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On recognizing Cartesian graph bundles
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Abstract

Graph bundles generalize the notion of covering graphs and graph products. In Imrich et al.
(Discrete Math. 167=168 (1988) 393–403.) an algorithm that 0nds a presentation as a nontrivial
Cartesian graph bundle for all graphs that are Cartesian graph bundles over triangle-free simple
base was given. In this paper we extend this algorithm to recognize Cartesian graph bundles over
a K4\e-free simple base, without induced K3;3. Finally, we conjecture the existence of algorithm
for recognition of Cartesian graph bundle over a K4\e-free simple base. c© 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Knowledge of the structure of a graph often leads to faster algorithms for solving
combinatorial problems on these graphs. In general, an e=cient algorithm for recogniz-
ing a special class of graphs may allow us to compute certain graph invariant faster.
For example, the chromatic number of a Cartesian product is the maximum of the
chromatic numbers of the factors. Computing the chromatic number is in general an
NP-hard problem, but factoring can be done in polynomial time. Hence, if the graph
is a Cartesian product, we can save computation time by 0rst factorizing and then
computing the chromatic number of the factors. Here we shall be concerned with the
structure of Cartesian graph bundles over a K4\e-free simple base.
In topology, bundles are objects which generalize both covering spaces and Cartesian

products [4]. Analogously, graph bundles generalize the notion of covering graphs
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Fig. 1. Degenerate and nondegenerate edge in relation �∗.

and graph products. Graph bundles can be de0ned with respect to arbitrary graph
products [14]. (For a classi0cation of all possible associative graph products, see [5].)
Various problems on graph bundles were studied recently, including edge coloring [13],
maximum genus [12], isomorphism classes [10], characteristic polynomials [11,16] and
chromatic numbers [8,9].
It is well-known that 0nite connected graphs enjoy unique factorization under the

Cartesian multiplication [15] and recently a number of polynomial algorithms for rec-
ognizing Cartesian product graphs have been published [3,17,2]. On the other hand, a
graph may have more than one presentation as a graph bundle. Natural questions there-
fore are to 0nd all possible presentations of a graph as a graph bundle or to decide
whether a graph has at least one presentation as a nontrivial graph bundle. As recog-
nizing covering graphs is NP-hard [1], we will restrict our attention to cases where
0bres are connected (see also survey [18]).
In [6] an algorithm that 0nds a presentation as a nontrivial Cartesian graph bundle

for all graphs that are Cartesian graph bundles over triangle-free simple base was given.
The main result of [6] follows from properties of the ‘local Cartesian product relation’
�∗ de0ned among edges of a graph. Not surprisingly, this relation was, sometimes
implicitly or under diLerent names, used in work related to recognition and uniqueness
of factorization of Cartesian product graphs [15,3,7]. An induced cycle of four vertices
is called a chordless square. Relation �∗ is de0ned to be the reNexive and transitive
closure of a relation which is de0ned as follows: e�f if edges e and f are incident and
span no chordless square and e�f if e and f are opposite edges of a chordless square.
Unfortunately, �∗ may fail to separate degenerate and nondegenerate edges in some
cases. For example, the graph K3;3 is a Cartesian graph bundle, in which all edges are
in the same �∗ equivalence class. The reason for this is intuitively clear from Fig. 1
(see also [6]).
In this paper we modify the de0nition of �∗ slightly to obtain a relation �∗b which

can be used for recognition of a larger class of Cartesian graph bundles. After recalling
some de0nitions and facts in Section 2, we state some properties of Cartesian graph
bundles with induced K3;3\e or K3;3 in Section 3. In Section 4 we prove the main
result of this note:



B. Zmazek, J. �Zerovnik /Discrete Mathematics 233 (2001) 381–391 383

Theorem 1.1. There is a polynomial algorithm for recognition of Cartesian graph
bundles over a K4\e-free simple base, without induced K3;3.

We believe that a similar approach would also work for general case, but the details
seem to be much more involved, therefore we only discuss the general case in the
concluding section.

