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Abstract

It is well known that if the tangent bundlEM of a Riemannian manifoldM, g) is endowed with the Sasaki
metric g*, then the flatness property diM is inherited by the base manifold [Kowalski, J. Reine Angew. Math.
250 (1971) 124-129]. This motivates us to the general question if the flathess and also other simple geometrica
properties remain “hereditary” if we replagé by the most general Riemanniap-hatural metric” onTM (see
[Kowalski and Sekizawa, Bull. Tokyo Gakugei Univ. (4) 40 (1988) 1-29; Abbassi and Sarih, Arch. Math. (Brno),
submitted for publication]). In this direction, we prove thatiM, G) is flat, or locally symmetric, or of constant
sectional curvature, or of constant scalar cum@tor an Einstein manifold, respectively, the¥l, g) possesses
the same property, respectively. We also give explicit examplesraitural metrics of arbitrary constant scalar
curvature ofirM.
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Introduction and main results

If (M, g) is anm-dimensional Riemannian manifold, then the Sasaki metris the most ‘natural’
metric on its tangent bundl@M depending only on the Riemannian structureMnOther metrics on
TM, naturally constructed from the base meprj@re given if11]. Indeed, using the concept of “natural
operations” and related notions, O. Kowalski and M. Sekizawa have given a full classification of such
metrics, supposing that’ is oriented. Other presentations of the basic results fidth(involving also
the non-oriented case and something more) can be fouf8] or [12] (see alsdl]). We have studied
these metrics ifid] and[4] and we have called thegtnatural metrics on TM

The Sasaki metric has been extensively studied, but it has been shown in many papers that it presen
a kind of rigidity. In[10], Kowalski proved that if the Sasaki metri¢ is locally symmetric, then the
base metrig is flat and hencg® is also flat. In[14], Musso and Tricerri have demonstrated an extreme
rigidity of g* in the following sense: itTM, g*) is of constant scalar curvature, theM, g) is flat. They
have proposed the Cheeger—Gromoll megeg (which is also a-natural metric) as nicely fitted to the
tangent bundle. Indeed, Sekizajd] has shown that the scalar curvaturgé M, gcc) is never constant
if the original metric on the base manifold has constant sectional curvature (sg@&]al$aurthermore,
we have proved thafTM, gcc) is never a space of constant sectional curvaturdZgf.

More generally, similar phenomena can be studied for an arbitrary Riemagimatural metrioG on
TM (see Sectiorl for the precise definition of g-natural metric and more details). In this paper, we
shall prove that every Riemannigrnatural metriocG on TM has the following hereditary properties:

If (TM, G) is flat, or locally symmetric, or of constant sectional curvature, or of constant scalar curva-
ture, or an Einstein manifold, respectively, the, g) possesses the same property, respectively.

We start by presenting some necessary conditions for the flatnéis of

Theorem 0.1. Let (M, g) be a Riemannian manifold of dimensien> 3 and G be a Riemannian
g-natural metric on TM. I{TM, G) is flat then the following consequences hold

(i) G is strongly horizontally homothetic g,
(i) (M, g) is flat.

Note that G is strongly horizontally homothetitco g if there is a constant > 0 such that
Guny(X", Y = c.g.(X,Y), for all vectorsX, Y € M,, x € M, where the horizontal lifts are taken
at a point(x, u) € M,.

Concerning the property of local symmetry, we can assert:

Theorem 0.2. Let (M, g) be a Riemannian manifold ar@ be a Riemanniag-natural metric on TM. If
(TM, G) is locally symmetric, theM, g) is also locally symmetric.

The following theorem deals with the property of having constant scalar curvature:
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Theorem 0.3. Let (M, g) be a Riemannian manifold of dimensien> 3 and G be a Riemannian
g-natural metric on TM. If(TM, G) is of constant sectional curvatufer of constant scalar curvature,
respectively, then(M, g) has the same property.

Theorem 0.3jives a necessary condition for the existence of Riemangiaatural metrics of con-
stant sectional (respectively scalar) curvatureTdm but does not guarantee its existence. The Sasaki
metric gives an example of such Riemannjanatural metrics, but only when the constant sectional
(respectively scalar) curvature vanishes (in the case wiérg) is flat).

As concerns Einstein manifolds, we have:

Theorem 0.4. Let (M, g) be a Riemannian manifold of dimensien> 3 and G be a Riemannian
g-natural metric on TM. IfTM, G) is an Einstein manifold, theW, g) is also an Einstein manifold.

In [17], Oproiu considered an interesting family of Riemannian metric3 ) which depends on
two arbitrary functions of one variable. lyppendix Ato this paper, we shall analyze the construction
by Oproiu in the more general context gfnatural metrics and, as an application, we can prove the
following (seeTheorem A.Zor more detailed formulation and proof):

Theorem 0.5. Let (M, g) be anm-dimensional space of negative constant sectional curvature, where
m > 3. Then there is d-parameter family# of Riemanniarg-natural metrics on TM with nonconstant
defining functionsy; and g; such that, for everys € F, (TM, G) is a space of positive constant scalar
curvature. Moreover, for eact, g) as above, and each prescribed constént O, there is a metric

G € F with the constant scalar curvatuig

We have dealt, iTheorems 0.1-0,%vith only the necessity conditions, the sufficiency part being very
complicated and requiring a separated study for each case. Indeed, Oproiu and its collaborators devote
a series of papers (dfL5—-21,23] to sort out, inside a broader family of metrics (not only on the tangent
bundle but also on tubes in it and on the nonzero tangent bundle), those having a certain property: to bt
Einstein, or locally symmetric, with the additional condition of being Kéahler with respect to a natural
almost complex structure. They have used, for this, some quite long and hard computations made by
means of the Package “RICCI".

Now, for the general case of Riemannigmatural metrics onTM, the sufficiency problem or, in
other words, the problem of classification of such metrics having one or another property becomes more
complicated, and it could be more interesting to use the machinery developed in this work to derive
nice examples and counterexamples of several kinds of Riemannian spaces, possibly equipped with ac
ditional structures or, alternatively, in restricting ourselves to some special subfamilies of the family of
Riemanniang-natural metrics. Several examples of this do already exist in complex and quaternionic
theory (cf.[25-27).

On the other hand, all the formulas and machinery and also the derived geometrical results can be
considered as a prototype for generalizations to other bundles over manifolds. This was performed suc
cessfully for the case of the Sasaki metric (cotangent, frame and Grassmann bundles) and also for th
case of the Oproiu metrics (for the cotangent bundl2j).
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1. Preliminaries and g-natural metrics
1.1. Basic formulas on tangent bundles

Let V be the Levi-Civita connection of. Then the tangent space ®M at any point(x,u) € TM
splits into the horizontal and vertical subspaces with respe¢t to

(TM)(x,u) = H(x,u) ® V(x,u)-

If (x,u) € TM is given then, for any vectok € M,, there exists a unique vectei” € H,, ,, such
that p, X" = X, wherep:TM — M is the natural projection. We cak” the horizontal lift of X to the
point (x, ) € TM. Thevertical lift of a vectorX € M, to (x,u) € TM is a vectorX" € V(. ,, such that
Xv(df)= Xf, for all functions f on M. Here we consider 1-formgf on M as functions oM (i.e.
(df)(x,u) = uf). Note that the magX — X" is an isomorphism between the vector spatgsand
H . ). Similarly, the mapX — X" is an isomorphism between t[\e vector spakgsandV, ,,. Obvi-
ously, each tangent vect@r e (TM), ., can be written in the fornZ = X" + Y°, whereX, Y € M, are
uniquely determined vectors.

