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1. INTRODUCTION

For a given function f on 7=[0, 1], the well-known Bernstein polynomial of
S is defined as

n k n
B,(fix)=% f<;>pk,n(x), where pk,,.(X)=<k>X"(1 —x)"", neN,.
k=0
These polynomials have been studied intensively, cf. [6]. They are the prototype
for sequences of positive, linear, polynomial operators, and many aspects of
the latter have their origin in the investigations of these polynomials. By now,

the approximation behavior of the Bernstein polynomials is well understood,
it is characterized by the weighted K-modulus, cf. [1], [5], [7],

Ky(£in= inf {|/~glw+*l07g" |}, where p(x)=yx(1-x), >0,
gel,

which is known to be equivalent to the modulus of smoothness of Ditzian and
Totik [5]. More precisely,

THEOREM A. Let fe C[0,1). Then there are constants such that
1
B, f— wsconsth — 1,
1B,/ ()
and, conversely,
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k
zf<—>pk,,,<x)
n

K? <f; %) <S8 § 1B

n+1 k

Let S be the simplex defined by
S={xeR?:x;20,0<i<d,1-|x/=0},

where, here and in the following, we shall use the standard notation: for x=
(X1, X2, ..., X2) €RY, |x| = T, x;; we shall also write for xe R?, ke NJ, and
nelN,
x* = xkixke ki k1= K1kt oo ky!,  and <")=———"!—.
k k!(n—|k)!
The Bernstein polynomials for a function on the simplex S are defined as
follows (cf. [6])

k
Ba(fin)= T f(;)pk,n(x),

|kl<n

n
where p, ,(x)= <k>x“(1 —xP M neN,.

Efforts to characterize the approximation behavior of {B, 4},y-o, d=2, have
been made by several authors, see [3], [4], [8], and [9]. The results obtained so
far seem not to match the elegant theorems for the one dimensional case.

In this paper, we propose a new K-modulus which generalizes the one for one
variable in a natural way, even for Lebesgue spaces. We show that this K-
modulus is equivalent to a modulus of smoothness and use it to characterize
the approximation behavior of the Bernstein polynomials on simplices; more
precisely, we prove a strong direct theorem and an inverse theorem of weak
type. Saturation is excluded. The K-modulus has also been used in [2] to study
the Bernstein-Durrmeyer polynomials on S.

2. WEIGHTED K-MODULUS AND MODULUS OF SMOOTHNESS

Let L?(S), 1=p=+o, denote the space of (the equivalence class of)
Lebesgue measurable functions f on S for which the norm |f|;={|f]? is
finite. For xe€ S, we denote

;(X)=0;(x):=)x;(1-[x]), 1=i<d; p;(x):=Vx:x;, 1=si<j=d,

and

a
DI':Diizzaj’ ISlSd, DI_].=DIf_Djf’ 151<Jsd,

i
Dj=Dy(Dj""), and D*=D{'D...Dk keNd.
With these notations, we define for 1 =p< o the weighted Sobolev space
WEP(S)={feL”(S): D*f, |k|<r,ke N, are in L,,.(8),
and ¢;DjeL?(S)1<i<j=<d},
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where the derivatives are in the distributional sense. For the space C(S), we
write

CL(S)={feC(S) |feC’(§), and ¢ D;feC(S) I=<i<j=<d}.
The Peetre K-moduli on L?(S), 1<p< oo, and C(S), p= o, are defined by

Ko(fst)p=inf {{f=gl,+¢" ¥ loyDjzel,}, >0,
l<isj<d
where the infimum is taken over all ge W;P(S), 1=p<, and ge Cy(S),
p = oo, respectively.
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We then define the modulus of smoothness of fe L?(S), l<p<+oo, and
feC(S), p=+o>, as

w‘l’(fa t')p_ Sup E "A;l(/h,e,,f"p' 1 Spsoo.

<hst! 1si<j=<d

We have

THEOREM 1. There exists a positive constant, dependent only on p and r,
such that Vfe LP(S), l<sp<oo, and Ve C(S), p= o, respectively,

wo (D, <Ko(fit"),<const wp(f;1),, 0<t<l.
const

REMARK. For d=1, our definitions and statements in Theorem 1 coincide
with the familiar one dimensional ones, cf. [5, Chapter 2]. A multi-dimensional
modulus of smoothness has been defined on polytopes by Ditzian and Totik in
[5, Chapter 12]. Their definition, however, seems to be more complicated than
ours when restricted to the simplex due to its generality.