2. Preliminaries

In this section we begin with de0nitions and well-known or easily proved facts.
We will consider only connected simple graphs, i.e. graphs without loops and multiple
edges.
We say that two edges are adjacent if they have a common vertex. Furthermore,

G ∼= H denotes graph isomorphism, i.e. the existence of a bijection b : V (G)→ V (H)
such that vertices v1; v2 are connected in G exactly if b(v1); b(v2) are connected in
H . Vertex x ∈ V (G) is an universal vertex if it is connected with every vertex in
V (G)\{x}.
The Cartesian product G H of graphs G and H has as vertices the pairs (v; w)

where v ∈ V (G) and w ∈ V (H). Vertices (v1; w1) and (v2; w2) are connected if {v1; v2}
is an edge of G and w1 = w2 or if v1 = v2 and {w1; w2} is an edge of H .
Let B and F be graphs. A graph G is a (Cartesian) graph bundle with 0bre F

over the base graph B if there is a mapping p : G → B which satis0es the following
conditions:

(1) It maps adjacent vertices of G to adjacent or identical vertices in B.
(2) The edges are mapped to edges or collapsed to a vertex.
(3) For each vertex v ∈ V (B), p−1(v) ∼= F , and for each edge e ∈ E(B), p−1(e)

∼= K2 F .

In this paper we will consider only Cartesian graph bundles over simple bases. A
mapping satisfying just the 0rst two conditions above is called a graph map. For a
given graph G there may be several mappings pl :G → Bl with the above properties.
We say an edge is degenerate if p(e) is a vertex. Otherwise we call it nondegenerate.
A factorization of a graph G is a collection of spanning subgraphs Hi of G such that
edge set of G is partitioned into the edge sets of the graphs Hi. In other words, the set
E(G) can be written as a disjoint union of the sets E(Hi). The projection p induces
a factorization of G into the graph consisting of isomorphic copies of the 0bre F
and the graph G̃ consisting of all nondegenerate edges. This factorization is called the
fundamental factorization. It can be shown that the restriction of p to G̃ is a covering
projection of graphs; see, for instance, [13] for details.
Common examples of Cartesian products are squares, hypercubes, prisms (Cartesian

products of n-gons by an edge) or the square lattice as the product of two in0nite
paths. Intuitively, graph bundles can be seen as ‘twisted products’. A small example
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Fig. 2. A small example of a Cartesian graph bundle, K3;3.

of a Cartesian graph bundle is the graph K3;3 in Fig. 2. It is a discrete analog of the
well-known MSobious band, which is a topological bundle (base is a circle, 0bres are
lines).
In [6] the equivalence relation �∗ de0ned on the edge-set of a graph is used for

recognizing Cartesian graph bundles over a triangle-free simple base. In this paper we
introduce its modi0cation which diLers on induced subgraphs isomorphic K3;3\e and
use it for recognizing Cartesian graph bundles over K4\e-free simple base. The new
equivalence relation �∗b helps us to avoid joining degenerate and nondegenerate edges
in the same equivalence class.
In next section we will prove some properties of induced K3;3 or K3;3\e which we

will use in de0nition of relation �∗b .

3. Induced K3;3 or K3;3\e

Let G denote Cartesian graph bundle with 0bre F over a simple base graph B and K
any induced subgraph in G isomorphic to K3;3 or K3;3\e. Let (K1; K2) be the partition
of V (K).

Lemma 3.1. Any two vertices from the same partition subset of V (K) are endpoints
of at least two edge-disjoint P3 induced in K .

Proof: Clear.

Lemma 3.2. If any two vertices u and v from the same partition subset of V (K) lie
in the same copy of ;bre F; K intersects only one copy of ;bre F .

Proof: Let u; v ∈ K1 lie in F1 (a copy of 0bre F). Since u and v are in the same
partition subset, it is easy to see that they cannot be both endpoints of the missing
edge e.
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If neither u nor v is an endpoint of the missing edge e, they are both connected
with each vertex in K2. Since every x ∈ K2 have two neighbors in F1, the vertex set
K2 lies entire in F1, because of 2-convexity of 0bres. By the same reasoning we see
that the third vertex in K1 lies in F1.
In the other case, when one of the two vertices, say u, is an endpoint of e, two

common neighbors x; y ∈ K2 of vertices u and v lie in F1. Vertices x and y are both
connected with third vertex w ∈ K1 which therefore lies in F1. Since v and w are both
neighbors of each vertex in K2, every vertex from K2 also lies in F1.

