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Recently the study of threshold kinematic requirements for particle-production processes has played a
very significant role in the phenomenology of theories with departures from Poincaré symmetry. We
here specialize these threshold studies to the case of a class of violations of Poincaré symmetry which
has been much discussed in the literature on Horava–Lifshitz scenarios. These involve modifications of
the energy–momentum (“dispersion”) relation that may be different for different types of particles, but
always involve even powers of energy–momentum in the correction terms. We establish the requirements
for compatibility with the observed cosmic-ray spectrum, which is sensitive to the photopion-production
threshold. We find that the implications for the electron–positron pair-production threshold are rather
intriguing, in light of some recent studies of TeV emissions by Blazars. Our findings should also provide
additional motivation for examining the fate of the law of energy–momentum conservation in Horava–
Lifshitz-type theories.

© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

Among the first results produced by the recent effort of inves-
tigation of the Horava–Lifshitz scenario (see, e.g., Refs. [1–10]) of
particular interest from the phenomenology perspective are those
that concern possible violations of Poincaré symmetries. In fact,
over the last decade our ability to test Poincaré symmetry (par-
ticularly, but not exclusively, its Lorentz sector) has improved very
significantly, and we are now in a position to investigate even very
tiny violation effects (see, e.g., Refs. [11–23]).

While a detailed understanding of the nature of the Poincaré-
symmetry violations in Horava–Lifshitz-type scenarios has still not
been reached, mostly because of challenges from a renormaliza-
tion-group perspective [4,5], some consensus appears to be emerg-
ing at least on some features that can be used, as already stressed
by other authors [6–10], for a preliminary phenomenological anal-
ysis. The feature on which we shall focus is the presence of modi-
fications of the energy/momentum (dispersion) relation of the type

E2 = m2
i + p2 + λ

(2)
i p4 + λ

(4)
i p6,

where the dimensionful parameters λ
(n)
i carry an index i which

denotes a possible “non-universality” of the effects (effects that
have different magnitude for different particles) and an index (n)

which simply refers to the number of length dimensions (e.g.,
dim[λ(2)

i ] = [l2]).
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The fact that this type of dispersion relations may emerge in
the Horava–Lifshitz scenario has been argued by several authors
(see, e.g., Refs. [6–10]). We here intend to expose some opportuni-
ties that are provided by the presence of this type of modification
of dispersion relations, particularly for what concerns the study of
“threshold anomalies” [18], i.e. the study of the implications of vi-
olations of Poincaré symmetry for the kinematic conditions at the
threshold for some particle-creation interactions.

The study of threshold anomalies as a possible signal of
Poincaré-symmetry violation has already been explored within
other quantum-gravity inspired formalisms (see, e.g., Refs. [13,15–
19]). But while these previous studies of threshold anomalies fo-
cused on the possibility that dimensionful parameters such as λ

(2)
i

and λ
(4)
i be set by the Planck scale (so that, e.g., λ

(2)
i ∼ 1/E2

Planck �
10−56 eV−2), the Horava–Lifshitz scenario, in which λ

(2)
i , λ

(4)
i are

not directly linked to the Planck scale, provides motivation for a
phenomenology of broader scopes.

From the Horava–Lifshitz perspective, another limitation of pre-
vious phenomenological analyses of threshold anomalies concerns
the handling of the energy–momentum conservation law. In other
frameworks with violations of Poincaré symmetry only the case
of unmodified energy–momentum conservation was considered.
Modifications of energy–momentum conservation were considered
in several studies but only when attempting to ultimately restore
(at least deformed) relativistic invariance, in the sense of the “Dou-
bly Special Relativity” proposal [24–26]. Also concerning the possi-
bility of violations of energy–momentum conservation the present
understanding of the Horava–Lifshitz framework exposes the need
for more general analyses, since it involves modified dispersion re-
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lations within a framework that also appears to involve violations
of translational symmetries [3,27], which may well produce viola-
tions of energy–momentum conservation.

