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1. INTRODUCTION 

For a given function f on Z= [0, 11, the well-known Bernstein polynomial of 

f is defined as 

4(f;x)= i f 0 n k P~,~(x), where Pa,,,= k 0 Xk(l-X)nPk, nEtN,. 
k=O n 

These polynomials have been studied intensively, cf. [6]. They are the prototype 

for sequences of positive, linear, polynomial operators, and many aspects of 

the latter have their origin in the investigations of these polynomials. By now, 

the approximation behavior of the Bernstein polynomials is well understood, 

it is characterized by the weighted K-modulus, cf. [l], [5], [7], 

~~~f;t)=~~~~{l~f-g11,+~211cpzg”ll,}, where rp(x)=Ilx(l-x), t>O, 
” 

which is known to be equivalent to the modulus of smoothness of Ditzian and 

Totik [5]. More precisely, 

THEOREM A. Let f E C[O, 11. Then there are constants such that 

1 
jjB,f-fjI,IconstK,2 _fp ( > n+l ’ 

and, conversely, 
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k 

Zf(-1 
n Pk,n(X) 

K; f;+ <const ( > n + 1 j. IPkf -f IL=. 

Let S be the simplex defined by 

S= {XE iRCXjrO,O&Sd, 1 - 1x1 lo}, 

where, here and in the following, we shall use the standard notation: for x= 

(x,,x,,...,Xd)EIRd, 1x1 = Cy=, xi; we shall also write for XE lRd, ke IN& and 

nEN, 

XL,+p.._Q, kd k! =k,!kZ! *a-k,!, and 
0 

L = 
n! 

k!(n - Ik()! * 

The Bernstein polynomials for a function on the simplex S are defined as 

follows (cf. [6]) 

Pk,n(Xh 

where &n(x) = 
0 

; Xk(1 - ix/)“- lkl, nEtNo. 

Efforts to characterize the approximation behavior of {Bn,d}p=O, dr2, have 

been made by several authors, see 131, [4], [8], and [9]. The results obtained so 

far seem not to match the elegant theorems for the one dimensional case. 

In this paper, we propose a new K-modulus which generalizes the one for one 

variable in a natural way, even for Lebesgue spaces. We show that this K- 

modulus is equivalent to a modulus of smoothness and use it to characterize 

the approximation behavior of the Bernstein polynomials on simplices; more 

precisely, we prove a strong direct theorem and an inverse theorem of weak 

type. Saturation is excluded. The K-modulus has also been used in [2] to study 

the Bernstein-Durrmeyer polynomials on S. 

2. WEIGHTED K-MODULUS AND MODULUS OF SMOOTHNESS 

Let LP(S), 1 sps +m, denote the space of (the equivalence class of) 

Lebesgue measurable functions f on S for which the norm (1 f II;= j 1 f 1” is 
finite. For XES, we denote 

~i(X)=vl;;(X):=~~, lsisd; cpu(~):=1/xixj, lsi<jsd, 
and 

D;=D;;:=$, lsisd, Djj:=Dif-Djf, lsi<j<d, 
I 

D~=Dv(D;-‘), and Dk =Df’Dp.-.D$‘, k e tr$. 

With these notations, we define for 1 sp<oo the weighted Sobolev space 

W~P(S)={f~LP(S):Dk~IkI~r,k~~d, are in LIOC(i), 

and CJ$&EL~(S), 1 sisjsd}, 
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where the derivatives are in the distributional sense. For the space C(S), we 

write 

GJ(S) = {fE C(S) I fE C’(h and q$Dlif~C(S), 1 liljld}. 

The Peetre K-moduli on Lp(S), 1 <p< 03, and C(S), p= 00, are defined by 

K~(f;t’),:=inf{llf-glI,+t’ C Ilco~~~gllp>, t>O, 
I cisjsd 

where the infimum is taken over all ge W$“(S), 1 up< m, and ge C;(S), 

p = 00, respectively. 

Let ei E Rd be the unit vector, ej = (0, . . . ,0, ; 0 , , . . . . 0), and eu=e;-ej. For any 

vector e in Rd, we write for the r-th symmetric difference of a function f in the 

direction of e 

i (J(-lf_f(x+(i -k)he), xs :eeS, 

otherwise. 

We then define the modulus of smoothness of f eLp(S), 1 <p< +m, and 

