Structural determinants of the selectivity of KTS-disintegrins for the α1β1 integrin

Dariusz G. Kisiela, Juan J. Calveteb, Jehoshua Katzhendlerc, Andrzej Fertalad, Philip Lazarovic, Cezary Marcinkiewicza*,

aCenter for Neurovirology and Cancer Biology, Temple University, College of Science and Technology, 1900 N., 12th Street, Philadelphia, PA 19122, USA
bInstituto de Biomedicina de Valencia, C.S.I.C., E-46010 Valencia, Spain
cThe Hebrew University of Jerusalem, School of Pharmacy, Jerusalem 91120, Israel
dDepartment of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA

Received 3 September 2004; revised 30 September 2004; accepted 12 October 2004

Available online 30 October 2004

Edited by Masayuki Miyasaka

Abstract KTS-disintegrins are a subfamily of short monomeric disintegrins that are potent and selective inhibitors of α1β1 integrin. The amino acid sequence of the new KTS-disintegrin, viperistatin, differs from previously characterized obtustatin in three residues at position 24 (within the integrin binding loop), 38 (hydrophobic core) and 40 (C-terminal region). Noteworthy, viperistatin is about 25-fold more potent than obtustatin inhibiting the binding of this integrin to collagen IV. Synthetic peptides representing the full-length of integrin-binding loops of these disintegrins showed that the Leu24/Arg substitution of cytoplasmic domains of α1β1 integrins, which also specifically interacts with disintegrin obtustatin, appears to be partly responsible for the increased inhibitory activity of viperistatin over obtustatin.

Keywords: Disintegrin; Integrin antagonist; Collagen receptor; KTS-peptide; Cell adhesion

1. Introduction

The collagen receptors create the separate subclass of integrins that specifically interact with different types of collagens [1,2]. Among them, the most characterized are α1β1 and α2β1 integrins, which belong to I-domain containing integrins. I-domain is a region within α-subunit containing approximately 200 amino acids, which has been identified as a specific interactive part responsible for the ligand binding [3,4]. Both integrins are expressed on various cell types and play significant roles in the physiology of many organs. Recently, they have become an interesting target for the development of new cancer therapy, supported by inhibition of angiogenesis. α1β1 and α2β1 integrins are highly expressed on the microvascular endothelial cells, and blocking of their adhesive properties by monoclonal antibodies [5,6] or snake venom disintegrins [7] significantly reduced vascularization ratio and tumor growth in animal models. Moreover, studies with α1 knockout mice revealed major reduction of experimental tumor growth [8] and similar studies with α2 knockout mice are on the way [9,10]. Although α1β1 and α2β1 are structurally very homologous, their biological interactions appear to be significantly different. α1β1 integrin is a selective receptor of basement membrane collagen type IV, whereas α2β1 is highly specific for fibrillar collagens type I–III. Moreover, studies with genetic substitution of cytoplasmic domains of α1 and α2 subunits in transfected human mammary epithelial cells revealed involvement of these two integrins in different signal transduction pathways [11]. α1β1 and α2β1 integrins showed also different patterns of interaction with snake venom-derived proteins. α1β1 integrin specifically interacts with disintegrin obtustatin [7,12], whereas α2β1 showed potent binding to C-lectin-type proteins [13,14].

Snake venom disintegrins are a family of low molecular weight proteins, showing anti-adhesive properties that are related to their specific interactions with certain integrins [15,16]. Structurally, they may occur as monomers or dimers and have the molecular weight in the range from 4 to 15 kDa. Snake venom disintegrins could be divided into three groups according to their functional interaction with specific integrin receptors. The first group includes disintegrins that interact with RGD-dependent integrins (αIIβ3, αv-integrins, and α5β1) and is mainly represented by the disintegrins that contain RGD sequence in their active site. The disintegrins containing sequences related to RGD such as KGD [17], MGD [18] or WGD [19] could be also assigned to this group. Second group is created by heterodimeric disintegrins having MLD sequence in the active site. They specifically block the function of certain leukocyte integrins, including α4-integrins and α9β1 [20,21]. The last functional group of disintegrins includes selective inhibitors of α1β1 integrin. Currently, it is represented by the only one disintegrin, obtustatin, that contains KTS sequence in its active site [7,12]. Structurally, obtustatin belongs to short monomeric disintegrins and recently its 3-D structure was composed based on the NMR coordinates [22]. In the presented work, we report another KTS-containing disintegrin, viperistatin, which also specifically interacts with α1β1 integrin.

