) model of learning from examples [5] can be used to represent
learning classification. Under this model, data used for training and testing are generated independently and identically
(i.i.d) according to an unknown but fixed probability distribution P which is defined over the input/output pairing
(x, y) ∈ X × {−1, 1} where the two possible classification categories are labeled as −1 and 1. In general, y need not
be a function of x however for the purpose of our work here we assume y = sgn(t (x)) where t ∈ H is some unknown
target function in a class H of real-valued functions on X. To measure the misclassification error by any h in H the
natural choice is the empirical error which is based on a randomly drawn sample Sm = {(xij , yij )}mj=1 according to P.
It is defined as

Lm(h) = 1

m

m∑
j=1

I(sgn(h(xij )) �= yij ).

The (true) misclassification error of h is L(h) = P((x, y) : sgn(h(x)) �= y) and is unknown to the learner as P is not
known. According to this model, the process of learning amounts to finding a hypothesis ĥ ∈ H which minimizes the
empirical error over H, i.e.,

Lm(ĥ) = min
h∈H

Lm(h).

The minimal true-misclassification error is clearly zero, i.e., L(t) = 0. But in general the error of learning, L(ĥ), may
be greater than zero. One of the main aims of the research in this field is to understand which settings, i.e., different
learning algorithms and hypothesis classes H, yield lower error L(ĥ). Theoretical estimates of L(ĥ) exist for various
scenarios (see for instance [1]), the simplest being the pure PAC setting. This is described in the following result which
appears as Theorem 4.1 in [4].
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Theorem 1. Let H be a class of functions from X to {−1, 1} with V C(H) = d. For any probability distribution P on
X × {−1, 1}, let S = {(xij , yij )}mj=1 be drawn according to P. Based on S, suppose ĥ ∈ H satisfies Lm(ĥ) = 0. Then
for any �, � > 0, with probability 1 − �,

L(ĥ)� 2

m

(
d log

2em

d
+ log

2

�

)

provided m� max{d, 2/�}.

Consider now the scenario where the learner obtains a sample S of cardinality m on which it is believed 1 that the
target t has a large margin, i.e., dS(t)��. Support vector machines and other kernel-based learning methods which use
the principle of maximizing the margin [9,4] can be represented in this way. In general, the �-dimension fat�(H) of a
class H decreases with an increase in � so, as the following result suggests, the error of the classifier is significantly
reduced with a larger margin (this result appears as Corollary 4.14 in [4]).

Theorem 2. Let H consist of real-valued functions from X to [0, 1] and fix a � > 0. Consider doing classification by
thresholding functions h at 1/2, i.e., sgn(h(x) − 1/2), and denote by Lm(h), L(h) the corresponding empirical and
true-misclassification errors, respectively. For any probability distribution P on X × {−1, 1}, let S = {(xij , yij )}mj=1

be drawn according to P. Based on S suppose that ĥ ∈ H satisfies Lm(ĥ) = 0 and dS(ĥ) > �. Then

L(ĥ)� 2

m

(
fat�/8(H) log

8em

� fat�/8(H)
log

32m

�2 + log
4

�

)
≡ �

provided m� max{2/�, fat�/8(H)}.

This result is an example of a sample-dependent bound since in reality the value of � is the margin achieved by ĥ

which obviously depends on the data. It is apparent that large-margin samples are worth more for learning since the
bound decreases with increasing �.

Our interest now is to estimate the complexity of large-margin samples. Since they convey more information about
the target, i.e., yield hypotheses that have lower error-bounds with increasing �, then as was discussed earlier in Section
1 one expects their complexity to decrease as � increases.

In order to characterize this quantitatively, starting in the next section our approach is to consider all samples S ⊂ X

of size m on which a hypothesis h in H has a margin of at least � > 0. Fixing any such h as a target t, we estimate the
complexity, i.e., the number of bits sufficient to index the subset of samples S on which t has a margin of at least �.

4. Hyperconcepts

Let the space S consist of all samples S ⊂ X of size m. On S consider sets of the form

A�,h = {S ∈ S : dS(h)��}, � > 0.