If ¢ is a smooth function oM, then

X"(¢op)=(Xg)op and X'(pop)=0 (1.1)
hold for every vector field on M.
A system of local coordinategU; x',i = 1,...,m)} in M induces oriTM a system of local coordi-

nates{(p~ X (U); x',u',i=1,...,m)}. Let X = Z Xl 9 be the local expression i&i of a vector field
X on M. Then, the horizontal |IﬂXh and the vertical I|ftX” of X are given, with respect to the induced
coordinates, by'

x"=3"x i yor kquk and (1.2)
X'=) "X ail , (1.3)

Where(F]?k) denote the Christoffel's symbols gf
Now, letr be the norm of a vectar. Then, for any functiory’ of R to R, we get

X, u)(f(r ) (1.4)
Xl (F0®) = wvmmnmy (1.5)

Let X, Y andZ be any vector fields oM. If Fy is the function orTM defined byFy (x, u) = g, (Y,, u),
for all (x, u) € TM, then we have

](/lx u)(FY)=gx((VXY)x,M)=FVXY(X,M), (16)
X0w(Fy) =g (X, Y), 1.7)
@MﬂYDom X, (g(Y. 2)), (1.8)
(x u)(g(Y Z)o p) 0. (19)

The formulag1.4)—(1.7)follow from (1.1) and
=Y _X*u'ry, and X'u'=X', (1.10)

and the relation$1.8) and (1.9¥ollow easily from(1.1).
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Next, we shall introduce some notations which will be used describing vectors getting from lifted

vectors by basic operations @M. Let T be a tensor field of typél, s) on M. If X4, X5, ..., X1 € M,
thenh{T (X1,...,u,..., X;_1)} (respectivelyv{T (X4, ...,u,..., X;_1)}) is a horizontal (respectively
vertical) vector aix, u) which is introduced by the formula

9 h
h{T(Xl,...,u,...,Xs_l)}:ZMA(T<X1,...,(@> ,...,Xs_l)>

. 0 !
(respectivelw{T (X1, ..., u,..., X,~1)} = quA (T(Xl, N (@)x e Xs—l)) )

In particular, if T is the identity tensor of typél, 1), then we obtain the geodesic flow vector field at

(e u), Eeny = Zu*(axk (v @nd the canonical vertical vector @t u), U, M)_Zu’\(axA by
Moreoverh{T (X1, ..., ..., u,..., Xy_p)}andv{T(Xq,...,u,...,u,..., X;_,)} are introduced by
similar way.

Also we make the conventions
MT Xy, ..., X)) = (T(X1,..., X)) and o[T(X1,..., X)) = (T(X1,..., X0)".

Thush{X} = X" andv{X} = X?, for each vector field on M.
From the preceding quantities, one can define vector field$rin the following way: If u =
U ( )x is a fixed point inTM and X, ..., X,;_; are vector fields o/, then we denote by

T (X1, ....u,...,X,_1)} (respectivelp{T (X1, ...,u,..., X;_D)})

the horizontal (respectively vertical) vector field dJ defined by

h{T(Xl,...,u,...,Xs_l)}=ZMA[T(X1,... S )}

A
) d v
(respectively {T (X1, ... u, ..., X,—1)} = ; [T(Xl, SO R ...,Xs_l)} ).

Moreover, for vector fields(4, ..., X,_1 on U, the vector field{T (X4, ..., u,...,u,..., X,_;)} and
v{T(Xq,...,u,...,u,...,X;_)},onTU, are introduced by similar way.
The Riemannian curvatur of g is defined by

R(X,Y)=[Vx, Vy] = Vix r;. (1.11)

Now, for (r, s) € N?, we write p,, : TM — M for the natural projection ané for the natural bundle
with
FM=py(T"®---T*"Q@T®---®T)M — M,
r times s times

for all manifolds M, local diffeomorphismsf of M, X, e M and S, €e (T*® - - QT* QT ® ---
® T), M. We call the sections of the canonical projectib — M F-tensor fields of typé, s). So, if
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we denote byp the fibered product of fibered manifolds, thErensor fields are mappings

A:TMOTMG - @ TM— | | @ M,
—_—
s times xeM

which are linear in the lastsummands such thab o A = 71, whererr; andr, are the natural projections
of the source and target fiber bundlesAfrespectively. For = 0 ands = 2, we obtain the classical
notion of F-metrics So, F-metrics are mappinggM & TM & TM — R which are linear in the second
and the third argument.

Note that we can prove that our definition Bftensor fields of typ€0, s) on M is equivalent to that
of M-tensor fields of typ€0, s) on TMintroduced in28] (see alsd13]).

If we fix an F-metrics on M, then there are three distinguished constructions of metrics on the tangent
bundleTM, which are given as followfl1]:

(a) If we suppose thakt is symmetric, then th8asaki lifts* of § is defined as follows:

(x u)(Xh U) = 0»

(x X" Y =8 X, Y), &
(x u)(XU Yh)_ (x u)(XU U):(S(M;Xa Y)’

forall X,Y € M,. If § is non degenerate and positive definite, then the same holds. for
(b) Thehorizontal lift 8" of § is a pseudo-Riemannian metric MV which is given by:

8l X" Y =0, S (XM YY) =8 X, V),
8 (XU Y =8(u; X, Y), 8 (X', Y") =0,

(x,u)

forall X,Y € M,. If § is positive definite, thei® is of signature(m, m).
(c) Thevertical lift §¥ of § is a degenerate metric AVl which is given by:

X", Y") =0,

(X", Y") =0,

(x u)(xh Y =686w;X,Y), 5;; "
(X', Y" =0,

(x u)

(x u)

forall X,Y € M,. The rank of§" is exactly that oB.

If § =g is a Riemannian metric oM, then the three lifts of just constructed coincide with the three
classical liftsg®, g" andg? of the metricg, respectively.

Let us define some notions frof] and some conventions.

Form > n a non-constant smooth map (M™, g) — (N", h), andx € M, putv, :=kerdr, C M,
andH, :=v; C M,.If C, :={x e M | drn, =0} andM = M \ C,, thenz: (M, g) — (N, h) is said to
be horizontally (weakly conformalif there exists a function : M — R*+* such that

A2(x)g(X,Y) = h(dn(X),dn(Y)),

for all X, Y € H,, andx € M. The functionx is extended to the whole df by putting’ | C, = 0. The
extended function.: M — R* is calledthe dilation of .

It follows from the definitions thatin, : M, — Ny, is of rankn on M and 0 onC,, and that
A2:M — RT is smooth (cf.[6]). We shall denote by graa?) the gradient ofi?, which is a smooth
section ofTM. On (M, ghvi={u|xe M} and™ := {H, | x € M} are smooth distributions or subbun-
dles of TM, the tangent bundle df/. They are called theertical and thehorizontal distributionsdefined
by 7. By v andH we also denote the projections ontpand, at each poink € M. On M, we have
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the unique orthogonal decomposition of the gradieritidhto its vertical and horizontal parts given by

grad?) = grad, (»?) + grad,, (A?).

A non-constant smooth map: (M, g) — (N, h) is said to behorizontally homothetid it is horizon-
tally conformal and grag(2?) =0 onM.

Note that in this case is necessarily a Riemannian submersion up to a fixed homothety/ ke M
(cf. [5)]).

The horizontal homothety is therefore equivalentito M — R* being constant along horizontal
curves in(M, g).

If furthermore grag(1?) = 0 on M, then we say that is strongly horizontally homothetior thatg
is strongly horizontally homothetic to. In this case\? is constant onM.

Riemannian submersions are examples of strongly horizontally homothetic maps (with constant dila-
tion A% = 1). Another example is the following:

Let (M, g) be a Riemannian manifold;M its tangent bundle and a Riemannian metric oM.
If we take 7 as the canonical projectiop,, : (TM, G) — (M, g), then it is easy to check that is
strongly horizontally homothetic tg if and only if there is a constant> 0 such thaG, , (X", Y") =
c.g,(X,Y), for all vectorsX, Y € M., x € M, where the lifts are taken at a poifi, u) € M,. If c =1,
thenp,, is a Riemannian submersion, and equivalently we shall sayitlishorizontally isometric tq.

1.2. g-natural metrics

Now, we shall describe all first order natural operatDrsSiT* ~ (S2T*)T transforming Riemannian
metrics on manifolds into metrics on their tangent bundles, wh’éﬂé* and S2T* denote the bundle
functors of all Riemannian metrics and all symmetric two-forms avenanifolds, respectively. For the
concept of naturality and related notions, §&Jefor more details.

Let us call every sectio : TM — (52T*)TM a (possibly degenerata)etric Then there is a bijective
correspondence between the triples of first order nathratetrics (¢1, ¢2, £3) and first order natural
(possibly degenerate) metriéson the tangent bundles given by (EI1]):

G=(+0)+¢4.

Therefore, to find all first order natural operatdﬁsT* ~ (S2T*)T transforming Riemannian metrics
on manifolds into metrics on their tangent bundles, it suffices to describe all first order rfatnetrics,
i.e., first order natural operato§& T* ~~ (T, F). In this sense, it is shown [11] (see alsd1,9]) that all
first order naturalF’-metrics¢ in dimensionm > 1 form a family parametrized by two arbitrary smooth
functionsag, Bo: Rt — R, whereR* denotes the set of all nonnegative real numbers, in the following
way: For every Riemannian manifold/, g) and tangent vectous, X, Y € M,

L) (X, Y) =ao(g(u, u))g(X,Y) + Bo(g(u, u))g(u, X)g(u,Y). (1.12)
If m =1, then the same assertion holds, but we can always clfipes®.
In particular, all first order naturdf-metrics are symmetric.