PROOF OF THEOREM 1. We shall reduce the proof to the one in one
dimension. For x=(xy, ..., xz) € RY, we write X, = (x, ..., X;) and

S ={x,:x=(x,x;)e S}.
Let x;=(1 —|x(|)z, O0=z=1, and F(2)=F(z,x,) =1~ [x;|)z,x;). Then

P ()=~ [x Do, DINHE)=>1-|x])"F@x),
and

A;r(ple,f(x) :Asz(Z)'

413



Consequently, for 1=p<+oo,

[xi1]
5 IA;:wlel.ﬂp dxl

1
"A;l(olelf“5= j dxl
S 0

1
=§ (=[x )f |45, F(2)|* dz dx,.
St 0

From the proof of the relevant inequalities in one variable, see [5, Chapter 2],
we obtain

1
| A%pye,f 1= const SS (I-x,)§ |F()|” dz dx,
| 0

I=x|
=const| | [fCx,x,)|” dx, dx,=const |f]5,
s 0

and

1
| Ahg,e, S5 =const § (1-[x;)A7§ |p(z) F"(2)|” dz dx,
S 0

F=]x
=const 47§ | [o{Dif)x,x))|P dx, dx,

Si 0

=const A |@\ D{ f]5.

Similarly, by using the transformation 7;:S— S, defined by x;— 1 - |x|, and
x;—Xx;, j#i, and taking into account that D;f=D;(foT;), we obtain for
l<sp<+ow and lsi<j=<d,

1A, SeL?,
r P
| Ahp, e, Sl =< const {hrp lolDLfl,, feWE".

The case p =+ is easier. Adding up these inequalities, we have proved the first
estimate.

To prove the second one, we shall again reduce it to the one dimensional case.
First we note that for fixed x,, there exists a function G,e W;*(I), t>0, such
that

const

§ 140, £12 du,

|F= Gy, t%le" Gl < |

(cf. [5, Chapter 2]). Since the construction of G, in [5] depends on F con-
tinuously, for F(z)=F(z,x;) we have G,(2)=G,(z,x;) as well. We now define
g€ Wg”(S) through

X1
g,(x)zG,<4,xl>, xes.
1%
Then
1
I/ gp=§ =[x D] |F2) - G,(2)|” dz dx,
0

M
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111
=const { (1~]x, |);H|A{,¢F(z)|”dz du dx,
S1 00

const { i-lal
= t 55 5 ‘Auwlelf(xl,xl”pdxldxldu

0S 0
const ¢
= P Z‘) “AZ(a|e|f"Z du,

and

1
171Dy g b =17 § (1-|x,)f |9(2) G (2)|? dz dx,
S 0

11
=const § (1-]x, |)7H | A%, F(2)|? dz du dx,
00

S
const
t

=

t
(5) |Asp,e, S du.

Similarly, we can prove that for each i, j, 1<i<j=<d, there are functions
g,€ W5*P(S),t>0, such that

~ const ¢
|f—glp 1™le;Dgl,= —t—E | A%pye, S15 du.
0
Adding up these inequalities, and we have proved the second estimate. ]

3. THE APPROXIMATION BEHAVIOR OF B, 4(f)

The following theorem gives a characterization of the approximation
behavior of {B, 4(f)}n-o for a function fe C(S) by means of a K-modulus
and/or a modulus of smoothness.

THEOREM 2. If fe C(S), then there is a positive constant such that

I/~ Bpaf o< const [w;( L4 1)t \If\lm]’
’ n+1

and, conversely,

2 const ”
we(fi1V/(n+ 1)) —— ¥ |By o()—flo-
n+1 k=0

COROLLARY. For feC(S), O0<a<2,

|f = Bp.aflew=O0m"*?) if and only if wa(f;1/n)=0(n"").

Our proof is based on an induction argument. We shall prove the case d =2
in detail and outline the proof for an arbitrary dimension. This way, we hope,
the idea of the proof will become evident, not obscured behind a heavy
notation. Some ideas from [3] and [9] are used in the proof.

In the following, we shall write | - | instead of |- |., and sometimes even
| flyer:=max,;|f| for multivariable functions f(u,x,,...) to indicate that
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the maximum is taken w.r.t. ¥ only. The ‘“‘const’’ will always stand for a
positive constant, independent of fand #, its value may be different at different
occurrences.

PROOF OF THEOREM 2. First we prove the case d=2. For xeR?, we write
x =(x, v),

fShe BUO S

P =Yx(1—x—=p), @26 =Yy -x=y), @3(xy)=Vxy,

and Dy f=Dy, f:=D\f—D, /.
By standard arguments, the direct part of the theorem follows from the
estimates

11, SeC(s),
() B2 ~flsconsty 3 ,
LE 1oIDEf1+111V/m, S CH(S).