In the next section we consider threshold anomalies for the
process of electron–positron pair production in photon–photon col-
lisions, and find that our Horava–Lifshitz-inspired analysis leads
to a picture that could produce an increase in our expectations
for the spectrum of multi-TeV photons to be observed from cer-
tain Blazars. Since it has been argued [17,28] that indeed the
abundance of multi-TeV photons observed from certain Blazars is
unexpectedly high this may be a valuable opportunity for Horava–
Lifshitz phenomenology. Section 3 discusses an analogous thresh-
old anomaly for photopion production, which is relevant for the
observations of ultra-high-energy cosmic rays, and provides the ba-
sis for additional insight on what type of Horava–Lifshitz-inspired
models could provide the most fruitful phenomenology, while pre-
serving consistence with available experimental data. While Sec-
tions 2 and 3 take as working assumption the fact that possible
effects of modification of the law of energy–momentum conserva-
tion can be neglected at the level of our leading-order analysis, in
Section 4 we discuss the differences in the description of threshold
anomalies that would instead arise if leading-order effects of mod-
ification of energy–momentum conservation were to be found. The
main objective of Section 4 is therefore the one of highlighting
the significance for phenomenology of the analysis of violations of
translational symmetry in the Horava–Lifshitz scenario, which un-
fortunately has so far not attracted much attention. Section 5 offers
some closing remarks.

2. Pair-production threshold anomalies

The study of the threshold kinematic requirements for the pair-
production process, γ γ → e+e− , has important implications for
the opacity of the Universe to photons, which in turn can be
indirectly studied observationally. In previous quantum-gravity-
motivated studies [16–19] of anomalies for the pair-production
threshold it was already observed that violations of Poincaré sym-
metry can be particularly significant for the study of absorption
of multi-TeV photons (photons with energies between a few and,
say, 30 TeV) by the infrared diffuse extragalactic background. In
this section we intend to specialize this observation to the case
of the Horava–Lifshitz-inspired phenomenological framework de-
scribed in our introductory remarks, centered on a modification of
the dispersion relation.

The fact that we plan to obtain results relevant for collisions be-
tween a multi-TeV photon and a photon in the infrared diffuse ex-
tragalactic background invites us to consider the case of a collision
in which one of the photons is hard, with energy–momentum E, P
such that E � me (denoting with me the electron mass), whereas
the other photon is soft, with energy–momentum ε, p such that
ε � me . Of course, for fixed value of the soft-photon energy ε
(representative of photons in the infrared diffuse background) the
production of an electron–positron pair is possible only for val-
ues of the hard-photon energy E greater than a certain minimum
(threshold) value, which we can denote with E∗

ε . Within ordinary
Poincaré covariant kinematics one easily finds that the threshold
requirement is E > E∗

ε = m2
e /ε , but it is known [13,15–19] that

this result can be affected rather sizably even by small departures
from Poincaré symmetry.

In order to establish the size of the threshold anomaly for the
case of our Horava–Lifshitz-inspired framework we shall of course
make use of the modified dispersion relation already discussed in
the introductory remarks. For the hard photon we therefore have

E � P + 1
λ

(n)
γ Pn+1, (1)
2

where n can be 2 or 4. We are only aiming for a description of the
dominant correction to the threshold requirement, so we will only
consider n = 2 whenever its implications are not negligible with
respect to the ones of the n = 4 terms, and in turn consider exclu-
sively the n = 4 terms if the contributions from terms with n = 2
can be neglected. We assume of course that the λ

(n)
i are all small,

and in particular in the analysis of the pair-production threshold
we assume λ

(2)
γ ,e � (100 TeV)−2 and λ

(4)
γ ,e � (100 TeV)−4. On di-

mensional ground one might guess λ
(4)
i ∼ (λ

(2)
i )2, and whenever

λ
(4)
i � (λ

(2)
i )2 the effects of the λ

(4)
i parameters can be neglected

at leading order. As already observed in Ref. [6], only in the case
λ

(4)
i � (λ

(2)
i )2 the λ

(4)
i parameters produce the dominant effects.