Definition 1.1. Let (M, g) be a Riemannian manifold. We shall call a metGion TM which comes from
g by afirst order natural operatSt 7* ~ (ST*)T ag-natural metric
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Thus, allg-natural metrics on the tangent bundle of a Riemannian manifdidg) are completely
determined as follows:

Proposition 1.2 [3]. Let (M, g) be a Riemannian manifold an@d be ag-natural metric on TM. Then
there are functiong;, B; :R*™ — R, i = 1, 2, 3, such that for every, X, Y € M., we have

G an (X", Y?) = (a1 4+ @3) (1) g (X, ¥) 4 (B + B3) r7) g2 (X, u) g (Y, w),
G (X", YY) = 020 g (X, Y) + Bo(r?) g (X, ) g (Y, w),
G (XY, Y = a2(r) g (X, Y) + B2(r?) g (X, u) g (Y, w),
Gira(XY, YY) = a1(r?) g (X, Y) + r(r?) g (X, u) g (Y, u),

wherer? = g, (u, u).
For m =1, the same holds with; =0,i =1, 2, 3.

(1.13)

Notations 1.3. In the sequel, we shall use the following notations:

o (1) =0 (1) +1Bi(1),
o a(r) =ay(r)(oar+ az)(t) — a3(1),
o ¢(1)=1(t) (1 + P3) (1) — P3(1),

forall r e RY.
Riemanniang-natural metrics are characterized as follows:

Proposition 1.4 [3]. The necessary and sufficient conditions fog-aatural metricG on the tangent
bundle of a Riemannian manifold/, ¢) to be Riemannian are that the functions Bfoposition1.2,
definingG, satisfy the inequalities

{011(1) >0, $1(1) >0,

a(>0,  ¢@1) >0, (1.14)

forall r e RT.
For m = 1 the system reduces éq(z) > O anda(z) > O, for all € R*.

Important Conventions.

(1) In the sequel, when we consider an arbitrary Riemangtaatural metricG on TM, we implicitly
suppose that it is defined by the functians g; :R™ — R, i = 1, 2, 3, given inProposition 1.2and
satisfying(1.14)

(2) Unless otherwise stated, all real functiens g;, ¢;, « and¢ and their derivatives are evaluated at
r2 .= gx(u,u).

In [3], we have calculated the Levi-Civita connecti®nof an arbitraryg-natural metric orTM. Our
result can be presented as follows:
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Proposition 1.5. Let (M, g) be a Riemannian manifold] its Levi-Civita connection anﬂ_its curvature
tensor. LetG be a Riemanniarg-natural metric on TM. Then the Levi-Civita connectignof (TM, G)
is characterized by

(i) (Vxn ¥ = (Vx D)+ A X, YO+ 0(Bws X, Vo),
(") (VX"YU)(x,u) = (VXY)EJXVL,) + ]’l{C(M, Xx: Yx)} + U{D(u; XXa Yx)}:
(i) (Vxo¥™) e =h{C (u; Yo, X0} + v{D(us Yy, X0},
(IV) (ﬁX”YU)(x,u) = h{E(u: XXa Yx)} + U{F(u; XXa Yx)}y

for all vector fieldsX, Y on M and (x, u) € TM, whereA, B, C, D, E and F are the F-tensor fields of
type (1, 2) on M defined, for allu, X,Y € M., x € M, by.

a2(B1+ B3)
2

1
+ g leeler@abrt B — dobo) +aolprec
— Bo01) 8 (R(X, )Y, ) + $o0x (@1 + 0t3) g:(X. ¥)
+ [ag2(BL+ B3) + (B + Ba) | aa(d2fo — d1(B1+ B3))
+ (e + ta) (a2 — azB)| g, (X. 1), (Vo)

Aw: X, Y) = —“210‘2

—a[R(X, w)Y + R(Y, w)X|+ [8:(Y, )X + g (X, )Y ]

2
Bu: X,Y)= 2R(X, )Y — MR(X, Y)u
o (07

_ (st a3)(B1+ Ba)
2

% {062[062((152/32 — ¢1(B1+ B3)) + (a1 + a3) (a1

— Bro2) |8 (R(X, w)Y, u) — au(p1 + ¢3) (1 + 3) g (X, ¥)

+ [ — @1+ ¢3)(BL+ Ba) + (B1+ B3) (a1 + a3)[ (P14 ¢3) f1 — $2P2]

+ ao[az2(Br+ Ba) — (a1 + az) o] 8 (X, u) g (Y, u) }M,

o1(B1+ Bs)
(04

2
1 / / ,62
+& ay(ay +az) —az Q= &Y, u)X

[gx(Ya u)X + g (X, M)Y]

+

2
Cu; X, Y) = —%R(Y, WX — g (X, 10)Y

1 o1
4+ — { — [aa(a2Br — a1B2) + a1 (d1(B1 + Ba)
ap | 2

— $282)|gx (R(X, )Y, u) +a[%(ﬁ1 + Ba) +¢>2(Ot'2 - ﬁ—;)]gx(X, Y)

+ [Otdh(ﬁl + B3) + [a2(1fz — a2B1)
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+a1(p2B2 — (Br+ B¢ ]| (1 + a9)’ + @}

+ [a2(Br(@1 + ¢3) — Bagh2) + 1 (Ba(oy + )
—a2(B1+ B3)] <0/2 - &) 8x(X, u)gx (Y, u) }M,

2
Du: X,Y) = %{%R(Y, WX — %;’%)gx(x, WY
+ [—ou(ozl + o3)" + (1 + 3) (a’z - %)]gxm u)X }
+ % { % [(a1 + az) (@12 — @aB1) + @a(d2fo — p1(B1+ B3)) |gx (R(X, u)Y, u)
- a[%(ﬁl + B3) + (1 + ¢3) (0/2 - %)]gx(X, Y)

+ |:05¢2(ﬁ1 + B3)' + [(a1 + a3) (@2f1 — @1 B2)

T aalb(Bot Bo) — 628 | (cr + az) + 22 Z P 3]

+ [(a1 + o3) (Bagh2 — a1 + $3)) + a2(Ba(a1 + a3))

- O[Z(ﬁl + ﬁ3)] (a/Z - %) 8x (Xv M)gx(Y’ l/l) }l/l,

Ew; X,Y) = g[al(aé + %) — 0520/1:| [g: (Y, )X + g (X, u)Y]

= @12 — ¢2(B1 - o] (X, 1)
o
+ [« (29185 — $2By) + 201 (e2(B1 + Ba)
— Ba(a1 + a3)) + a2(Bi(d1 + ¢3) — B262) ]
+ (205 + B2) o1 (p2B2 — p1(B1+ B3)) + 2Bz — a2f1) | g (X, u) g (Y, u) }M

B2
2

o

Flu: X, V)= [—az(a’z + ) + (e + a3>a’l] [8: (Y, )X + g, (X, )Y ]

1
t o @1+ ¢9)(B1 — 0) = 2] (X, )

+ [ (1 + P3) By — 2¢2B5) + 203 [or2(Bo(r1 + ar3)
— a2(Br+ B3) + (a1 + a3)(Bodz — Pr(dr + ¢3)) |
+ (205 + B2)[a2(p1(B1 + B3) — 2B2)

+ (@14 a9) (@21 — 1] [, (X, 0. (Y, 0 .
For m = 1 the same holds with; =0,i =1, 2, 3.
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2. Some notations and properties of F-tensor fields

Fix (x,u) € TM and a system of normal coordinat§s= (U; x,...,x™) of (M, g) centered at.
Then we can define oli the vector field U=, u’% where(u?, ..., u™) are the coordinates ¢k, u)
with respect to the basig;%),:i = 1....,m) of M,.