We refer to indicator functions on S which take the form

h′
�,h

(S) = I
(
A�,h

)
as hyperconcepts and we sometimes write just h′.

For any fixed margin parameter � > 0 define the hyperclass

H′
� =

{
h′

�,h : h ∈ H
}

. (1)

In words, H′
� consists of all sets of samples S ⊆ X of cardinality m on which the corresponding hypotheses h have a

margin of at least �.

1 This belief is usually phrased as an assumption of being lucky to have such a target.
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Considering �, m and H as given and fixed but allowing the possible training sample S ∈ S to vary then the quantity
log |H′

�| represents the description length of any hyperconcept h′ ∈ H′
� and is thus a measure of the richness or

complexity of the hyperclass H′
�. It is the description length of a set t ′ (corresponding to the target t) which consists

of �-good samples S each of which may be chosen to learn t and yield ĥ whose error L(ĥ) is bounded as in Theorem 2
(provided that S is drawn by the underlying probability distribution P m).

As mentioned earlier, we expect this complexity to decrease with increasing � since larger-margin samples produce
better error-bounds which implicitly means having more information about t. So we expect fewer possible hypotheses
and hence fewer possible sets of samples that induce them via learning.

The following main result gives an estimate of the dependence of this complexity on H and �.

Theorem 3. For any 1�m� |X| and � > 0, consider a class H of real-valued functions from X to the bounded interval
[0, B] and let 1�fat�/2(H)� |X| − m. Then

log
∣∣∣H′

�

∣∣∣ �fat�/16(H) log

(
8eB(|X| − m)

� fat�/16(H)

)
log

(
16B2(|X| − m)

�2

)
+ 2.

The next section contains the technical work of the proof of this theorem.

5. Proof of Theorem 3

Viewing H′
� as a class of Boolean sets on S then, in general, it may obtain a limited number of dichotomies of

any hypersample 2 �N = {S(1), . . . , S(N)} with S(j) ∈ S, 1�j �N and 1�N � |S|. The growth function �H′
�
(N),

introduced by [10], bounds this number and is defined as:

�H′
�
(N) ≡ max

�N⊆S
�H′

�
(�N) ≡ max

�N⊆S

∣∣∣{[h′(S(1)), . . . , h′(S(N))] : h′ ∈ H′
�

}∣∣∣ . (2)

Viewing S as a (maximal) finite hypersample, then
∣∣∣H′

�

∣∣∣ ��H′
�
(|S|). This allows to introduce a dependence on the

pseudo-dimension of H. The approach is to upper bound the growth function �H′
�
(N) and then evaluate it at N = |S|.

Let N be a positive integer and consider any hypersample �N = {
S(1), . . . , S(N)

}⊆ S. Denote by S
(j)
i the ith element

of the sample S(j) based on the ordering of the elements of S(j) (which is induced by the ordering of the elements
in X). Then

�H′
�
(�N) =

∣∣∣∣
{[

I

(
min

x∈S(1)
|h(x) − B/2| − �

)
, . . . , I

(
min

x∈S(N)
|h(x) − B/2| − �

)]
: h ∈ H

}∣∣∣∣
=
∣∣∣∣∣∣
⎧⎨
⎩
⎡
⎣ m∏

j=1

I
(
|h(S

(1)
j ) − B/2| − �

)
, . . . ,

m∏
j=1

I
(
|h(S

(N)
j ) − B/2| − �

)⎤⎦ : h ∈ H
⎫⎬
⎭
∣∣∣∣∣∣ (3)

since the minimum of m functions exceeds � only if all functions exceed it. Order the elements in each set of �N by
the underlying ordering on X. Then put the sets in lexical ordering starting with the first up to the mth element, so for
instance, if N = 3, m = 4 and

�3 = { {x2, x8, x9, x10}, {x2, x5, x8, x9}, {x3, x8, x10, x13}}
the ordered version is

{{x2, x5, x8, x9}, {x2, x8, x9, x10}, {x3, x8, x10, x13}}.
For any point x ∈ X let

��
h(x) ≡ I (|h(x) − B/2| − �)

2 We will allow the notation �N to also represent more general hypersamples consisting of samples which are not necessarily of the same
cardinality m.
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and denote it more simply by �h(x). For any sample S(i) of cardinality |S(i)|�1 let

eS(i) (h) =
|S(i)|∏
j=1

�h(S
(i)
j ).