Abbreviations: BSA, bovine serum albumin; CMFDA, 5-chloromethyllfluorescein diacetate; HPLC, high-performance liquid chromatography; TFA, trifluoroacetic acid; MALDI-TOF, matrix-assisted laser-desorption ionization time-of-flight mass spectrometry; PBS, phosphate-buffered saline

© 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
2. Materials and methods

2.1. Materials

Monoclonal antibody against 7S domain of collagen IV and purified human αβ1 integrin were purchased from Chemicon (Temecula, CA). Highly purified fibrinogen was a gift from Dr. A. Budzynski (Temple University, Philadelphia, PA); recombinant human VCAM-1/IG was received from Dr. R. Lobb (Bogen); human vitronectin was purchased from Chemicon; human fibrinogen and laminin were purchased from Sigma (St. Louis, MO).

Cell lines. K562 cells transfected with α1, α2 and α6 integrins were provided by Dr. M. Hemler (Dana Farber Cancer Institute, Boston, MA); JY cells expressing αβ1 are a gift from Dr. Burakoff (Dana Farber Cancer Institute, Boston, MA); α9-transfected SW480 cells were provided by Dr. Sheppard (University of California, San Francisco, CA); A5 cells, Chinese hamster ovary (CHO) cells transfected with human αβ1β3 integrin [23] were kindly provided by Dr. M. Ginsberg (Scripps Research Institute, La Jolla, CA); and K562 and Jurkat cell lines were purchased from ATCC (Manassas, VA).

Snake venoms. Lyophilized Vipera lebetina obtusa and Echis soci-burekovi venoms were purchased commercially from Latoxan (France). Venom of Vipera palestinae was collected from life specimens and kept in captivity in the Zoology Department of Tel-Aviv University. The snakes were manually milked during a period of one year and the venom pooled from several snakes was lyophilized and kindly provided to us by Prof. Avner Bdolah.

2.2. Purification of collagen type IV

Collagen IV secreted by HT-1080 cells was purified from cell culture media. HT-1080 cells were seeded into three separate intercommunicating stacks of culture flasks (6000 cm² each; Cell Factory TM, Nunc). To harvest collagen IV, the cells were incubated in Dulbecco’s modified Eagle’s medium supplemented with l-ascorbic acid phosphate magnesium salt n-hydrate (Wako, Osaka, Japan) at a concentration of 40 µg/ml without fetal bovine serum for 24 h on each of six successive days. The medium was filtered through a 1.6 µm glass-fiber filter (Millipore) and supplemented with the following reagents at the indicated concentrations: 0.1 M Tris–HCl buffer, pH 7.4, 0.4 M NaCl, 25 mM EDTA, and 0.02% NaN₃. High molecular weight proteins in the medium were concentrated by centrifugation. The supernatant was dialyzed twice against 200 vol. of PBS/Tween 20 (PBST) buffer. Increasing concentrations of disintegrins or synthetic peptides were added in Tris–HCl, pH 7.4, buffer containing 150 mM NaCl, 1 mM MnCl₂, and 1% BSA, and the plate was incubated for 30 min at 37°C. After washing with the same buffer, purified, human collagen IV was added at a concentration of 2 µg/ml. Incubation was continued for another 30 min at 37°C. The bound collagen IV was detected by incubation with monoclonal antibody against 7S domain of collagen IV, following goat anti-human IgG conjugated with alkaline phosphatase (Sigma) as described previously [28].