Let P be anF-tensor field of type(p, ¢) on M. Then, onU, we can define &p, g)-tensor fieldP?
(or P, if there is no risk of confusion), associatedit@and.S, by

P,(X1,...,Xy) =PU; X1,...,Xy), (2.1)

forall (X1,...,X,)eM,;, zeU.
Informally, we can say that we havéehsorized P atu with respect taS.
On the other hand, if we fix € M andgq vectorsX;, ..., X, in M,, then we can define@>-mapping
Pxy...x,) - My — @M, associated t0X 4, ..., X,), by
P(X]_,...,Xq)(u) = P(l/t, Xl’ e Xq)v (22)

forallu e M,.
Lets > ¢ be two non-negative integers, be a(1, s)-tensor field onM and P” be anF-tensor field,
of type (1, ¢), of the form

Pl(u; Xq, ..., X) =T X1, ....u,....u,....X,), (2.3)
forall (u, X1,...,X,) e TM®---®TM, i.e.,u appears — r times at positions,, ..., i,_, in the expres-
sion of T. Then

— Pl'is a(1,1)-tensor field on a neighborhodd of x in M, for all u € M,;
— Pl x, isaC>-mappingM, — M., forall X,..., X, in M,.

Furthermore, we have
Lemma 2.1. (1) The covariant derivative aP!, with respect to the Levi-Civita connection(@f, g), is
given by

(VxP))(X1,.... X)) = (VxT) (X1, oottty X)), (2.4)

for all vectorsX, Xi,..., X; in M,, whereu appears at positiong,, ..., i;_, in the right-hand side of
the preceding formula.

(2) The differential ofP, atu € M,, is given by

1y X1)?
APl x), X =TXy, ... X, ... ou, . X))+ +TXe, w0 X, X)), (2.5)
forall X e M,.

Proof. (1) If we extendX4, ..., X, to vector fields orV denoted by the same letters, then we can write
(VXPMT)(XL . €))
=Vx[P](X1,....X)] = P/ (VxX1,....,X)) = — P/ (X1,..., VxX))
=Vx[T(X1,....U,....U, ..., X)] =T (VxXy,...ou,...u,..., X))
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—eee =T (X1, ...5u,y ... u, ..., VxX;)
=(VxT)(X,...,u,...,u, ..., X)+T(Xq,...,VxU,...,u,..., X;)
4+ +T(Xq,...,u,...,VxU, ..., X;).

But VxU =Y, u' Vx -2, sinceu' is constant or/.

axt?

On the other hand, the coordinate syst@m x?, ..., x™) is normal and hence
i) =0, i jk=1....m. (2.6)

We deduce thaVy ;% = Dk X1 T}(x)5% (x) = 0, where(X') are the components of with respect
to the basis (%), i =1....,m) of M,. Hence

VxU =0. (2.7)
(2) P&l,...,x,> is the composite of afs — 7)-linear mappingM, x --- x M, — M, and the diagonal
mappingM, - M, x --- x M., u+— (u,...,u). A classical calculation gives obviously the required
identity. O

We have also the following:

Lemma?2.2. LetT be a(1, s)-tensor field onM. Then

D) VT Xy, .ooou, o u, . X))
=h{(VxP))(XDx, ..., (X)) + Alw; X, Te(Xq, o oou, o, X))
+o{B; X, Te(Xq, .oy uy o, XD
@ Veh{TXy,..ou,oou,..., X))}
=h{d(P{x,).  xp)uX)+Cu Te(Xa,ooousu, ., X)), X))
+of{D; Te(Xa, ooty ., X0, X )
Q) Vuu{TXy,....ouyooyu,..., X))}
=h{Cu: X, T:(X1,....u,...,u, ..., X))}
+ o{(VxPO((XDy oo (X)) + D X, Te(Xa, ooyt XO)
@ Vool T(Xa,...,u, . ou, .., X))}
=h{Ew; X, T,(X1,...,u,...,u, ..., X))}
+ o{d(P{xp. ... xn)uX)) + Fu; X, To(X, ., X)),
for all vector fieldsX,,..., X, on M and X € M,, whereu appears at positionsg,, ..., i;,_; in any

expression of . Here, X" and XV are taken ai(x, u).

Proof. We shall prove only (1), the proof of the other identities being similar.
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Vrh{T(Xy, ..o ou, .o u, . X))

— xhyu u l’”"axkl"”’ax)\xfr,'”’ t
AlyersAs—t

= Xh 1"”’ax)nl"”’ax)\_yfy"”’t

AlyersAs—t

=D XUttt | T(X 2 x|
gl u 1,...,axklx,...,akax,..., P ,

where we have usgd.10)in the second identity. But, by virtue ¢2.6), we deduce

Vrh{T(Xy, .. ou, . u, . X))

W= V| T X 9 9 X '
Z u . xh 1’”"ax)hl""’ax)\xfr"”’t

o hs—t

= Z Wty vxT)( X1 9 9 X !
) ’.."axll’.."ax}q_1"”’ t

Lserhs—t

ad ad
+hiA(l/t,X,Tx(Xl,,m()(),,m(x%,Xt>>}
. ? ?
4+ v B M,X,Tx Xl,...,ﬁ(X),...,m(X),...,X,

=[(VxT) (X, ooty ooty X) ]+ h{A (s X, Te(Xy, ..
+v{Bu; X, To(X1,....u, ... u,..., X))}

=[(VxPY(X1, ..., X)]" + h{A@w; X, To(Xa, ..
+o{Bu; X, Te(X1, .. .ouyou, . X)),

where we have used in the last equality form{@at). O

UL X))

.,u,...,u,...,X,))}

Now, let P be theF-tensor field of typel, ¢) of the form

Pu: X1,....X) =Y fFOeHT(Xe, . us o u, X)), (2.8)

where f; : Rt — R are real-valued functions d&d*, and anyT; is a(1, s;)-tensor field onM, s; > ¢, with
thes;’s not necessarily equal. Then, we have

Lemma 2.3. Let P be anF-tensor field, of typé&l, z), on M given by(2.8). Then

@D (VxP)Xi.. X) =Y [P OIT) Xy, X)),
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@ APy x)x(X) =2 () DgX, T (Xa, oy, X))
i

Y REOTX X X))

+7—}(le"'5”7"'5X7"'9Xt)}7
forall u, X, X41,..., X, € M,.
Proof. (1) Itis clearP, (X4, ..., X)=Y, ;> PI(Xy,..., X,). We deduce that

(VxP)(X1.....X) =2 (Y ?e(VxU. )Pl (X1, ... X))
+Y AP (X1, LX)

=Y fLOHVxPH(Xe, L X)),

by virtue of (2.7). Using(2.4), we obtain the desired identity.
(2) is obtained, in the same manner, usjd)instead of(2.4). O

If we denote by {P (u; X4, ..., X.)} (respectivelyw{ P (u; X1, ..., X)}) the quantity
R{P@: X1, X0} =Y fFOOR{T(Xe, o u L X))
(respectively{ P(u; X1,.... X)} =Y L H{Ti(Xe.ous o u, . XD)),

then we can assert

Lemma 2.4.

D Vxh{Pu; X1,.... X}
=h{(VxP)((XDx, ..., (X)) + Alu; X, P(u; (X)ss -0 (X))}
+o{Bu; X, P(u: (X1)x..... (X))},

(2 Vxh{Pu; Xy,..., X}
= h{d(P(xp,....cx00)u(X) + Cu; P(u; (X1, ..., (X)), X)}
+o{D(u; P(u; (X1)x, -, (X)), X)},

() Vxv{Pu; X1,..., X}
=h{Cu; X, P(u; (X1, ..., (X))}

+0{(VxP)(XDx, -0 (X0)2) + Dus X, P(us (X1, - (X))},
@ VeulPu; Xy,..., X))}
=h{E@; X, Pu; (X0, ..., (X))}

+ v{d(P((Xl)x,...,(X,)x))u(X)) + Fu; X, P(u; (X1)ys .-y (Xt)x))}v
for all vector fieldsXy, ..., X,onM and X € M,. Here X" and X" are taken af(x, u).

(2.9)

(2.10)
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Proof. We shall give the proof of (1), the proof of the other identities being similar. We hay2.8y

Vyrh{P@u; Xq,.... X))} :ZXh(ﬁ(rZ))h{Ti((Xl)x,...,u,...,u,..., (X0}
+ YLDV h{Ti(Xe, o u L X))
:Zfi(rz)ﬁx,,h{mxl,...,u,...u,...,Xt)},
by virtue of(1.4). Hence, due tdlelmma 2.Z2andProposition 1.5we obtain
Vyh{P@; X1,..., X)) = Zﬁ(rz){h{wxpuﬂ)((xl)x, (X))

+ A X, T (X)) oottty o, (X0)0) )
+v{B(u; X, TI-((Xl)x,...,u,...,u,...,(X,)x))}}.