The first estimate for all fin C(S) is evident as B, , is a positive, linear con-
traction on S. We shall prove the second one by reducing it to the one dimen-
sional inequality

2 |B,f—f|=<const |@’ f"| /n.

We need the following formula of B, , f which can be easily checked (cf. [9]),

n n—k k ,] y
3) B, 2:(f;%Y)= ¥ Pin(x) ¥ ~,—>p,~,n_k< >
k=0 j=0 n n 1—-x
Now let
E ={(xy):x=4}, E={xy):y=i}, E={xy):1-x-y=1}.

Let w;, 1<i<3, be a partition of unity on S satisfying the following con-
ditions:

3
w;€C*(S), ¥;=20, ¥ wi(x,y)=10on S, and suppy,CE,.

i=1

We shall prove
“) 1B, (fw)—fwil < %m[él 2D f+ /11, 1=is<3,
which implies the second inequality of (1) as

Buof= £ Bualfwd, =X fwions.

First we consider the term fi;. Since y;(x, ¥)=0 on the complement of Ej;,
we can assume w.l.o.g. that
) SO »)=0o0n Eff:={(x,y):x=0,y=0,x+y=%}.

From formula (3) it follows that
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B, 2 (fy3;x,¥)—fw(x »)

n n-k k J y
-5 pkn<x>[ L (f%)(—,—)pj,,,-k(_)
k=0 j=0 n n 1—x

k kN
(5 (1-0) 75|
n n)l—-x
n k kN y
+ [ E pkn(x)(f'//3)<;, <1 - ;) 'l“:—x> —ful;(x,y)] =:J+L.

Let g, (u):=f(k/n,(1—k/n)u), 0<u=<1, and z:=y/(1 ~x). Then for (x,y)€S
and fixed x,z€[0, 1]

J= % DB,y (g3 — ().
k=0

Recall that y, =0 on the complement of E;, giving

n

k j k 3
© (L)oo =
nn 4
Thus the sum in J can be taken on 0<k <3n/4 only. From (2) it follows that

const
1By (w33 D) — 8w @) = —— 107 (8k3) lees

const , In
lo“ (g ws) lzers kST'

=

n

By (5) and (6), g,(z)=0 for 4/5=z<1, in particular, g;(1)=0 and g;(1)=0.
Thus

1 1

§ @* () gy (1) du=—0*(2) g1 (2) + (1 —22) g, () — 2§ g, () du,

4

from which it follows that

"

“(ngl;|‘zel—<-3||gk“zel+“(ﬂ gk”zel'
However, by definition,
” k k
P @) :(¢§D§f)<; , <1 - —>z>,

n

and consequently,

l9*ekl.cr =03 D3 1.

Since ||g|;=< 1], and since e C* is independent of n and f, we have proved
that

lo*(gx w3)”| < const [|f] + |3 D3 f]].

Therefore,
co

t
01+ 103 D2

Il =
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To estimate the second term L, we define

h(u)=h(x,y,u):=f<u,(l - ) fx>

for each fixed (x,y)€ S, and rewrite L as
L =B, (hy3;x) — hy;3(x).

We now apply (2) again, and conclude that

const
L )= —— lo*(hws) lues-

By (5) it is easy to see that A(u)=0 if 4/5<u =<1, thus as for the estimate of
g, we have

l@*(hw3)" |ue s < const 1Al e 1+ 19 A"|ye 11

Since by definition,

)" () = [w%D%f+ oiDi/ - ﬁ(w%l)%f)] (wa-w72),
we have using h(u) =0, 4/5=<u <1, again,
[0 4"|uer= max |¢*()h" (@)
<[ Dif|+ |03 D3 /| +4l93 Difl.

Since |A|,cr=]|f], we proved

t 3
=1+ T 1ol DR,

IL]=

giving (4) for i=3. The other two cases can be reduced to this one.
Let
A y)i=f1-x=3y), yii=y(1-x=-y)

on S. Since (x, y) € E; if and only if (1 -x—y,y)€E|, we have
|B,2(fu)) = fuwi | = | Bu2(f *ui") =S *wi

Clearly, y* takes the role of w3, we therefore have
18,2 == 1174+ 1o D

However, | f*| =|f], and it can be easily checked that
@ DI fH)x% ) = @i DI YA =x=,)),

5 (@3D3 M%) = @I DINA = x =3, ),
an

(@IDf*)(% y)=—(93 D3 /)1 = x—, ),
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giving

lo? D} [+ = z |02 D f],

T

J

which proves (4) for i= 1. Similarly, we can prove (4) for i=2. The direct part
of the theorem is proved.