Consistently with the scopes of our leading-order analysis we
can neglect the modification of the soft-photon dispersion relation,

ε � p + 1

2
λ

(n)
γ pn+1 � p, (2)

since we are interested in the case of p � P , which of course im-
plies that λ

(n)
γ pn+1 � λ

(n)
γ Pn+1.

For the outgoing electron (positron) we introduce the notation
E− (E+) for its energy and p− (p+) for its spatial momentum, so
that

E± � p± + m2
e

2p±
+ 1

2
λ

(n)
e pn+1± , (3)

where we also used the fact that the electron–positron pairs pro-
duced at threshold in collisions between a multi-TeV photon and
a photon in the infrared diffuse extragalactic background are in-
evitably ultra-relativistic (p± � me).

The kinematic requirements at threshold are the ones that re-
quire the minimum energies for the process to occur and as a
result the process at threshold inevitably is a head-on collision [18]
(collisions that are not head-on always “cost” more energy, which
“pays for” the additional components of momentum). This simpli-
fies the analysis since for the purpose of establishing the threshold
requirements one can exploit the fact that the whole process oc-
curs along one spatial direction. We can therefore efficaciously
reason in terms of the modulus of the spatial momenta, and write
energy–momentum conservation as follows:{

E + ε = E+ + E−,

P − p = p+ + p−.
(4)

Using the dispersion relations (1) and (3) in the equation of con-
servation of energy one finds

P + 1

2
λ

(n)
γ Pn+1 + ε

= p+ + p− + m2
e

2p+
+ m2

e

2p−
+ 1

2
λ

(n)
e

(
pn+1+ + pn+1−

)
, (5)

which can then be cast in the form

1

2
λ

(n)
γ Pn+1 + 2ε = m2

e

2p+
+ m2

e

2p−
+ 1

2
λ

(n)
e

(
pn+1+ + pn+1−

)
(6)

using the equation of conservation of spatial momentum and the
fact that ε � p.

Next we observe that at zero-th order in λ
(n)
γ , λ

(n)
e (i.e. in the

standard Poincaré covariant derivation) one obtains from these
equations p+ = p− � P/2. This can be exploited in our first-order
derivation by allowing us to observe that

m2
e + m2

e � 4m2
e , λ

(n)
e pn+1± = λ

(n)
e

(
P

)n+1

, (7)

p+ p− P 2
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neglecting terms on magnitude not greater than λ(n) Pn+1m2
e /P 2

which of course can be neglected in our derivation focusing on the
dominant λ(n) Pn+1 corrections (me/P is indeed very small for the
collisions we intend to investigate). Using (7) one obtains from (6)
the following result

P + λ
(n)
γ

Pn+2

4ε
� m2

e

ε
+ λ

(n)
e

Pn+2

2n+2ε
. (8)

And in turn this allows us to conclude that, for fixed soft-
photon energy ε , the pair-production process is possible within
our Horava–Lifshitz-inspired framework only when E > E∗

ε , where
the threshold energy E∗

ε is solution of the equation

E∗
ε +

(
λ

(n)
γ − λ

(n)
e

2n

)
(E∗

ε)
n+2

4ε
� m2

e

ε
. (9)

The standard Poincaré covariant result E∗
ε = m2

e /ε is of course re-

covered in the limit λ
(n)
γ , λ

(n)
e → 0. For λ

(n)
γ > λ

(n)
e /2n one finds

lower values of E∗
ε , while for λ

(n)
γ < λ

(n)
e /2n one obtains values of

E∗
ε that are greater than m2

e /ε .
Analogous relations among parameters of schemes with parti-

cle-dependent (non-universal) modifications of the dispersion re-
lations have already been derived (see, e.g., Ref. [19]), but typically
assuming symmetry-breaking scales of the order of the Planck
scale (∼ 1028 eV) and different dependence on energy. Taking
E ∼ 10 TeV and ε ∼ 0.04 eV one easily verifies that, in order for
our Horava–Lifshitz-inspired framework to have observably large
implications in this pair-production analysis, the scales λ