Using the linearity ofA and B and (1) ofLemma 2.3 we obtain the required formula.c
Finally, the following lemma will be used in the proof ®heorem 0.2

Lemma 2.5. Let P be anF-tensor field, of typél, ¢ + s), of the form

Pu; Xu, oo, Xew) =T (us Xay oo, X, S Xpsas oy Xogy)),s (2.11)
whereT and S are F-tensor fields of type€l, r + 1) and (1, s), respectively. Then we have

(VXPM)(XL ey Xt+s) = (VXTM)(X].? ey Xta Su(Xt+la ey Xt+s))

+ Tu(X1, oo Xo (VxS (Xig1s -+ Xiws))s (2.12)

forall Xq1,..., X, s eM,xeM.
Proof. Notice that, for eaclh € M, x € M, the (1, t + s)-tensor fieldP, is a contraction of the2, r +
s + 1)-tensor field7, ® S,, say P, = C(T, ® S,). It follows that (cf.[8], I, p. 123)

VXPM = VX[C(TM ® Su)] = C(VXTM ® Su) + C(Tu ® vXSu)a

which gives, clearly, the result.0

3. Riemannian curvatures of g-natural metrics

Proposition 3.1. Let (M, g) be a Riemannian manifold an@ be a Riemanniarg-natural metric on
TM. Denote byV and R the Levi-Civita connection and the Riemannian curvature tensaiafy),
respectively. Then, with the notations of Sect®ithe Riemannian curvature tens@® of (TM, G) is
completely determined by

(i) RX"Y"Z'"=[RX,"Z]" +h{(VxA)(Y, Z) — (VyA)(X, Z)
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+ AW X, A Y, Z) —Aw; Y, A(u; X, Z))+ C(u; X, B(u; Y, Z))
—C(u; Y, Bu; X, 2))+ C(u; Z, RXX, V)u)} + v{(VxB) (Y, Z)
— (VyA)X, Z)+ Bu; X, A(u; Y, 2)) — B(u; Y, A(u; X, Z))
+ D(u; X, B(u; Y, Z)) — D(u; Y, Bu; X, Z)) + D(u; Z, R(X, Y)u)},
(i) RX"Y"NZ'=[R(X,Y)Z]"+h{(VxC)H(Y, Z)— (VyC)(X, Z)
+Aw; X, C(u;Y,Z) —Aw; Y, C(u; X, 2))+ C(u; X,D(u; Y, Z))
—Cw;Y,D(u; X,Z))+ E(u; R(X, Y)u, Z)} + v{(VXDu)(Y, Z)
—(VWyD)X,Z)+B(u; X,C(w; Y, Z2)) — Bw; Y, C(u; X, Z))
+D@u; X, Dw; Y, Z)) — D(u; Y, D(u; X, Z)) + F(u; R(X, Y)u, Z)},
(i) RX",Y)Z"=h{(VxC)(Z,Y)+ A(u; X,C(u; Z,Y))+ C(u; X, D(u; Z, Y))
—Cu: Aw; X, 2),Y) —Ew: Y, B(u; X, Z)) —d(Ax.2)u(Y)}
+v{(VxD)(Z,Y)+ B(u; X, C(u; Z,Y)) + D(u; X, D(u; Z, Y))
—D(u; A(u; X, Z),Y) — F(u; Y, B(u; X, Z)) — d(Bx.2))u(Y)},
(v) RX",Y")Z'=h{(VxE)(Y,Z)+ A(u; X, Ew; Y, Z)) +C(u; X, Fu; Y, Z))
—Cu;Cw; X,2),Y)—Eu; Y, D(u; X, Z)) —d(C(x,2)u(Y)}
+o{(VxF)(Y,Z)+ Bu; X, E(u; Y, Z)) + D(u; X, F(u; Y, Z))
—Dw;C(u:X,2),Y)— F(u; Y, D(u; X, Z)) —d(D(x,2)u(Y) },
V) RX",Y")Z"=h{d(Cz.y)u(X) = d(Cizx)u(Y) + Cu; C(u; Z,Y), X)
—Cw;Cu; Z,X),Y)+ E(u; X, D(u; Z,Y)) — E(u; Y, D(u; Z, X))}
+ v{d(Dz.v)u(X) —d(D(z,x)u(Y) + D(u: C(u; Z,Y), X)
—Du; Cu; Z,X),Y)+ F(u; X, D(u; Z,Y)) — Fu; Y, D(u; Z, X))},
(Vi) R(X",Y")Z'=h{d(Ey,2)u(X) —d(Ex.2)u(Y) + Cu: E; Y, Z), X)
—Cw; E(u; X, 2),Y)+ E; X, F(u; Y, Z)) — Eu; Y, F(u; X, Z))}
+ v{d(Fiy.2)u(X) —d(Fix.2)u(Y) + D(u; E(u; Y, Z), X)
—Dw; Eu; X,2),Y)+Fu; X, F(u; Y, Z2)) — F(u; Y, F(u; X, Z))},
forall x e M and X, Y, Z € M,, where the lifts are taken atec M,.

Proof. We shall prove the first formula, the proof of the others being the same. Remark that any of
B, C, D, E and F, of Proposition 1.5is an F-tensor field, of typg1, 2), of the form(2.8). Using the
identity (1.11) Proposition 1.5andLemma 2.4 we can write

RX", YMZ" =V Vi Z" — Ny Vi Z" — Vi yn Z"
=V (Vy 2" + Vih{A(u; Y, Z2)} + Vyv{Bw; Y, Z)}
— Vyu(Vx2Z)" = Vynh{A(u; X, Z)} + Vyv{B(u; X, Z)}
— Vix 1 Z" + Voree vy Z"
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=[R(X, Y)Z]h +h{(VxAD(Y, Z) — (VyA) (X, Z)
+Aw; X, Aw; Y, Z)) — Aw; Y, Au; X, Z)) + C(u; X, B(u; Y, Z))
—Cu; Y, Bu; X, Z)) + C(u; Z, R(X, Y)u)} + v{(Vx B)(Y, Z)
—(VyA)X, Z)+ B(u; X, Aw; Y, Z2)) — B(w; Y, A(u; X, 2))
+D(u; X, Bw; Y, Z)) — Du; Y, Bu; X, Z)) + D(u; Z, R(X, V)w)}. O

4, Proofs of the main theorems

Proof of Theorem 0.1. Remark, at first, that th€-tensor fieldsA, B, C, D, E andF of Proposition 1.5
and also the quantitiegy P,, for F-tensorsP of the form(2.8), are identically zero for = 0. Suppose,
now, that(TM, G) is flat, i.e., its Riemannian curvature tengdwvanishes identically. Then, restricting
formula (i) of Proposition 3.1o the zero section of M, we deduce, by virtue of the preceding remark,
that

0= R0 (X" ¥YNZ"=[RX. N Z](, . (4.1)

forallx e M andX, Y, Z € X(M). It follows that R vanishes identically oM. Hence,(M, g) is flat,
which shows the second part ®heorem 0.1

This implies, in particular, that alF-tensor fieldsA, B, C, D, E and F of Proposition 1.5educe to
the following form

Pu; X, V)= gV, wX + fg(X,w)Y + f£g(X,Y)u
+ fo g(X,u)g(Y, u)u. (4.2)

Now, in order to make the calculations easier, we shall use the preceding functions. Since the identities
of Proposition 3.1nvolve quantities of the fornvy P, and(d Py, z)).(X), we shall give explicitly these
quantities for anF'-tensor field of the forng4.2).

Lemma 4.1. Let P be an F-tensor field, of typgl, 2), of the form(4.2). Then with the notations of
Section2, we have forallu, X, Y, Ze M,, x € U,

(1) VxP,=0,

(2 d(Px.y)u(Z) =158V, Z) +2(f5) g(Y, w)g(Z, w)]X
+ [ eX. D)+ 2(f) s (X, w)g(Z, w]Y + fFe(X.V)Z
+{fE[s(X. 2)g(Y, u) + g(Y, Z)g(X, w)]
+2(f2) 8(X. Y)g(Z,u) + 2(f) g (X, ) g (Y, u)g(Z, u) Ju.