feC(S), p=+m, as 

&J (f; op = sup O<hc, ,-_;j-_d Il4v,,f llP’ l ~P~O”. i 
We have 

THEOREM 1. There exists a positive constant, dependent only on p and r, 
such that Vf E Lp(S), 1 up< 03, and Vf E C(S), p = 03, respectively, 

--&~~(f;t)p~K~(f;t’),aconstw~(f;t)p, o<t<1. 

REMARK. For d = 1, our definitions and statements in Theorem 1 coincide 

with the familiar one dimensional ones, cf. [5, Chapter 21. A multi-dimensional 

modulus of smoothness has been defined on polytopes by Ditzian and Totik in 

[5, Chapter 121. Their definition, however, seems to be more complicated than 

ours when restricted to the simplex due to its generality. 

PROOF OF THEOREM 1. We shall reduce the proof to the one in one 

dimension. For x=(x1, . . . ,xd) E Rd, we write x, = (x1,. . . ,xd) and 

S1={X,:X=(XI,XI)ES}. 

Let x1 =(l - lx, l)z, 01.~5 1, and F(z)=F(z,x,)=f((l- 1x1 l)z,xl). Then 

%(x)=(1 - lx, I)&), (D;f)(x)=(l- 1x1 I)-‘~%), 
and 

hp,,,f(x) =4,Fw 
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Consequently, for 1 rp < + 00, 

114,,e,fll;= s a ‘T’ K,,e,.v& 

SI 0 

=5 (i-i~i~i ~dpkpwdxl. 

8 0 

From the proof of the relevant inequalities in one variable, see [5, Chapter 21, 

we obtain 

Il4~,,,fll~~c~n~t S u- IX, rbi lp(~)lPd~d~, 
SI 0 

I-lx11 

=const j j If(~~,x~>(~dx~ dx, =const llfjl$ 
SI 0 

and 

IlAi,,,,fll~~const j (1 - lx, I)h”‘j I&)‘F”‘(z)IP dz dx, 
SI 0 

‘-1x1/ 

= const hrP j j l(q(D;f)(xI, xI)Ip dxl dx, 
SI 0 

= const hrP I/ cp;D;fll;. 

Similarly, by using the transformation 7; : S-t S, defined by xi+ 1 - 1x1, and 

X, ~ Xj, j+ i, and taking into account that Dijf = Dj(f 0 T), we obtain for 

1 sp<+m and 1 sisjsd, 

Il4v,, flip 5 const Ilf lip fELP, 
hrPliq;D;f lip, f E Wgr. 

The casep = +03 is easier. Adding up these inequalities, we have proved the first 

estimate. 

To prove the second one, we shall again reduce it to the one dimensional case. 

First we note that for fixed xl , there exists a function G, E W:p(I), t> 0, such 

that 

IIF- G,II;, trPllcprGI”II;s y 5 IlA:,f li;du, 
0 

(cf. [5, Chapter 21). Since the construction of G, in [5] depends on F con- 

tinuously, for F(z) = F(z, x,) we have G,(z) = G,(z, xl) as well. We now define 

glE W$p(S) through 

gJx)=G,(+x,), xeS. 

Then 

llf-g,II;=~, Cl- ld)i lF(z)-G,(z)lPdzdx~ 
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~const j Cl-- Ix,l)f~~Id:~F(Z)~pdZdUdx~ 
SI 

const 1 1-lxl 

= 78,s 
I 

! Ik’:,,,,f(x,,~,)l~dx~ dx, du 

const ’ 
= -y! ll~&o,e,fII~ du, 

and 

tr%;~;&ll;=trP~ (1 - IXII)i lV(z)Gj”k)lPdZdxl 
SI 0 

sconst j (1 -/x1 I)fa/ l&,F(z)lP dzdudx, 
SI 

const ’ 
- < 7 ! ll&p,e,fll; du* 

Similarly, we can prove that for each i,j, 15 iljld, there are functions 

g, E E$?‘(S), t> 0, such that 

Adding up these inequalities, and we have proved the second estimate. n 

3. THE APPROXIMATION BEHAVIOR OF B&f) 

The following theorem gives a characterization of the approximation 

behavior of {Bn,d(f)}~EO for a function f E C(S) by means of a K-modulus 

and/or a modulus of smoothness. 

THEOREM 2. If f E C(S), then there is a positive constant such that 

Ilf-~B,dfll,~const &(f;l/(n+l)),+ - 
[ 

llf IL 
1 n+l ’ 

and, conversely, 

const n 
cf&(f; l/(n+ 1))s ~ n+ 1 ,;, II&,d(fFfilm. 

COROLLARY. ForfeC(S), O<a<2, 

Ilf-B,,fI/,=O(n~a’Z) ifand only ifo$(f;l/n)=O(nP). 

Our proof is based on an induction argument. We shall prove the case d = 2 

in detail and outline the proof for an arbitrary dimension. This way, we hope, 

the idea of the proof will become evident, not obscured behind a heavy 