For any hypersample �N let

v�N
(h) ≡ [

eS(1) (h), . . . , eS(N)(h)
]
,

where for brevity we sometimes write v(h). Let

VH(�N) = {
v�N

(h) : h ∈ H}

or simply V (�N). Then from (3) we have

�H′
�
(�N) = |VH(�N)| . (4)

For a positive integer N∗, define a mapping Q : SN → SN∗
as follows:

Procedure Q. Given a hypersample �N ⊆ S. Construct a new hypersample �N∗ as follows: let Y = X \ S(1) and let
the elements in Y be ordered according to their ordering on X (we will refer to them as y1, y2, . . .). Let S∗(1) = S(1).
For 2� i� |X| − m + 1, let S∗(i) = {yi−1}.

Note that for m > 1, �N∗ is not contained in S since some of its elements are singletons of size less than m. Henceforth
denote by N∗ ≡ |X| − m + 1. We have the following:

Claim 1. For any 1�N � |S|, and any �N ⊆ S,

|VH(�N)|� |VH(Q(�N))|.

Proof. Let �
Ñ

≡ Q(�N). Note that by definition of Procedure Q, it follows that �
Ñ

is a hypersample having Ñ = N∗

non-overlapping sets. They consist of a single set S̃(1) of cardinality m and sets S̃(i), 2� i�Ñ , each of which contains

a single element of X. Their union
⋃Ñ

i=1 S̃(i) = X. This holds for any �N and 1�N � |S|.
Consider the sets VH(�N), VH(�

Ñ
) and denote them simply by V and Ṽ . For any v ∈ V consider the following

subset of H:

B(v) = {h ∈ H : v(h) = v} .

We consider two types of v ∈ V : the first does not have the following property: there exist functions h�, h� ∈ B(v)

with ��
h�

(x) �= ��
h�

(x) for at least one element x ∈ X. Denote by ��
h ≡ [��

h(x1), . . . , �
�
h(x|X|)]. Then in this case all

h ∈ B(v) have the same ��
h = �, where � ∈ {0, 1}|X|. This implies that

e
S̃(1) (h) = eS(1) (h) = v1,

while for 2�j �Ñ we have

e
S̃(j) (h) = �k(j),

where, using the fact that S̃(j) is a singleton, we alternatively refer to S̃(j) by the element xk(j) ∈ X and �k(j) denotes
the k(j)th component of �. Hence it follows that

|VB(v)(�Ñ
)| = |VB(v)(�N)|.
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Let the second type of v satisfy the complement condition, namely, there exist functions h�, h� ∈ B(v) with ��
h�

(x) �=
��
h�

(x) for at least one point x ∈ X. If such x is an element of S(1) then the first part of the argument above holds and
we still have

|VB(v)(�Ñ
)| = |VB(v)(�N)|.

If, however, there is also such an x in X\S(1) then since the sets S̃(i), 2� i�Ñ , are singletons then there exists some
2�k�Ñ

e
S̃(k) (h�) �= e

S̃(k) (h�).

Hence for this second type of v we have

|VB(v)(�Ñ
)|� |VB(v)(�N)|. (5)

Combining the above, then (5) holds for any v ∈ V .
Now, consider any two distinct v�, v� ∈ V . Clearly, B(v�) ∩ B(v�) = ∅ since every h has only one unique v(h).