(n)
γ and/or

λ
(n)
e should not be set by the Planck scale but by a much lower

scale. For example in the case n = 2 one would need |λ(2)
γ ,e| �

(1020 eV)−2.
Preliminary indications on whether values higher or lower than

m2
e /ε could be favored experimentally can be obtained using data

on the opacity of the Universe for multi-TeV photons. A high
energy photon propagating in the intergalactic space can indeed
interact with photons in the infrared diffuse extragalactic back-
ground, producing an electron–positron pair. The mean free path
of 10 TeV photons depends on the spectrum of the infrared back-
ground photons in the range from � 0.03 eV to � 0.08 eV, with
particularly strong dependence on the spectrum around 0.04 eV.
And these estimates scale linearly with the (inverse of) the en-
ergy of the incoming hard photon. Unfortunately, it is difficult to
determine the infrared diffuse extragalactic background, since di-
rect measurements are problematic, owing to the presence of the
bright Galactic and Solar System foregrounds [28]. Still it is note-
worthy that in recent years there have been several reports (see,
e.g., Refs. [28–30] and references therein) of spectra of some ob-
served Blazars that appear to be harder than anticipated on the
basis of the expected infrared-background absorption. One could
therefore tentatively argue that the case of values of the pair-
production threshold that are somewhat higher than m2

e /ε , i.e.

the case λ
(n)
γ � λ

(n)
e /2n , finds some encouragement in the, however

preliminary, observational situation. But this possibility must be
contemplated very cautiously since the presence of anomalies is in
no way necessary [31]. The observational situation does establish
more robustly that values of the pair-production threshold lower
than m2

e /ε are objectively disfavored [18], so that Horava–Lifshitz

scenarios with λ
(n)
γ > λ

(n)
e /2n (and |λ(2)

γ ,e| � (1020 eV)−2) appear to
be excluded.

3. Photopion-production threshold anomalies

In the preceding subsection we discussed the implications
of Horava–Lifshitz deformed dispersion relations for the pro-
cess γ γ → e+e− , but of course this is not the only process in
which deformations to dispersion relations can produce significant
threshold anomalies. In particular, there has been strong interest
[13,16–19] in the analysis of the threshold requirements for the
“photopion-production” process, pγ → pπ , and their relevance for
the observed high-energy portion of the cosmic-ray spectrum.

The analysis of the photopion-production threshold is of course
completely analogous to the one of the pair-production thresh-
old, but it is slightly more tedious: in the case of γ γ → e+e−
the calculations are simplified by the fact that both outgoing parti-
cles have the same mass and both incoming particles are massless,
whereas for the threshold conditions for the photopion-production
process one needs to handle the kinematics for a head-on collision
between a soft photon of energy ε and a high-energy particle of
mass mp and momentum P p producing two (outgoing) particles
with masses mp , mπ and momenta P ′

p , Pπ . Since however these
additional complications pose no conceptual and no significant
technical challenges (and a dedicated derivation of the photopion-
production threshold with Poincaré-symmetry violations is given
in Ref. [18]) we shall here just note the final result for the thresh-
old condition in our Horava–Lifshitz-inspired framework:

E∗
ε + (E∗

ε)
2+n

4ε

×
[
λ

(n)
p − λ

(n)
p

(
mp

mp + mπ

)n+1

− λ
(n)
π

(
mπ

mp + mπ

)n+1]

� (mp + mπ )2 − m2
p

4ε
(10)

(neglecting of course all terms suppressed by both the smallness
of λ

(n)
i and the smallness of ε and/or mp,π ).

Introducing the notation μp ≡ mp/(mp + mπ ) � 0.9 and μπ ≡
mπ/(mp + mπ ) � 0.1 one therefore concludes that, for fixed soft-

photon energy ε , when λ
(n)
p (1 − μn+1

p ) > λ
(n)
π μn+1

π the energy of
the incoming proton required at threshold for photopion produc-
tion is shifted toward lower values (in comparison to the standard
case λ

(n)
p = λ

(n)
π = 0), whereas when λ

(n)
p (1 −μn+1

p ) < λ
(n)
π μn+1

π this
threshold energy is shifted toward higher values.