To prove the inverse part, we first remark that by [7, Lemma 2.2] all we need
to prove are the following inequalities

const n| f|, SeC(S),

™ lo? D} B, f| < 1<i<3,
i lo2D2f] + IID?fII, fec¥(s),

and

® DB zfus{consmznfn, FeC(s),

ID3fl,  fec¥s), ==

Indeed, once these inequalities are proved, it follows immediately as in [7] that

|f~ Bmafl+n ' |0i D} B, S| <

-B,,f|, 1=i=<3,

where m is the integer, n/2<m=<n, such that

|Bp 2/~ fI=<|Bi2f-fl, n/2<k<n,

proving the inverse part.
The proof of the estimates (7) and (8) is again reduced to the corresponding
one dimensional ones, which are

const n"f" ’ fe C,
|0* B f| <
9) I /"] + = llf” I, fec?,
” < const ﬂzllf" s fe C’
1Bnf1= { Y2 s

We prove (7) and (8) for i=2 first. As in the proof of the direct part, setting
grw)=f(k/n,(1 —k/n)u) and z=y/(1 —x) we obtain from (3) that

B, /(6 y)= Y pin(x¥)By,_ 1 (8ks2)-
k=0
Since
935 Y)D3B, (8, 2)=0* () Byy_ (£ 2),
it follows from (9) that
const (n - k)”gk "zel:

2 n

(ED2B, NN = T pen¥)
k=0

1
”(P "zel+ ”gk "ze[
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However, it can be easily checked that

ol )
(e 1-2))

Therefore, we proved (7) for i=2. Notice that

2
<2 1bis,

and

(9? &)@ = <[3Di fl.

(DB, /)6 3) = 5 Din(0) Bl (21n /(1 ~X)2,

k=0
and

5 Den (O — kY = (1 - x)2,
k=0

and consequently, from (9) that

{const (n—k)*| &,

(D3 B, /)% )| =< Z Pin(X)——
||gk||

K=o (1-
- {const n*| fl,
~UDif,

giving (8) for i=2. To prove (7) and (8) for /=1 and 3, we can either use an
analogous representation of the Bernstein polynomials as in (3) or use the
transformations

S*e ) =f(1—-x-y,y) and f. ()= f(1~-x~y)

on S, as in the proof of the direct part. With these remarks we completed the
proof for d=2.

We now outline the proof for the d-dimensional case which follows from an
induction argument. Assuming the theorem to be true for dimension d -1, we
shall prove that it is true for dimension ¢, too. This can be done exactly as in
the proof of the theorem for the two dimensional case above.

First, similar to (3), we have

nd(fx)—ZPkn(Xl) )X f< >P3n k( ! >,

lil <n~k I—x

where for x € R?; we write x=(x,,¥), ye R"!, and je N?~!. Corresponding to
E; and y;, 1<i<3, for the two dimensional case, we now define

1 . 1
E,-:{xeﬂéd:x,-zz}}, l<si<d, EdH:{x:l—lx\zﬂ},
and the partition of unity

d+1
w;€eC%, y;2z0, ¥ w,=1onS, and suppw,CE;,, l=<i<d+]1.

i=1

If we consider B, ,(fw,, ;X) first, we can assume w.l.o.g.
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1
=0, for 1-|x|<—, x e RY.
F®)=0, for 1-[x|=< -

As before, B, 4(fWa,1)—fWay can be written into two terms, J and L. With
ge)=f(k/n,(1—k/mu), ue R?"!, and z=y(1-x,), ye R“"!, we have

J=Y pinDIBy_ka-1(8Wa+1,2) — (& Was 1)@,
k=0
which can be estimated by using the inductional assumption. The inequalities
l9F Dij(exwar Dl <const [|g| +|0iDjgcl]l, 1=<isj=d-1,

which are needed in the proof, can be obtained by reducing them to the one
variable inequalities in the proper direction. Also with

h(u):h(u,x):=f<u,(1—u) > ueR!, x=(x,y)eRq

1-x
we have

L=B,(hyy,1,%)~ My, 1 0X1)s

which can be estimated almost exactly as in the two dimensional case. For the
other terms fiy;, | <i<d, we use the transformations

f}(X)Zf(Xl,...,xi_l,l- |X|,x,-+l,...,xd)

on S. The inverse part is easier, and follows almost identically from the proof
of the two dimensional case. [ |
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