Corollary 3.3. An induced K in G either intersects each copy of ;bre F in at most
two vertices or lies entire in one copy of ;bre F .

Proof: If at least three vertices intersect one copy of 0bre F , at least two vertices lie
in the same partition subset of V (K). Therefore by Lemma 3.2 K lies entire in one
copy of 0bre F .

Corollary 3.4. Induced K in G cannot intersect exactly two copies of ;bre.

Proposition 3.5. If K intersects four or ;ve copies of ;bre F; then at least one square
with chord lies in B.

Proof: If K intersects exactly 0ve copies of 0bre F , from Lemma 3.2 it follows that
two vertices u; v from diLerent partition subsets of V (K) lie in the same copy of 0bre
F . Since every vertex in V (K) is connected with u or v, p(u) = p(v) is an universal
vertex in projection of K on base graph B. Projection of K\{u; v} is K2;2 or K2;2\e
(see Fig. 3) on which universal vertex causes at least one square with chord.
If K intersects exactly four copies of 0bre F , from Lemma 3.2 and Corollary 3.3

it follows that two pairs {u1; v1}; {u2; v2} of vertices from diLerent partition subsets of
V (K) lie in the same copy of 0bre F . For the same reason as before p(u1) = p(v1)
and p(u2)=p(v2) are universal vertices of p(K) in B. Two universal vertices in graph
on four vertices (p(K)) induce a square with chord (see Fig. 3).

Corollary 3.6. If G is Cartesian graph bundle over a K4\e-free simple base graph;
induced K with at least one degenerate and one nondegenerate edge intersects three
copies of ;bre F in exactly two vertices.

From Corollaries 3.4 and 3.6 we see that induced K in G over a K4\e-free simple
base graph can lie entire in one copy of 0bre F or intersect six copies each in one
vertex or it can intersect three copies of 0bre F , each in two vertices. We call those
types of induced K3;3 or K3;3\e ;bre-K , base-K and bundle-K , respectively.
Let in the rest of the paper G denote a graph bundle over a K4\e-free simple base

graph.
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Fig. 3. The projections of K intersecting four or 0ve copies of F .

4. Case K3;3\e

Lemma 4.1. Let K and K ′ be induced subgraphs of G isomorphic to K3;3\e. If K
and K ′ intersect in P3; they are both of the same type.

Proof: A 0bre-K can intersect only another 0bre-K , since from Corollary 3.3 any other
K ′ has at most two vertices in the same 0bre. Hence if one of K and K ′ is a 0bre-K ,
then both must be 0bre-K’s.
It remains to prove that a base-K intersecting a bundle-K ′ implies existence of a

square with chord in B. Assume K is a base-K , K ′ is a bundle-K and their intersection
is a P3. Since vertices on intersection K with K ′ lie in diLerent copies of 0bre F , their
projections on base graph B induce K3, therefore two vertices from diLerent partition
subset of vertex set of graph p(K) ∼= K3;3\e are connected in B. By Lemma 3.1 the
new edge meets two triangles in B, hence there is an induced square with chord in B.
Since we assumed G has K4\e-free base, this completes the proof.

Lemma 4.2. Let K and K ′ be induced bundle-K isomorphic to K3;3\e. If K and K ′

intersect in graph P ∼= P3; then they intersect in all three copies of ;bre F in only
nondegenerate edges.

Proof: Since K and K ′ intersect in three vertices, they intersect in at least two copies
of 0bre F . Since p(K) and p(K ′) represent two triangles in B with common edge they
only can intersect the same copies of 0bre F because we assume B is K4\e-free.
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Fig. 4. Bundle-K isomorphic to K3;3\e.