An exciting aspect of these threshold analyses for photopion
production and the cosmic-ray spectrum is that they in princi-
ple provide access to scales of violation of Poincaré symmetry
that are extremely high. For example, from (10) it is easy to in-
fer that detailed studies of the cosmic-ray spectrum at energies
� 1019 eV could allow us to probe values of λ

(2)
p and λ

(2)
π such

that |λ(2)
p,π | � (1030 eV)−2.

The feature of the cosmic-ray spectrum that can be most valu-
able from this perspective is associated with the Greisen–Zatsepin–
Kuzmin (GZK) cutoff, which is essentially obtained as the threshold
energy (∼ 5 · 1019 eV) for cosmic-ray protons to produce pions
in collisions with CMBR photons. The observational determination
of the cosmic-ray spectrum has recently improved rather signifi-
cantly as a result of observations conducted with the Pierre Auger
cosmic-ray observatory [32]. There is no evidence of any shift of
the GZK threshold within the accuracy so far achieved in deter-
mining the cosmic-ray spectrum, but the most promising outlook
from the perspective of possible Poincaré violations is the one dis-
cussed in Ref. [33], which, within the framework here considered,
would require λ

(n)
p (1 −μn+1

p ) < λ
(n)
π μn+1

π . This scenario of Ref. [33]
ensures consistency with available cosmic-ray-spectrum data and
predicts a sort of “recovery” [33] of the spectrum at energies not
much higher than the GZK scale. The prospects are therefore rather
intriguing since a better determination of the beyond-GZK portion
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of the spectrum appears to be within the reach of studies planned
for the Pierre Auger observatory.

4. A possible role for modifications of energy–momentum
conservation

The results we derived so far assume that in the Horava–
Lifshitz scenario there are no modifications of the law of energy–
momentum conservation that could be large enough to affect
the threshold requirements at the leading λ(n) Pn+1 order. Pre-
vious studies [13,15–19] of the phenomenology of threshold
anomalies due to violations of Poincaré symmetry mainly fo-
cused on the possibility of new physics affecting exclusively the
Lorentz sector, so that the law of energy–momentum conserva-
tion would be unaffected. However, in the Horava–Lifshitz scenario
the four-dimensional diffeomorphism invariance is broken down to
foliation-preserving diffeomorphisms

δxi = ζ i(t,x), δt = f (t), (11)

a subgroup which preserves the foliation structure of space-
like slices. Therefore, as pointed out in several studies (see, e.g.,
Refs. [3,27]), local energy–momentum conservation is restricted to
the spatial components. In a locally inertial frame, the theory is
invariant under space translations but not under time translations,
so that in principle energy might not be conserved.

Presently the literature still does not provide any guidance on
the magnitude of the violations (if any) of energy conservation in
particle-physics processes within the Horava–Lifshitz framework.
But it is important for us to stress that our results could be sig-
nificantly changed if these violations happen to be relevant, also
hoping that this observation might motivate a more intense phase
of study by the community of the issue of energy conservation in
the Horava–Lifshitz framework.

For our exclusively illustrative purposes here it is sufficient to
make a simple ansatz for a modified law of energy–momentum
conservation, applicable to the case of electron–positron pair pro-
duction in collisions between two photons:{

E + ε − �(2)(Eε2 + E2ε) = E+ + E− − �(2)(E2+E− + E+E2−),

P − p = p+ + p−
(12)

where �(2) is a parameter with length-squared dimensions. We
use this recipe to obtain a rough estimate of the size of the
threshold-anomaly effects that could be induced by violations of
energy conservation with P 3 behaviour. And we shall be sat-
isfied showing the implications of the parameter �(2) for the
case of the pair-production threshold, focusing on the dispersion-
relation parameters with n = 2, λ

(2)
γ and λ

(2)
e . Adopting the �(2)-

deformed energy–momentum conservation, the derivation of the
pair-production threshold requirement (which of course once again
follows exactly the same steps described in Section 2) leads to the
result

E∗
ε +

(
�(2)

2
+ λ

(2)
γ − λ

(2)
e

4

)
(E∗

ε)
4

4ε
� m2

e

ε
. (13)