2.3. Purification of disintegrins

Obtustatin, vipersistatin and echistatin were purified from the venoms of Vipera lebetina obtusa, Vipera palestinae, and Echis suchoreki, respectively, using the previously described two-steps reverse-phase high-performance liquid chromatography (HPLC) [20,24]. Briefly, the venoms were dissolved in 0.1% trifluoroacetic acid (TFA) and subjected to HPLC on a C₄ (250 x 10 mm) reverse-phase column from Vydac (Hesperia, CA). The linear acetonitrile gradient (0–80% in 0.1% TFA over 45 min at a flow rate 2 ml/min) was applied for elution of venom fractions. Separation was monitored at 230 nm single wave-length by UV detector (HPLC system from Waters). Obtustatin and vipersistatin were eluted with 48% and 40% of acetonitrile, respectively, whereas echistatin was eluted with about 30% of acetonitrile. Fractions containing the disintegrins were re-chromatographed on the same column and developed with a “flatter” acetonitrile gradient. The purity of the disintegrins was assessed by SDS-PAGE and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Protein concentration was determined with the bicinchoninic acid protein quantification kit (Pierce Co.) with bovine serum albumin (BSA) as a standard.

2.4. Structural characterization of vipersistatin

Purified vipersistatin was reduced and alkylated as described previously [20]. S-Pyridylethylated (PE-) vipersistatin was initially characterized by N-terminal sequencing (using either an Applied Biosystem Precise instrument), amino acid analysis (using a Beckman Gold Amino Acid Analyzer after sample hydrolysis with 6 N HCl for 24 h at 110°C), and MALDI-TOF MS (as above). Quantitation of free cysteine residues and disulfide bonds was done as described [25]. The primary structure of vipersistatin was determined by N-terminal sequence analysis of the PE-protein and of HPLC-purified endoprotease Lys-C-derived overlapping peptides [26].

2.5. Peptide synthesis

Peptides were prepared by solid phase synthesis on Wang resin and ChemSpeed ASW 2000 synthesizer using Fmoc method and Benzo-triazole-1-yl-oxo-tris (dimethylamino)-phosphonil hexafluorphosphate as a coupling reagent. A pure peptide was obtained after implementation of triple coupling for each cycle. The peptide was cleaved from resin with 95% TFA and 1% triethylsilane and its structure was characterized by ESI-MS. The peptides were dried by lyophilization before application to adhesion assay.

2.6. Cell adhesion studies

Adhesion studies of cultured cells labeled with 5-chloromethylfluorescein diacetate (CMFDA) were performed as described previously [27].

2.7. ELISA assay

96-well plates (BD Falcon, Franklin Lakes, NJ) were coated with purified αβ1 (5 μg/ml) overnight at 4°C in phosphate-buffered saline (PBS). The wells were blocked with 5% non-fat milk (BioRad, Hercules, CA) in PBS/Tween 20 (PBST) buffer. Increasing concentrations of disintegrins or synthetic peptides were added in Tris–HCl, pH 7.4, buffer containing 150 mM NaCl, 1 mM MnCl₂, and 1% BSA, and the plate was incubated for 30 min at 37°C. After washing with the same buffer, purified, human collagen IV was added at a concentration of 2 µg/ml. Incubation was continued for another 30 min at 37°C. The bound collagen IV was detected by incubation with monoclonal antibody against 7S domain of collagen IV, following goat anti-human IgG conjugated with alkaline phosphatase (Sigma) as described previously [28].