Moreover, for any ha ∈ B(v�) and hb ∈ B(v�) we have ṽ(ha) �= ṽ(hb) for the following reason: there must exist some

set S(i) with a point x ∈ S(i) such that ha(x) �= hb(x) (since v� �= v�). If i = 1 then they must differ on S̃(1), i.e.,

e
S̃(1) (h�) �= e

S̃(1) (h�). If i �= 1, then such a point x is in X\S(1) hence in some S̃(j) and therefore e
S̃(j) (h�) �= e

S̃(j) (h�),

where j ∈ {2, . . . , Ñ}. Hence no two distinct v�, v� map to the same ṽ. We therefore have

|VH(�N)| = ∑
v∈V

|VB(v)(�N)|� ∑
v∈V

|VB(v)(�Ñ
)| = |VH(�

Ñ
)|, (6)

where (6) follows from (5) which proves the claim. �

Note that by construction of Procedure Q, the dimensionality of the vectors in the set VH(Q(�N)) is N∗, i.e.,
|X|−m+ 1, regardless of the cardinality N of �N . In particular, the bound of Claim 1 holds for the hypersample which
consists of N∗ maximally overlapping sets S.

Let us denote by �N∗ any hypersample obtained by Procedure Q, namely,

�N∗ ≡
{
S∗(1), S∗(2), . . . , S∗(N∗)

}

with any set S∗(1) ⊂ X of cardinality m and

S∗(k) = {xik } where xik ∈ X \ S∗(1), k = 2, . . . , N∗.

Hence we may now write

max
1�N � |S|

max
�N⊆S

�H′
�
(�N) � max

1�N � |S|
max
�N⊆S

|VH(Q(�N))| (7)

� max
�N∗

|VH(�N∗)|, (8)

where (7) follows from (3), (4) and Claim 1 while (8) follows by definition of �N∗ . Now,

|VH(�N∗)| = |{[eS∗(1) (h), . . . , eS∗(N∗) (h)] : h ∈ H}|�2|{[eS∗(2) (h), . . . , eS∗(N∗) (h)] : h ∈ H}|, (9)

where (9) follows trivially since eS∗(1) (h) is binary. So from (8) we have

max
1�N � |S|

max
�N⊆S

�H′
�
(�N) � 2 max

�N∗
|{[eS∗(2) (h), . . . , eS∗(N∗) (h)] : h ∈ H}|

� 2 max
x1,...,xN∗−1

|{[��
h(x1), . . . , �

�
h(xN∗−1)] : h ∈ H}|, (10)

where x1, . . . , xN∗−1 run over any N∗ − 1 points in X. Fix any subset XN∗−1 = {x1, . . . , xN∗−1} ⊆ X. We henceforth
denote

C�(XN∗−1) ≡ ∣∣{[��
h(x1), . . . , �

�
h(xN∗−1)

] : h ∈ H}∣∣ . (11)

We proceed to bound C�(XN∗−1).



8 J. Ratsaby / Theoretical Computer Science 363 (2006) 2 –10

For any real number u define a quantization function

Q�(u) = �

⌊
u

�

⌋
.

For a function h ∈ H the function Q�(h(x)) maps from X into the finite subset Z� = {0, �, 2�, . . . , �B/��} of [0, B].
We denote by Q�(H) the function class {Q�(h) : h ∈ H}. Consider the restriction of Q�(H) on XN∗−1 and denote it
by AH with functions �h ∈ AH mapping XN∗−1 into Z�.

For any subset Y ⊂ X let RY denote the space of real-valued functions on Y. For any f ∈ RY let the l∞(Y )-norm of
f be defined as ‖f ‖Y = maxx∈Y |f (x)|. For any class F of functions on Y let M(�, F, l∞(Y )) be the packing number,
i.e., the size of the maximal �-separated set in F with respect to the l∞(Y )-norm. Let the uniform packing number be
defined as

M(�, F, n) = max{M(�, F, l∞(Y )) : Y, |Y | = n}.
Every pair of distinct elements �1, �2 ∈ AH satisfy ‖�1 − �2‖Y �� since they must be different on at least one point
x ∈ Y and on x their values �1(x) and �2(x) are restricted to the set Z�. Hence AH is itself a maximal �-separated set
and therefore

|AH| = M(�, AH, l∞(XN∗−1)). (12)