notation. Some ideas from [3] and [9] are used in the proof. 

In the following, we shall write II . /I instead of II . lloD, and sometimes even 

llf II uEl:=maxu.I If I for multivariable functions f (u,x, y, . . . ) to indicate that 
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the maximum is taken w.r.t. u only. The “const” will always stand for a 

positive constant, independent offand n, its value may be different at different 

occurrences. 

PROOF OF THEOREM 2. First we prove the case d= 2. For x E lR2, we write 

x=(x,_& 

PI (XT Y) = Jx(l-x-y)Y v)2 (x9 Y) = Ily-x_y), v3 (4 Y) = fi, 

and D,f=D,,f:=D,f-D,f. 

By standard arguments, the direct part of the theorem follows from the 

estimates 

c llf II 7 f E C(S), 

(1) II&, 2f -f II 5 cona 
I 

[ i IIdDff II + Ilf Ill/n, f E C;(O 
r=l 

The first estimate for all fin C(S) is evident as B,,, is a positive, linear con- 

traction on S. We shall prove the second one by reducing it to the one dimen- 

sional inequality 

c-4 IlB,f-fllIconst /Iv2f”II/,. 

We need the following formula of B,,f which can be easily checked (cf. [9]), 

(3) B,,,,(fxy)= i ~d&~ 
k=O 

j_of(~~f)pj,+k(&)- 

Now let 

E,={(x,y):xr$}, E2={(x,y):y2+}, E,={(x,y):l-x-yz$}. 

Let vi, 1 <is 3, be a partition of unity on S satisfying the following con- 

ditions: 

yi~Ca(S), ~~20, i ~i(x,y)=l on S, and supp y;CE,. 
i=l 

We shall prove 

(4) ll&,,(fvi) -fw;II 5 T[ ;: llp;D,2fll+Ilfll], 15i13, 
j=l 

which implies the second inequality of (1) as 

B,zf= J!YI Bn,,(fVi), f= i fyi on S. 
i-l !=I 

First we consider the term ft,u3. Since w3 (x, y) = 0 on the complement of E3, 

we can assume w.1.o.g. that 

(5) f(x,y)=O on E::= ((x,y):x10,yrO,x+yr~}. 

From formula (3) it follows that 
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B,,, 2Uv3 ; ~7 Y) -fw3 (~7 Y) 

Let gk(~):=f(k/n,(l-k/n)u), 05~51, and z:=y/(l-x). Then for (.x,Y)ES 

and fixed x, z E [0, l] 

J= i Pkn(x)IB,-k(gkW3,~)-(gkW3)(z)l. 
k=O 

Recall that y3 = 0 on the complement of E,, giving 

Thus the sum in J can be taken on O<k~3n/4 only. From (2) it follows that 

By (5) and (6), gk(z)=O for 4/55zrl, in particular, g,+(l)=0 and g;(l)=O. 

Thus 

from which it follows that 

However, by definition, 

and consequently, 

II~2~kNllzE,-= lId&fII. 

Since /IgklL~ llfll, and since V/EC” is independent of n and f, we have proved 

that 

/Iv2kkw3)7 sconst [llf II + lId&f Ill. 
Therefore, 

II Jll 5 YIllf II + lldml. 
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To estimate the second term L, we define 

h(u)=h(x,y,u):=f &(1-U)& 
( > 

for each fixed (x, Y) E S, and rewrite L as 

L=B,(hW3;x)-wj(x). 

We now apply (2) again, and conclude that 

By (5) it is easy to see that h(u) = 0 if 4/5 5 u 5 1, thus as for the estimate of 

gk, we have 

I192(~~~)“/IuEI~c~n~t Wllu~~+ l192~“llU~~l. 

Since by definition, 

we have using h(u) = 0, 4/5 I u I 1, again, 

l192h”ll.~~= max Icp2(u)h”(u)l 
05us4/5 

5 ll9:mll+ ll9~~4fll+4ll9,:~,2fII. 

Since Ilhllucls ilfil, we proved 

IILII 5 yhfll + j;l ll9&m 

giving (4) for i = 3. The other two cases can be reduced to this one. 

Let 

“I-*(&Y):=“01 -X-Y,Y), w::= wr(1 -x-Y,Y) 

on S. Since (x, Y) E E3 if and only if (1 -x-y, y) E E, , we have 

II~n,,(fWlkfW1 II = Il&,2(f*W:)-f*W:ll. 

Clearly, 9: takes the role of I,v~, we therefore have 

However, lIf*ll = llfll~ and it can be easily checked that 

(9:m*)(x,Y) = (9xf)(l -x-Y,Yh 

(cp:%f*)(X,Y) = (cp:#f)(l -x-Y*Y)v 
and 

(U?:D:f*)(x,Y) = -(9Zf)(l -x-Y,Y), 