3. Results and discussion

The new KTS-containing disintegrin vipersistatin was purified from the venom of Vipera palestinae. Mass spectrometric analysis of native and reduced S-pyridylethylated vipersistatin yielded isoaverage molecular masses of 4454.5 and 5303.2 Da, respectively. Incubation of vipersistatin with 4-vinylpyridine under denaturing, non-reducing conditions did not change its molecular mass. Thus, the mass difference of 848.7 clearly indicated that vipersistatin contained eight cysteine residues engaged in the formation of 4 disulfide bonds. The complete primary structure of vipersistatin was established by N-terminal sequencing of EP-protein (Fig. 1). Vipersistatin appeared to be highly homologous to obtustatin, another KTS-containing disintegrin [12,13,22,29], differing from it in just three residues at positions 24, 38 and 40. Structurally, KTS-disintegrins belong to a family of short monomeric disintegrins, which is mainly represented by RGD-containing disintegrins such as echistatin, eristostatin, ocellatinus, multisquamatin, pyramidin and leucogastin [25,30–32]. However, significant differences have been observed in the primary structure of short monomeric KTS-disintegrins and
RGD-disintegrins (Fig. 1). KTS-disintegrins contain lower molecular weight resulting in shorter polypeptide chains (41 amino acids vs. 48–50 amino acids). The major difference is the composition of integrin-binding loop. The active loop of KTS-disintegrins is shorter by two amino acids and does not contain any RGD related motif. This structural feature is strictly reflected in activity. As shown in Table 1, KTS-disintegrins do not express any anti-RGD-dependent integrins activity, whereas RGD-containing echistatin potently inhibits α1β3, αvβ3 and α5β1 integrins in adhesion assay. On the other hand, obtustatin and viperistatin are potent inhibitors of α1β1 integrin, and this kind of activity has not been found for any RGD-disintegrins. Moreover, both KTS-disintegrins did not show any activity against other integrins such as α4β1, α6β1, and α9β1 (Table 1). Particularly interesting is the lack of interaction with α2β1 integrin that is very homologous to α1β1 integrin, including sharing of similar endogenous ligands.

Previously, we identified the active site of obtustatin as a KTS motif, using short peptide synthesis [7]. Viperistatin also contains the same motif in the related site and shows also anti-α1β1 integrin activity (Table 1, Fig. 2). However, viperistatin appeared to be a much potent inhibitor of α1β1 integrin than obtustatin. In the adhesion assay, viperistatin was 25-fold more active in inhibition of α1K562 cell adhesion to both collagen IV and collagen I. The same trend was observed when the inhibitory activity of viperistatin and obtustatin was compared in ELISA, where binding of collagen type IV to immobilized purified α1β1 integrin was investigated (Fig. 2A). The fact that viperistatin and obtustatin differ in just three residues (L24/R within the integrin binding loop, L38/V in the hydrophobic core, and P40/Q in the C-terminal region) (Fig. 3), and viperistatin is a much potent inhibitor of α1β1 integrin than obtustatin, prompted us to investigate their structure-function correlations using synthetic peptides. The synthetic, linear peptides that respond to the amino acid sequences of entire integrin-binding loops for obtustatin (CWKTSLTSHYCN) and viperistatin (CWKTSRTSHYCN) were tested in adhesion and ELISA assays. KTSR-containing peptide exposed IC50 = 11.18 μM (Fig. 2B) and 105.25 μM (Fig. 4) in ELISA and adhesion assays, respectively, whereas KTSL-containing peptide showed IC50 = 100.90 and 645.15 μM in the same assays, respectively. As a control, we used synthetic peptide representing integrin binding-loop for echistatin. This peptide (CKRARGDDMDYCN) was neither active in ELISA nor in adhesion studies. Hence, replacement of a leucine residue (obtustatin) with an arginine (viperistatin) increases by 6- to 10-fold the inhibitory activity towards α1β1. This conclusion is in line with previous studies showing the functional relevance of amino acids flanking both sides of the primary integrin binding motifs. Presence of tryptophan following RGD sequence in eristostatin potently increased the activity of this disintegrin to inhibit α1β1β3 integrin if compared with echistatin, containing aspartic acid in this site. On the other hand, echistatin blocked the function of two other RGD-dependent integrins, αvβ3 and α5β1, whereas eristostatin showed negligible ability to interact with these integrins.