Note also that

C�(XN∗−1)� |AH| (13)

since given any h ∈ H, for x ∈ XN∗−1 with ��
h(x) = 1 then �h(x) in general can take one of several possible values in

Z�. Hence it now suffices to bound M(�, AH, N∗ − 1).
Denoting by dA = fat�(AH) then for n�dA we have from Theorems 12.1 and 12.8 in [1] that

M(8�, AH, n) < 2

(
nB2

4�2

)dA log(eBn/(�dA))

. (14)

This result holds for a general class of real-valued functions 3 (not necessarily with a discrete finite range as for AH).
Now, if � < 2� then

fat�(Q�(H))�fat�−�/2(H) (15)

since suppose Q�(H) �-shatters a set {xi1 , . . . , xik } ⊆ X with translate vector r = [r1, . . . , rk] ∈ Rk . Then for all
v ∈ {−1, 1}k there is a function fv ∈ H with

Q�(fv(xij )) − rj �� if vj = 1,

Q�(fv(xij )) − rj � − � if vj = −1,

1�j �k. It follows that

fv(xij ) − rj �� if vj = 1,

fv(xij ) − rj < −� + � if vj = −1

or equivalently

fv(xij ) − rj − �/2�� − �/2 if vj = 1

fv(xij ) − rj − �/2 < −� + �/2 if vj = −1,

1�j �k, so H (� − �/2)-shatters {xi1 , . . . , xik } with a translate vector r = [r1 + �/2, . . . , rk + �/2].

3 Related to this, for a class H of binary-valued functions with a suitable definition of a functional margin, Ratsaby [6] estimated the cardinality
of F� ⊂ H , where F� consists of all h ∈ H having a margin dS(h) > � on a set S ⊆ X.
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Hence continuing from (15) and letting � = � then

dA = fat�(Q�(H))�fat�/2(H).

So (14) becomes

M(8�, AH, n) < 2

(
nB2

4�2

)fat�/2(H) log(eBn/(�fat�/2(H)))

. (16)

Letting n = N∗ − 1, from (12), (13) and (16) it follows that if N∗ − 1�fat�/2(H) then

C�(XN∗−1)�2

(
16(N∗ − 1)B2

�2

)fat�/16(H) log(8eB(N∗−1)/(�fat�/16(H)))

. (17)

Together with (2), (10), (11) and recalling that N∗ − 1 = |X| − m, we therefore have

max
1�N � |S|

�H′
�
(N)�4

(
16(|X| − m)B2

�2

)fat�/16(H) log(8eB(|X|−m)/(�fat�/16(H)))

.

Now, as noted earlier,
∣∣∣H′

�

∣∣∣ ��H′
�
(|S|) hence we have

log
∣∣∣H′

�

∣∣∣ �fat�/16(H) log

(
8eB(|X| − m)

� fat�/16(H)

)
log

(
16B2(|X| − m)

�2

)
+ 2.

This proves Theorem 3. �
Note that the function fat�() is non-increasing with � hence since the first factor in the bound dominates the first

log factor then for all ��c, log
∣∣∣H′

�

∣∣∣ is non-increasing with increasing � and decreasing with increasing m, for some

constant c > 0. When the margin parameter value � goes to 0 the cardinality of |H′
�| decreases to 1 so the above bound

can clearly be improved in this case.

6. Conclusions

Recent results in learning theory indicate that larger-margin samples may yield improved learning rates and hence
implicitly convey more information about the target. In this paper we posed the question of determining the dependence
of the complexity of such good samples on the margin parameter. We introduced a new notion of a class H′

� of
hyperconcepts which are indicator functions of sets of all large-margin samples for hypotheses in a corresponding class
H. Based on the estimate of the cardinality of H′

�, we conclude that with more information, i.e., with a higher margin
value �, there are fewer possible sets of samples that can induce good (low-error) hypotheses. An open question is to
obtain a tighter bound for small margin value.
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