Proof. Fixu € M,, x € M. Notice thatP, is of the formY_>_, f* PIi 4+ £ PTs, where

- Ti=@g®l)oo;,i=345,
- TG:(g®g®I)0061
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ando; are the mappings defined by

—03: X1 ®Xo® Xz~ X1 ® X3® Xo,

o4 is the identity mapping,

—05: X1 XoQ@ Xa> Xo ® X3® X4, and

—06: X108 X2@ X3—> X1 ® Xo® X1 ® X3® Xy,

I being the identity(1, 1)-tensor field orU . It follows thatVT; = 0onU,i =3, ..., 6, and consequently,
by virtue of (1) ofLemma 2.4we obtainVx P/ =0, for all X € M,. Using (1) ofLemma 2.3we deduce
thatVy P, = 0. The proof of the second property is similar, but udiiegnmas 2.4 and 2.3 0O

We shall now prove the first part dtheorem 0.1i.e., thatG is strongly horizontally homothetic to
g. For this, it is sufficient to show, according to the first formulghfl3) thata; + a3 is constant and
B1 + Bz vanishes identically ofR".
We shall start with the first property. In fact, if we pht= Z and we suppose thdk, X, Y} is an
orthogonal system iM,, then for anyF -tensor fieldP of the form(4.2), we have:
P(u; X,Y)=0, Pu;X,u)=r?f X,
P(u;u, X)=r?ff X, Pu; X,X)=|X|?ff u, (4.3)
P(u;u,u)= ”2[f3P +fi+fs + ”Zfsp]"‘-

Substituting from(4.3) and from the first identity oEemma 4.1into (i) of Proposition 3.1we obtain

Raa XM YY =21V IP[(f5 fs + f3 1) X0 + (5 13 + 15 15)) - X, ].
Consequently, we have d&rt*

{ﬁﬁ+ﬁﬁza
fstéA + ngfsB =0.
Substituting fromProposition 1.5we obtain oriR**

o ® + a1 =0,
—(a1+a3)® —ax¥ =0,

where® = (a1 + 3) [¢2 2452 — (41 + ¢3) (@) — )] and¥ = (d1 + pa)l (1 + 3) 1>
From the linear equations above we get= ¥ = 0 (by virtue of« # 0 everywhere). Butr =0
implies that(a; + a3)’ = 0 onR™, sinceg; + ¢3 # 0 everywhere. By continuity(e; + a3)’ =0 onR*.
We prove now thap; + B3 vanishes identically o *. In fact, if we putX = u andY = Z orthogonal
to u, then substituting from analogous formulag413) and fromLemma 4.1into (i) of Proposition 3.1
we obtain

Ricu@", YY" = =PIV I2 £ f " + £ "],
Here, we have used the fact théat = £ = 0 onR™, since(e; +«3)’ = 0 onR™. It follows that onR**,
we have
{ f4B f5E = Oa
f4Bf5F =0.



M.T.K. Abbassi, M. Sarih / Differential Geometry and its Applications 22 (2005) 19-47 37

Substituting fromProposition 1.%nd using the facts that + a3 # 0 anda # 0 everywhere ofR ™, we
obtain onR**

(BL+ B [d1 2322 + ¢a(ay — 2)1=0,
(B1+ Ba)[$2252 + (1 + ¢3) (@ — 2)] =0.
We claim thatB; + B3 = 0 everywhere oR™*. Indeed, suppose that there is some R such that
(B1 + B3)(t0) # 0. Then the previous system reducegdb the system
$1(10) 52 10) + 2(t0) (@ — ) (10) =0,
ba(10) 552 (10) + (¢h1 + ¢3) (10) (o — £2) (10) =0,
and hence, by virtue af(p) # 0,
+ /
& 5 % 1) = <a2— %)(to) =0,
which contradicts our assumption.
ThuspB; + B3 =0 onR**, and by continuity olR*. O

Proof of Theorem 0.2. Remark, at first, that an¥-tensor fieldA, B, C, D, E and F of Proposition 1.5
is of the form

P(u; X,Y)= fL(r®.RX, u)Y + £ (r®).R(Y,u)X
+ 0DV, wX + L P).g(X, W)Y + fF(%).g(X, V)u
+ [P .g(RX, W)Y, u) + £ (r?).g(X, u)g (Y, u)]u. 4.9

We begin by calculatingVy« R) (X", Y")z", for all X, Y, Z € M,. If we extendX, Y, Z to vector fields
on M, which we denote also by the same letters, then we can write

(Vyn RY(X", YN Z" = Vyu[RX", Y Z'] — R(Vyn X", Y Z"
— R(X", VynY"Z" — R(X", YV Z".
Using (i) of Proposition 1.5and (i) of Proposition 3.1we deduce that
(Vyn RY (X", Yy Z"
=[Vw(R(X, Y)Z)]h + Vinh{(VxAD(Y, Z) — (VyA) (X, Z)
+ AW X, AW Y, 2) —Aw; Y, A(u; X, Z)) +C(u; X, B(u; Y, Z))
—Cw;Y,Bu; X, 2)) + C(u; Z, RX, V) } + Vyynv{(Vx B) (Y, Z)
—(VyADX, Z)+ B(u; X, Aw; Y, 2)) — Bw; Y, A(u; X, Z))
+ D(u; X, B(u; Y, Z)) — D(u; Y, Bu; X, Z)) + D(u; Z, R(X, Y)u)}
— R(VyX)", Y Z" — R(X", (Vy Y)Y Z" — R(X", Y (Vy 2)"
— R(h{AGu; W, X)}, Y")Z" — R(X", h{A(u; W, Y)})Z"
— RX", Y"h{A(u; W, 2)} — R(v{B(u; W, X)}, Y") Z"
— R(X" v{B(u; W, Y)})Z" — R(X", Y")v{B(u; W, Z)}.
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If we restrict ourselves to the zero sectionTd¥l, then we can write, for each-tensor fieldP, of the
form (4.4)

Py=0. (4.5)
We have, also, by (1) diemma 2.4and(4.5),
[Vt {(Vx PO, D)}] , o,
=[(VwVxPo)(Y. 2] o + h{A©; W. (Vx Po)(Y, Z))}
+v{BO; W, (Vx Po)(Y, 2))}
=0. (4.6)
If P’ is anotherF-tensor field of the fornf4.4), then we obtain, using (1) afemma 2.4(2.12)and(4.5)
[Vwnh{P(u; X, P'; Y, Z)}] . o,
=h{(Vw Po)(X, Py(Y. Z)) + Po(X, (Vw P)(Y, Z))
+ AO; W, P(0; X, P'(0; Y, Z))} + v{B(0; W, P(0; X, P'(0; Y, Z))}
—0. 4.7)
Similarly, we have
[Vwno{(VxP)(Y, 2)}] . o, =0 and (4.8)
[Vwno{Pu; X, P'u; Y, Z)}] , o =0 (4.9)
By virtue of (i) of Proposition 3.1and(4.5), we have

R0 (VwX)" Y Z" = [R(VwX. V)Z]| o). (4.10)
R0 (X", (Vy )" Z" = [R(X. VyY)Z]; o). (4.11)
R (X", Y)Y (Vw2)" = [R(X, ")VWZ]{ ;. (4.12)
By a substitution fron{4.5)—(4.12) we conclude that
S h yhy7h h h
[(Vin RYX", YN Z"] o = [VWw(RX. D], o = [ROVWX. V)Z] o
—[RX. VW Z][ o — [RX. V)V Z]{, 4.
It follows that
- = h
[V RY(X", Y ZP] o = [(VwRI(X. ) Z] s (4.13)

forall X, Y, Z, W e M,, x € M. Hence, if we suppose thaTM, G) is locally symmetric, i.e.VR =
0 identically, then we have, in particular, by virtue @ 13) VR = 0 identically. This completes the
proof. O

Proof of Theorem 0.3. Let G be any Riemanniag-natural metric orT M.
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We start by proving the heredity of the constant sectional curvature. Supposéthat) is a space
of constant sectional curvatufé. Then we have, in particular,

Ruuw X", YMNZ" =K (G (Y™, ZMX" — G (X", ZMY"), (4.14)

forall X,Y,Z € X(M) and(x, u) € TM. If we takeu = 0 in (4.14)and we use the first identity ¢1.13)
then we get

R0 (X" Y Z" = K (a1 + 03) (0) (8 (Y, 2) X[, o — 8:(X, 2)Y[ ). (4.15)
Substituting from(4.1) into (4.15), we deduce that

[RX.NZ] o = [K(e1+a2)0)(g: (Y. )X — g (X, V]! . (4.16)

Since the mapX — X" is an isomorphism between the vector spatgsand H, o, formula (4.16)
implies that
R.(X,Y)Z =K (14 a3)(0)(g:(Y, 2)X — 8. (X, 2)Y), (4.17)

forall X, Y, Z € X(M) andx € M, which shows thatM, g) is a space of constant sectional curvature
K (a1 + a3)(0).