Table 1
Comparison of inhibitory effects of obtustatin, viperistatin and echistatin on various integrins in cell adhesion assay

<table>
<thead>
<tr>
<th>Cell suspension</th>
<th>Integrin</th>
<th>Ligand</th>
<th>IC50 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Obtustatin</td>
</tr>
<tr>
<td>α1K562</td>
<td>α1β1</td>
<td>Coll IV</td>
<td>2</td>
</tr>
<tr>
<td>α2K562</td>
<td>α2β1</td>
<td>Coll I</td>
<td>>10000</td>
</tr>
<tr>
<td>α2K562</td>
<td>α2β1</td>
<td>Coll IV</td>
<td>>10000</td>
</tr>
<tr>
<td>α6K562</td>
<td>α6β1</td>
<td>LM</td>
<td>>10000</td>
</tr>
<tr>
<td>K562</td>
<td>α5β1</td>
<td>FN</td>
<td>>5000</td>
</tr>
<tr>
<td>Jurkat</td>
<td>α9β1</td>
<td>VCAM-1</td>
<td>>10000</td>
</tr>
<tr>
<td>SW480x9</td>
<td>α9β1</td>
<td>VCAM-1</td>
<td>>10000</td>
</tr>
<tr>
<td>A5</td>
<td>αIIbβ3</td>
<td>FG</td>
<td>>10000</td>
</tr>
<tr>
<td>JY</td>
<td>αvβ3</td>
<td>VN</td>
<td>>10000</td>
</tr>
</tbody>
</table>

The data represent means of the results of three experiments. Coll, collagen; LM, laminin; FN, fibronectin; VCAM-1, vascular cell adhesion molecule-1; FG, fibrinogen and VN, vitronectin. α1, α2, α6K562, K562 cells transfected with α1, α2 or α6 integrins; SW480x9 = SW480 cells transfected with α9 integrin; A5 = CHO cells transfected with αIIbβ3 integrin.
Moreover, recombinant substitution of aspartic acid to tryptophane in echistatin molecule drastically decreased its activity to interact with \(\alpha v \beta 3 \) and \(\alpha v \beta 1 \) and increased potency to inhibit \(\alpha IIb \beta 3 \) [33]. Selectivity that is dependent from amino acid composition of integrin-binding loop has also been observed for MLD-containing disintegrins [21]. Threonine, which is adjacent to MLD motif from N-terminus significantly, increased activity of VLO5 to block human \(\alpha 4 \beta 1 \) and \(\alpha 9 \beta 1 \) integrins in comparison with EC3 that contains alanine in this place.

The partial relative enhancement of the inhibitory activity of the KTSR-peptide suggests that the L 38/V and P 40/Q substitutions of viperistatin may also contribute to the biological activity of this disintegrin. The L 38/V substitution within the hydrophobic core of viperistatin may not significantly alter the conformation of the disintegrin, and may therefore represent a neutral mutation. On the other hand, NMR studies of obtustatin [22,29] showed that the integrin binding loop and the C-terminal tail are structurally linked and display concerted motions in the 100–300 ps time-scale, strongly indicating that these two functional regions may form a conformational epitope (Fig. 3) engaged in extensive interactions with the target integrin receptor. The P40/Q substitution, along with the active site L 24/R mutation, may therefore create a distinct chemical environment responsible for the increased inhibitory activity of viperistatin over obtustatin.
Acknowledgements: The work was supported in part by NIH RO1 CA100145-01A1 Grant (C.M.), and AHA 0230163N Grant (C.M.); BFU2004-01423/BMC from the Ministerio de Educación y Ciencia, Madrid, Spain (to J.J.C.); The Wolfson Foundation for Scientific Research (P.L.) and The Israel Science Foundation (P.L.).

References