Now we will prove, that K and K ′ intersect only in nondegenerate edges. Let us
assume that one edge in P is degenerate. Therefore P intersects only two copies of
0bre F . Every vertex on P has a neighbor in the third copy of the 0bre. Furthermore,
any two vertices of K which are in the same 0bre are always in diLerent partition sets
of K . These two vertices are connected with at least three of four other vertices of K .
Consequently, at least two of three edges connecting P with the third copy of 0bre
must be included in any bundle-K isomorphic to K3;3\e which intersects P. Therefore
at least one edge is part of both graphs K and K ′. This contradicts the fact that K and
K ′ intersect in P.

Theorem 4.3. For any induced bundle-K; isomorphic to K3;3\e; there exist two induced
bundle-K; K ′ and K ′′; isomorphic to K3;3\e; which intersect K in two disjoint graphs
isomorphic to P3 (see Fig. 4).

Proof: It is easy to see that vertices of K from the same copy of 0bre F are connected
and that each vertex of K is connected with exactly one vertex from any copy of F
intersecting K . Let us denote copies of 0bre F intersecting K with F1; F2; F3 and their
vertices with {ai; bi} ∈ V (Fi) ∩ V (K). Let ai ∈ Fi and bj ∈ Fj, i �= j, i; j ∈ {1; 2; 3}
be the endpoints of missing edge e in K . They have no neighbors from Fj and Fi,
respectively, in K . Therefore, there exists a vertex cj ∈ Fj, connected with ai and aj
and a vertex di ∈ Fi, connected with bi and bj.
The fact that p−1(c) ∼= K2 F for any e ∈ E(B) completes the proof.

From Lemma 4.2 and Theorem 4.3 we see that degenerated edges of K are the only
three disjoint edges (perfect matching) between two paths P3 as de0ned in statement
of Theorem 4.3. With these terms we can now de0ne an auxiliary binary relation �b.
For any e; f ∈ E(G) we set e�bf if at least one of the following conditions is satis0ed:

1. e and f are incident and there is no chordless square spanned on e and f.
2. e and f are the opposite edges of a chordless square which is not subgraph of any
induced K3;3\e′.
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3. e and f are the edges of an induced subgraph K isomorphic to K3;3\e′ and
(a) there exist two induced subgraphs isomorphic to K3;3\e′ which intersect K in

two disjoint paths P′ and P′′ isomorphic to P3 and
(i) e and f are both edges of the perfect matching between P′ and P′′ or
(ii) neither e nor f is edge of the perfect matching between P′ and P′′.

(b) there are no subgraphs isomorphic to K3;3\e′ which intersect K in two disjoint
paths of length 2.

By �∗b we denote the reNexive and transitive closure of �b. Since �b is symmetric,
�∗b is an equivalence relation.
It may be interesting to note that any pair of adjacent edges which belong to distinct

�∗b -equivalence classes span one or more chordless squares, therefore �
∗
b does not have

the square property as de0ned in [7,6]. From de0nition also follows �∗b ⊆ �∗.

Remark: Note that using Theorem 4.3 gives us not only the partition of edges of an
induced K3;3\e into two classes, but we also know which of the two classes will be
degenerate and which will be nondegenerate in the fundamental factorization, provided
this K is a bundle-K . (In the de0nition this information is not used.)

The relation �∗ joins degenerate and nondegenerate edge in the same equivalence
class only on induced subgraphs isomorphic to K3;3\e (note that G is a Cartesian graph
bundle over a K4\e-free simple base, without induced K3;3). Therefore the relation �∗b
separates degenerate and nondegenerate edges of G.

5. The algorithm

In this section we brieNy show, how analogous algorithm as in [6] can be used for
recognition of Cartesian graph bundles over K4\e-free simple base.
Let R be any equivalence relation on edge set of G. The 2-convex R-closure C2(’; R)

of a set of edges ’ relative to equivalence relation R is the subset � of the edge set
E(G), such that � is the minimal union of equivalence classes of R, that satis0es the
following two conditions: (1) ’⊆ � and (2) � is 2-convex in G. It is known [6] that
C2(’; R) can be computed in polynomial time.

Lemma 5.1. Let G be a Cartesian graph bundles over a K4\e-free simple base; with-
out induced K3;3 and let ’ be any equivalence class of �∗b containing only degenerate
edges. If �:=C(’; �∗b) �= E(G); then G is a Cartesian graph bundle with ;bres being
the connected components of G�.