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giving 

which proves (4) for i= 1. Similarly, we can prove (4) for i= 2. The direct part 

of the theorem is proved. 

To prove the inverse part, we first remark that by [7, Lemma 2.21 all we need 

to prove are the following inequalities 

rconst n llfll y f E C(S), 

(7) lldQ%l,*f II 5 
i 

Ild#f II + ; IP’fll9 f E c2w, 
lri13, 

and 

(8) 
f E C(S), 
f E c2m, 

lli53. 

Indeed, once these inequalities are proved, it follows immediately as in [7] that 

llf - %,*f II +n-l IIdmm,2fll~ F 
k=l 

where m is the integer, n/2sm 5 n, such that 

proving the inverse part. 

The proof of the estimates (7) and (8) is again reduced to the corresponding 

one dimensional ones, which are 

(9) 

const nllf II, f e C, 

Ib”B;f II 5 
ll~2.f”ll+;llf”ll. fEC2, 

and 

constn2jlfll, feC 
IlBif II 5 [ ,lf”l,, f E & 

We prove (7) and (8) for i=2 first. As in the proof of the direct part, setting 

gk(u)=f(k/n,(l -k/n)u) and z=y/(l -x) we obtain from (3) that 

Since 

B, 2f (4 Y) = i Pkn (x) 4, - k (gk, 2). 

k-0 

it follows from (9) that 

1 

conSt (n - k) 11 gk ilzE I, 

l(d#&,,f)(x,Y)I 5 k&)kntd 

/1~*g~I/zEI+ - Jklk II k” 7.EI. 
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However, it can be easily checked that 

and 

(n - k)2 
- C-g- IlDf f II > 

Therefore, we proved (7) for i = 2. Notice that 

(D;B,,2fWA= i Pkn(x)B~-k(gkrz)/(l-~)~, 
k=O 

and 
n 
C pkn(x)(n - k)2 = n2(1 -x)~, 
k-0 

and consequently, from (9) that 

% const n211f IO 
ll@f II 7 

giving (8) for i=2. To prove (7) and (8) for i= 1 and 3, we can either use an 

analogous representation of the Bernstein polynomials as in (3) or use the 

transformations 

f*(x,_H=fU -x-Y,_Y) and f,(x,~)=f(x, 1 -X-Y) 

on S, as in the proof of the direct part. With these remarks we completed the 

proof for d=2. 

We now outline the proof for the d-dimensional case which follows from an 

induction argument. Assuming the theorem to be true for dimension d - 1, we 

shall prove that it is true for dimension d, too. This can be done exactly as in 

the proof of the theorem for the two dimensional case above. 

First, similar to (3), we have 

where for x E Rd; we write x = (xr, y), y E Rd- ‘, and j E N,d- ‘. Corresponding to 

E; and I,v;, 1 sis3, for the two dimensional case, we now define 

E;= , lcrisd, Ed+!= x:I-Ix\s-& , 
1 

and the partition of unity 

d+l 

v/iEc"9 WilO, C i//j=1 Oil S, and SUPP v/iCEi, 15i<d+ 1. 
,=I 

If we consider B,,,(ftyd+, ;x) first, we can assume w.l.0.g. 
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f(x)=O, for 1-1x15$, XERd. 

As before, Bn,d(fiYd+ I) -fWd+ 1 can be written into two terms, J and L. With 

gk(u)=f(k/n,(l-k/n)u), UER~-‘, and z=y(l-x,), yeIRdm’, we have 

J= i Pkn(X,)[B,~k,d-I(gk~/d+,,Z)-(gkWd+,)(Z)], 
k=O 

which can be estimated by using the inductional assumption. The inequalities 

ib$?jkkWd+I)/i- cconst [[lgkII + Ijf+9$Dzgk//], lliijld- 1, 

which are needed in the proof, can be obtained by reducing them to the one 

variable inequalities in the proper direction. Also with 

h(u)=h(u,x):=f U,(l-u$-- 
( > l-x, ’ 

UER’, x=(xt,Y)E~d, 

we have 

which can be estimated almost exactly as in the two dimensional case. For the 

other terms ft,~;, 1 died, we use the transformations 

fr(x)=f(X,r...,Xi-l,1-IxI,X;+,,...rXd) 

on S. The inverse part is easier, and follows almost identically from the proof 

of the two dimensional case. n 
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