We shall now prove the second partldieorem 0.3i.e., the heredity of the constant scalar curvature.
Let us evaluate the scalar curvatui@f (TM, G) at an arbitrary pointx, 0) in the zero section 6f M,
xeM.

Notice that theF'-tensor fieldsA, B, C, D, E and F, of Proposition 1.5are of the form(4.4). For an
arbitrary F-tensor field of the forn{4.4), we have by virtue of (1) ofemma 2.3and (1) ofLemma 4.1

(VxP)(Y, 2) = £ (VxR)(Y, ) Z + 5 (VxRN(Z,w)Y + fF g(VxR) (Y, u)Z, u),
forall X, Y, Z andu € M,. It follows that
Vyx Py =0. (4.18)
Also, we have, by virtue of (2) diemma 2.3and (2) ofLemma 4.1
d(Pix.y)u(Z) =28(Z, w{(f{YRX, w)Y + (f3) R, w)X + (f§) g(Y, u)X
+ (D) eX )Y +[(fSY (X, V) + (f¢) g(X, u)g (Y, u)
+ (7)) g(RX, )Y, w)|u} + f R(X, Z)Y + f3 R(Y, Z)X
+f3 8V, DX + ffe(X, D)Y + [ f£g(X.Y)
+ fd g (X, w)g(Y.u) + £ g(R(X, )Y, u)]|X
[fE[e(X, Z)g(Y.u)+ g(Y, Z)g(X, u)]
+ £ [8(R(X, 2)Y,u) + g(R(X, w)Y, Z)|}u,
forall X, Y, Z andu € M,. It follows that
d(Py.2)0(X) = f{ (ORY, X)Z+ f5 O)R(Z, X)Y
+ 08X, 2)Y + £ 0g(X. V) Z+ f(0g(Y, 2)X. (4.19)
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Using(4.5), (4.18)and(4.19) we deduce fronfPropositions 1.5 and 3that

Raox", Y"Z"=[RX,7)Z]", (4.20)
a2(0)
20(0)
— (B1+ B O)[g(V, 2)X + g(X, V) Z] - 2(a1 + @3) (0)g (X, Z)Y}

RioX", Y")Z" = h{ea(O)[R(X,Y)Z + R(Z,Y)X)]

+ v{—=2(2(0))’R(X, Y)Z + a1(0) (e1 + 23) (O R(X, Z)Y

2 (0)
+ (a1 + a3)(0)(BL+ B2) (0)[g (Y. 2)X + g(X, V) Z]
+ 2(01 4 a3) (0) (1 + @3) (0)g (X, Z)Y }, (4.21)

D 1 1 /
R(x,O)(XU’ YU)ZU — w ih{ |:—O[1(O[2 — %) + 062(2051 — ﬁl)](O)[g(Y, Z)X — g(X, Z)Y]}

+ v{ [az(aé - &) — (1 + a3) (20 — ﬂl)j|(0)[g(Y7 2)X —g(X, Z)Y]}}-

2
(4.22)
Here, the lifts are taken &t, 0).
Let{E,, ..., E,} be an orthonormal basis fa¢,. Then putting
1
Fi=———— E'" and
Ve +az)©0)
Fpyi = 220 g Vet ® gy (4.23)
Va(0) (e +a3)(0) va(0)

we get an orthonormal bas{#3, ..., Ey,} for the tangent spac@ M), o). Here, the lifts are also taken
at(x,0). Note thateacli,, A=1,..., 2m, is well-defined due to formulgd.14)
The scalar curvaturs is, by definition, given by

Swoy= Y G(R(F4. F5)Fp. Fy)

A,B
A#B

=Y G(R(F;, F))F;, F;)+ Y G(R(Futi, Fuij) Funs o Funi)
i#] i#]

+ 22 G(R(E, Fm+j)Fm+j’ Fl)

i,j

E 1 (052(0))2)2 5. h phy oh ph
- |1 G(R(E!, EHE", E!
i#{((al-l-otg)(O))z( 20 (R(E!, EME!, E!)

2 <1+ (az(O))Z)[ —202(0)
a(0) a(0) (a1 +a3)(0)

G(R(E!', E))E", E})

+

2(a2(0)% B~
W[G(R(Eih, E"EY, E})

i

+G(R(E!,ENE}, E{l)] +
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(a1 +a3)(0)
)] = p A T
)] (a(0))2
(a1 + @3)(0))?
(«(0))?

ZG (R(E!, E)E!, E).

G(R(E!.E)E!.E [G(R(E}, E\)E}, E})

G(R(Ei”, EVE! E!)] + G(R(E}, E})EY, E;)}

(0)
Using the three formulagt.20)—(4.22)of the Riemannian curvature tensé(xyo) and the identities of
(2.13) we find
Guo(R(E], ENE", El) = (a1 + a3)(0)g(R(E;, E))E;, E;),
a2(0)g(R(E;, E))E;, E;),
—(@1 4 @3)'(0) — (B + B2)(0)(8;))?,
G(R(E!'.E)E",E}) — G(R(E", E)E]!' E})
=a1(0)¢(R(E;, Ej)E;, E;),
a1(0)
2

i

') =
G.o(R(E! EDE" E)
G0 (R(EL, EY)EY, E!) =
G0 (R(EL, E)E”, Y)

(B1+ B3)(0)
2

+ (o1 + Ot3)/(0)] (8:))%,

G0 (R(EL, E;)Ej?, E}) =

g(R(E;,E))E;, E;) +

. [(ﬁl + 2,33) 0

p2(0)

Guo(R(E!, EY)EY, El') = [

[,32(0)

2<0)} — (8:)%].

Guo(R(E], EV)E} EY) 2(0)} — (8:)7].

G.o(R(E!, E! DEY, ”) [B1(0) — 201 (0)][ 1 (817)2]-
Hence, by virtue of

(2(0)?  @1(0) (a1 4 @3)(0)
a(0) «(0)

and S=> g(R(E; E)E;, E;),

i#]
we deduce by simple calculation that
)
S0 = 20 + (05(0))2{ 2[(m — Da1(0) (a1 + 223) (0)

+a(0)](1 + 3)'(0) + [(m — 1) (@2(0))* — 20 (0) | (B1 + p3)(0)
+ (m = D[ (a1 + @3)(0)*(B2(0) — 207(0))
— 205(0) (@1 + @3) (0)(B2(0) — 205(0)) ]}, (4.24)

wheresS denotes the scalar curvature(df, g). B
_ Now, if § is a constan, on TM, then in particular the functiom — S, o) is constant on// equal to
So. It follows then from(4.24)that S is constant. More precisely, we have

0 -
@© - 2[(m — D1 (0) (@1 + ) (0) + @ (0) ] (s + t3)' ()

S= So — -
a1(0)° a<0)a1(0){ [
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+ [(m = D(@2(0))* = 2a(0)] (B1 + B3)(0) + (m — D[ (@1 + @3)(0)*(B1.(0)
— 204(0)) — 222(0) (@1 + @3)(0) (B2(0) — 205(0) |}. O

Proof of Theorem 0.4. Fix x € M. As in the proof ofTheorem 0.3we consider the orthonormal basis
{F1,..., Fo,} of (TM) (10, given by(4.23) where{E, .. ., E,.} is an orthonormal basis @f,. Then the
Ricci tensor fieldRic of (TM, G) is, by definition, given by

m

RiCu.o)(V. W)= [G.o(R(V, F)Fi, W) + G 0y (R(V, Fysi) Fuin W), (4.25)
i=1

forall vV, W € (TM)(,.q). If we putV = X" andW = Y", for X, Y € M,, then(4.25)becomes

RiCe o (X", Y = Zi“l((c%)G(xo)(R(xh ENE! Y")

0
“2(<o)) [Geoy(ROX", ENE?, Y") + G o) (R(X", ENE!, ¥™)]
ara)© g Rt ENE. Yh)} (4.26)
a(0)
Using (4.20)and the first identity of1.13) we obtain
Gio(RX", ENE! Y") = (a1 + a3)(0)g(R(X, E)E;, Y). (4.27)
Similarly, using(4.20)and the second identity ¢1.13) we get
Guo(R(X", ENE}, Y") =az(00g(R(X, E)E:, Y), (4.28)
Guo(RX", ENE!, Y") = a2(0)g(R(X, E)E;, Y). (4.29)

Finally, using(4.21)and the third identity of1.13) we find
Guo(RX", ENE!, Y") = =G0 (RX", ENY", E})

_ (@2(0))?
2 (0)