Proof: Since base graph B is K4\e-free, any two triangles cannot share an edge.
Let D denote a minimal set of edges in B, such that B\D is triangle-free. Graph
G�:=G\p−1(D)⊆G is a Cartesian graph bundle over triangle-free simple base. From
the de0nition it follows that �∗b = �

∗ on G�. Because B is K4\e-free, any two incident
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nondegenerate edges, which are projected into a triangle in B, cannot span a chordless
square in G�. Therefore they are �∗b -equivalent in G�. Recall that by Lemma 6 of [6],
we have: if �:=C(’; �∗) �= E(G�) then G� is a Cartesian graph bundle with 0bres
being the connected components of G�� .
Finally, note that the edges of p−1(D) are nondegenerate and observe, using the

de0nition of �∗b , that they are �
∗
b -equivalent to nondegenerate edges of G�.

Lemma 5.2. Let G be a Cartesian graph bundle with ;bre F . Let ! be any equiva-
lence class of �∗b . If a connected component of the graph determined by ! is contained
in a ;bre; then also the connected component of the 2-convex closure C2(!; �∗b) is con-
tained in a ;bre. In particular; the graph determined by the 2-convex closure of !
has at least two connected components.

Lemma 5.2 can be proved along the same lines as the Lemma 7 of [6] using Lemma 5.1.
If there is a graph B with no K4\e, such that (G;p; B) is a Cartesian graph bundle

for some p, we can now give a polynomial algorithm which 0nds at least one rep-
resentation of G as a bundle. In fact, by computing the closure of all �∗b equivalence
classes, we can 0nd all minimal representations of G as a Cartesian graph bundle.

Algorithm CGB:
Input: G: graph;
Output: C set of degenerate edges of some bundle presentation.

1. compute �∗b
2. for all equivalence classes ’ of �∗b do

2.1 if C:=C2(’; �∗b) �= E(G) then return(C)
3. return(‘G is not a Cartesian graph bundle over K4\e-free base’.)

For any representation with K4\e-free base, the equivalence classes of the relation �∗b
contain either only degenerate or only nondegenerate edges. Let ’ be an equivalence
class of �∗b with degenerate edges. Each connected component must be contained in
one 0bre and by Lemmas 5.1 and 5.2 the closure C2(’; �∗b) is the set of degenerate
edges for a representation of G a Cartesian graph bundle. This proves the correctness
of the algorithm CGB.
Note that the algorithm CGB here and algorithm B of [6] diLer only in step 1, where

relation �∗ is replaced by �∗b .
Now we will prove that �∗b can be also computed in polynomial time. In arbitrary

graph with n vertices there exist at most as many induced subgraphs isomorphic to
K3;3\e and K3;3 as in complete bipartite graph K�n=2�;�n=2�. It is easy to see that this
number is polynomialy bounded in n, more precisely, it is less than N :=n6=2832, i.e.
O(n6). In de0nition of �∗b we consider each induced subgraph isomorphic to K3;3\e at
most N−1 times (all possible intersections of induced subgraph isomorphic to K3;3\e).
Therefore the complexity of computation the relation �∗b is at most O(n

12).



390 B. Zmazek, J. �Zerovnik /Discrete Mathematics 233 (2001) 381–391

Using the fact that the algorithm B in [6] is polynomial, it follows that complexity
of modi0ed algorithm CGB is also bounded by polynomial in n, the number of vertices
of G. Hence Theorem 1.1.

Theorem 1.1. There is a polynomial algorithm for recognition of Cartesian graph
bundles over a K4\e-free simple base; without induced K3;3.

6. Conclusion

We conclude with a discussion of a more general case, recognition of Cartesian
graph bundles over K4\e-free base. Unfortunately, Theorem 4.3 cannot be generalized
to bundle-K isomorphic to K3;3. However, we believe that enough information can be
obtained by using some properties of the neighborhoods of induced K3;3. Therefore we
state

Conjecture 6.1. There is a polynomial algorithm for recognition of Cartesian graph
bundles over a K4\e-free simple base.
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