This shows that modifications of the law of energy–momentum
conservation of magnitude comparable to the one we illustratively
considered, and parametrized with �(2) , could affect the result for
the threshold at the same level as the λ

(2)
i parameters of modifi-

cation of the dispersion relation. In principle one could even have
cases in which the modification of the dispersion relation and the
modification of the law of energy–momentum conservation bal-
ance each other (�(2) = λ

(2)
e /2 − 2λ

(2)
γ ) giving the net result of
no leading-order correction to the threshold requirements. Such
a cancellation is actually expected [24,34] in frameworks based
on the concept of “Doubly Special Relativity” [24–26], where one
could accommodate modifications of the dispersion relation within
a model which is still fully relativistic, but relativistic in a de-
formed sense (with two non-trivial relativistic invariants, a speed
scale and a length scale, rather than one). But such a cancella-
tion is not to be expected [34] in frameworks in which instead
Poincaré symmetry is genuinely broken (rather than deformed) as
appears to be the case of the Horava–Lifshitz framework. So, while
we cannot exclude that investigations of the fate of the relevant
diffeomorphism-invariance issues may lead to a reassessment of
the quantitative aspects (magnitude) of the threshold anomalies
we here considered, we do expect these threshold anomalies to be
a genuine characteristic of the Horava–Lifshitz framework.

5. Closing remarks

In spite of a vigorous effort, composed of a large number
of dedicated studies in just a short time, the understanding of
the physics of the Horava–Lifshitz scenario appears to be still far
from taking final shape. There is however growing consensus on
some aspects, and particularly on the presence of modifications of
the dispersion relation of the type we here studied. The thresh-
old anomalies we analyzed represent challenges and opportunities
which may provide guidance, and perhaps even encouragement,
for further studies of the framework.

From a phenomenology perspective interest in this scenario can
originate from the rather natural emergence of “non-universal ef-
fects” (different magnitude for different type of particles), but in
ways that one can imagine to become predictive at a later more
mature stage of investigation. Particularly interesting from our per-
spective is the possibility that one might find that the implications
of the Horava–Lifshitz scenario are different for particles of dif-
ferent spin, since our analysis involved particles with spin 1, 1/2
and 0 (i.e. γ , e± , p, π ). For example, the most intriguing as-
pect of our analysis concerns the pair-production threshold, where
the observations appear to invite (however prudently) considera-
tion of the possibility of new fundamental physics. The require-
ment we obtained, λ

(n)
γ � λ

(n)
e /2n , would carry little significance if

one ended up introducing it by hand in the Horava–Lifshitz sce-
nario, since it would then amount to a standard observationally-
imposed constraint on a potentially rather large parameter space.
But the present limited understanding of the framework, particu-
larly for what concerns issues connected with the renormalization
group [4], appears to leave open the possibility that such a con-
dition be derived as an inevitable feature of the Horava–Lifshitz
setup. In that case the evaluation of compellingness of the proposal
should clearly take into account the type of phenomenological im-
plications that we here focused on.

Of similar nature is our contribution on the points concern-
ing the law of energy–momentum conservation. In that respect
the most interesting aspect from the phenomenology perspec-
tive originates from the fact that the Horava–Lifshitz scenario
might host both modifications of the dispersion relation, of a
type that is not too different from the ones already considered
in other Poincaré-violation scenarios, and modifications of the
law of energy–momentum conservation, which is instead a pos-
sibility that had been mostly neglected in previous studies of
Poincaré-violation scenarios. We observed here that there could
be a strong dependence of a meaningful observable aspect (our
threshold anomalies) on possible violations of the law of energy–
momentum conservation, also hoping to provide motivation for an
increased effort of investigation of the fate of translational symme-
tries in the Horava–Lifshitz scenario. In spite of the large number
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of studies devoted to this proposal, only very few authors appear
to have considered the implications for translational symmetries,
which instead, in ways that our analysis renders more tangible,
will probably play a key role in assessing the compellingness of
the physical picture produced by the Horava–Lifshitz scenario.
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