— 2(01 +3) (0)g(X, V) —

{2061(0)g(R(X, E)Y, E;) —2(B1+ B3)(0)g(X, E)g(Y, E})
a1(0)
20(0)
+ 2(a1 + 063)(0)[(/31 + B3)(0)g(X, Eg(Y, E;) + (a1 + a3) (0)g (X, Y)] }
It follows that
Go(RX" ENE!,Y")=—(B1+ Ba)(0)g(X, Eg(Y, E))

— (a1 +a3)'(0)g(X, Y). (4.30)

Substituting from(4.27)—(4.30)into (4.26) we deduce that

{—2(e2(0)’¢(R(X, E))Y, E;)

Rice. o/(X", ¥") = Z i (ag(og +zi2)) 205)(0) ¢(R(X. E)E,. Y)
im1
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(1 +a3)(0
a(0)

+ (a1 + @3) (0)g (X, Y)]}. (4.31)

[(B1+ B2) (0 (X, Eg(Y, Ei)

But since{Eq, ..., E,} is an orthonormal basis @f,, then we have

Y g(X, ENg(Y. E) = g(X.Y).
i=1
It follows that

— 1 =
Ricq.o/(X", Y™ = ) { (ea(e1 +a3) — 205)(0) Y g(R(X, ENE;, Y)
i=1

— (214 @3) (0)[ (B + B3) + m(a1 + a3) | (0)g(X, Y) ¢. (4.32)
If Ric denotes the Ricci tensor field 6M, g), then(4.32)transforms to

Ricq.0 (X", ¥") = i{m(al + ag) — 2a2) (O)Ric, (X, Y)

a(0)
— (214 a3) ()| (B1+ B3) + m(a1+ @3)'|(0)g(X, V) }. (4.33)
Now, if (TM, G) is an Einstein manifold, i.eRic = AG, for a constank € R, then we have in particular
Rici.0/(X", Y") = 1G (. 0)(X", Y") = A(a1 + @3) (08 (X, 1), (4.34)

forallx e M andX,Y € M,.

If we have(aq(ay + a3) — 20{%)(0) # 0, then substituting fron¥.34)into (4.33) we deduce that
(o1 +az)[Aa + (B1+ B3) + m(ay + a3)']
(ar(o1 + az) — 205)

forallx e M andX, Y € M,. It follows that(M, g) is an Einstein manifold.
If (era(e1 + a3) — 223)(0) = 0, thena (0) = (2(0))? and, in particulare,(0) # 0. By similar way as
for the computation oRic, o, (X", "), we can calculat®ic, o, (X", Y?) to find

Ric, (X, Y) =

0)g: (X, Y), (4.35)

Ricq.0/(X", Y") = i{—m(omz(omicx(x, Y)

20:(0)
+ [~a20)[(m + D)(B1+ B3)(0) + 2(1 + «3) (0)]
+ (m = D)(a1 + a3) (0) (B2 — 205) | (X, V). (4.36)

Using the fact thatTM, G) is an Einstein manifold4.36)gives, by virtue oix;(0) # 0 anda,(0) # 0,
Ric, (X, Y) = m{—m(O)az(O) + [—2(0) [ (m + 1) (B + B3)(0)

+ 2(a1 4 @3)' (0) | + (m — D) (1 + @3) (0) (B2 — 205) |} 82 (X, Y),
forallx e M andX, Y € M,. It follows, also in this case, thal, ¢) is an Einstein manifold. O

Proof of Theorem 0.5. It follows immediately fromTheorem A.2n Appendix Abelow. O
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Appendix A

In [17], Oproiu defined a family of Riemannian metrics ¥, which depends on 2 arbitrary functions
of one variable, in the following way:

For any two smooth functions, w : R* — R, such thawv(r) > 0 andv(z) + 2rw(z) > 0, for allr € R™,
consider the metri¢;, ,, on TM given locally by:

Gy = C(u)ijdx" dx’ + &u);;Vu'Vu’, (A.1)

where

(a) ¢ (respectively¢) is the F-metric onM defined by:
Cu; X, Y)=v(1)g(X,Y) +w(r)g(X, u)g(Y, u)

. 1 w(T)
respectivel X, Y)=—g(X,Y) —
(respecivels e X 10 = L ¢ X 1 = Lo + 2wy
7 being the energy density, i.e= %g(u, u).
(b) Vu' =du' + I'j,u’dx" is the absolute differential of with respect to the Levi-Civita connection
of g.

(X, u)g (Y, u)),

It is easy to check thaf;, , is a Riemanniarg-natural metric, where the defining functions, g;,
i =1, 2,3, satisfy the following equalities:

(a1 +a3)(t) =v(t/2), (Br1+B3)1) =w(t/2),
w(t/2
) =5 B = —Tamai by (A-2)

az(t) = (1) =0,
for all r € R*. Now, the following result was proved [47] (see alsq18]):

Theorem A.1l. Let(M, g) be a space of negative constant sectional curvafirend letv, w:RT — R
be the functions given by

2K K
v(t)=A++VA2—-2Kt and w(t)=———+ with A > 0. A.3
( ( A A4+ A2 2Kt (A-3)

Then(TM, G, ,,) is a Kaehler Einstein manifold.

Note thatTM, endowed with any5, ,, of Theorem A.1is a locally symmetric space (¢iL9]).
In the following theorem, we shall show additional properties of the mefFics:
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Theorem A.2. Let (M, g) be anm-dimensional space of negative constant sectional curvayrehere
m > 3. Then, for any functions, w given by(A.3), the Riemanniarg-natural metricG, ,, provides TM
with a structure of a space of positive constant scalar curvature.

Further, for every choice of the constarfts< 0 and Sy > 0, there existsA > 0 such that the positive
constant scalar curvature ¢fM, G, ,,) is exactlySp > 0.

Proof. Suppose thatM, g) is a space of constant scalar curvatéfe< 0. By virtue of Theorem A.1
(TM, G, ) is an Einstein manifold, for any, w given by(A.3), and hence a space of constant scalar
curvatureSy. We claim thatS, > 0. In fact, sincax, = B = 0, «(0) = 1(0) (1 + 3)(0) and the scalar
curvature ofiM, g) is equal toS =m(m — 1)K, (4.24)reduces to

< mm-—1 m /
" (a1 +a3)(0) * («(0))2 {—=2ma(0) (a1 + @3)'(0)
+ (m — D) (o1 + @3)(0)*(B1(0) — 21 (0)) }. (A'4)

On the other hand, a simple calculation, usfA®2) and (A.3) yields

1
a1(0) = oTR (a1 +a3)(0) =24, «(0) =1,
WO K 3K
(a1 +a3)'(0) = > = o ,31(0)2—@,
v'(0) K

O =200 ~ a3

Substituting intg/A.4), we find that
3 m(m —2)K

0:_?9

which is positive form > 3, sincek < 0.
For an arbitrary constarsy > 0, if we conside(M, g) a space of arbitrary constant sectional curvature
K < 0 andv, w given by(A.3), with A = —%, then(TM, G,,,) is, clearly, a space of constant

scalar curvaturéy. O

RemarksA.3. (1) The family of Riemannian metrics arM considered by Oproiu is, exactly, the family
of Riemanniarg-natural metrics oif M characterized by:

— horizontal and vertical distributions are orthogonal,
—a=¢=1.

Indeed, from(A.2), we havexr = a; (a1 + a3) = 1 andeg = ¢1(p1 + ¢3) = (a1 + 181) (1 + az3) +1 (B +
B3)) = 1. Conversely, ifa, = g, =0 andal, a1 + s, B1 and B1 + Bz are given in such a way that
a=¢=1le,0= = and ¢, = , then we definew and w by: v(t) = (a1 + a3)(2¢t) and
w(t) = (B1+ B3)(2). It |s easy to see, ]by V|rtue ¢A.2), that G, ,, is no other than the metric defined
by the giveny;, B;,i =1, 2, 3, viaProposition 1.2
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(2) Let (M, g) be a space of negative constant sectional curvaur&notherg-natural metric oM,
apart the Sasaki metric, which has vanishing scalar curvature is given Igg.g2)):

—K
=01 +az=1, 062=/32=0, ﬂ]_:m, B1+ B3=—K. (A5)

In this case(TM, G) is locally symmetric (Theorem 8 ¢18]).

(3) If, in the conditions of the preceding remark, we chodse- 0, then we have also a structure
of locally symmetric Riemannian manifold, but in the tube around the zero sectidMjrdefined by
lul|* < s=—not on wholeTM—(Theorem 8 0f18]).
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