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Sleep deprivation (SD) which has become more prevalent

globally, impairs various aspects of cognition. Slowing of

visual processing, loss of selective attention, distractor

inhibition, visual short-term memory and reduced peripheral

processing capacity are associated with diminished

engagement of fronto-parietal regions mediating top-down

control of attention as well as selectively reduced visual

extrastriate cortex activation. The onset of ‘local sleep’

following sustained wakefulness could account for these,

as well as time-on-task effects. Concurrently, alterations

in cortical-cortical as well as thalamo-cortical connectivity

can disrupt the flow of sensory information from the periphery

to association cortex responsible for higher order cognition.

Our ability to process visual stimuli is compromised when

sleep deprived, even during the periods when we are

apparently responsive.
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Introduction
Voluntary sleep loss arising from lifestyle choices is

prevalent [1] despite it producing an unpleasant mental

fog, fatigue and sleepiness that elevate the likelihood of

accidents [2], cognitive errors [3��] and emotional dysre-

gulation [4]. Understanding the neural mechanisms

underlying behavioral changes in the sleep-deprived state

may be of benefit in reducing their negative impact. A

good place to begin is to examine a faculty that is very

consistently affected by this state – degradation of vig-

ilance after a night of total sleep deprivation (SD) [5].

While highly valued high-order cognitive functions like

executive function and memory can also be diminished

when we are sleep-deprived, their degradation is likely to
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be subordinate to deficits in the basic ability to stay awake

and perceive the external world [3��,6,7].

To the casual observer, a sleep-deprived person appears

tired but otherwise able to function until they momenta-

rily falter when briefly falling asleep. ‘Wake-state instabil-

ity’ [8] is an influential concept which posits that the

sleep-deprived brain toggles from between ‘awake’ and

‘asleep’ in a matter of seconds [9]. This aptly describes

the seemingly preserved ability to respond at times while

being profoundly impaired at others. Less obvious, and an

important theme in this review, is evidence for degraded

ability to process sensory stimuli when sleep-deprived,

even during the periods when we are apparently respon-

sive. A mechanism that can reconcile the seemingly

disparate accounts of both intermittently and continu-

ously degraded behavior in sleep deprivation is ‘local

sleep’ (elaborated on later) which ultimately results in

reduced attentional capacity.

Degraded attention, insofar as it refers to 1) reduced

capacity to process the stream of information our senses

are continually presented with, and 2) an impaired ability

to channel these limited resources to specific goals, is a

useful framework for studying the neurobehavioral

changes accompanying sleep deprivation (SD). As atten-

tion serves to enhance sensory processing [10], decreased

functionality of fronto-parietal areas that exert top-down

effects on sensory cortex can be expected to contribute to

poorer perceptual performance. This review will focus on

aspects of attention and/or visual processing that are

altered by overnight total sleep deprivation.

Slower processing of rapidly presented pictures

The human visual system processes information with

amazing rapidity, enabling us to identify a single flashed

object appearing for as briefly as 20 ms. Examining neural

responses to Rapid Serial Visual Presentation (RSVP) of

pictures is an intuitive method to identify areas that

evidence temporal limits in visual processing. Being able

to process serially presented images briefly separated in

time is of interest given the relevance of this faculty in

tasks performed by sleep-deprived persons such as threat

detection or rapid radiologic diagnosis.

The hierarchical organization of visual cortex is such that

higher visual areas take time to integrate information

relayed from early visual areas (Einhauser et al., 2007,

Todd et al., 2011). As such, while a faster stream of novel

pictures (e.g. 4 frames/s) increases sensory stimulation and
www.sciencedirect.com
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(A) Temporal response profiles across state in Parahippocampal Place

Area (PPA). Parameter estimates are in arbitrary units. Group

activation map showing the PPA. (B) Temporal response profiles

across state in the early visual cortex. (C) Group activation map

showing early visual cortex, thresholded at p < 0.000005, uncorrected.

Note that the y-axis scale has been cropped to optimally display

relevant activation magnitude values in the PPA and early visual

cortex. (Adapted from Kong et al. [13�]).
can elicit more activation in higher visual areas, further

increasing presentation rate (e.g. 15 frames/s) will result in

failure to adequately process complex information, giving

rise to an inverted u-shaped temporal response profile.

Using this approach, the parahippocampal place area (PPA)

and fusiform face areas (FFA) whose response profiles peak

at the slower rates relative to earlier visual areas have been

identified as bottlenecks for visual processing [11,12].

Lowered rate of visual processing in SD is evidenced by

a slower peak rate in the temporal response profile in the

PPA compared to in the well rested state [13�]. The PPA

and FFA lie in extrastriate visual cortex and are relatively

more sensitive to the degradation of top-down control of

attention encountered during SD. In contrast, early visual

areas where processing is not limited at the presentation

frequencies tested and which are less sensitive to atten-

tional modulation, demonstrate a monotonic increase in

activation with presentation rate irrespective of state

(Figure 1). Hence, visual areas that serve as potential

bottlenecks for visual processing in the sleep-deprived

state can been identified.

Impaired selection

Selectivity for object pictures can be measured by exam-

ining the difference in PPA responses to attended and

unattended house pictures. This index of selectivity is

lowered in sleep-deprived persons, when picture stimuli

are temporally unpredictable [14]. However, when face

and house stimuli appear in a temporally predictable

manner, SD results in reduced PPA activation but

without an accompanying change in selectivity [15]. This
www.sciencedirect.com 
relative improvement in behavioral performance when

stimuli are temporally predictable is consistent with

similar effects found with vigilance in the well rested

state [16].

Reduced spatial selective attention in SD also occurs in

the preparatory period preceding stimulus onset and

manifests in retinotopically specific visual cortex [17].

The latter indicates that effects of SD manifest in brain

areas specifically engaged in the task and are not evident

when these areas are not specifically probed. Deficits in

attention evidenced by reduced fronto-parietal activation

in association with degraded performance are also evident

in visual tracking tasks that evaluate deployment of se-

lective attention over a longer period than that spanned

by a brief experimental trial [18,19�]. These point to a

temporally more extensive loss of top-down control of

attention than apparent from tests of psychomotor vigi-

lance.

Reduced processing of peripheral information

The Perceptual Load Theory of attention [20] proposes

that focusing attention on a task-relevant stimulus will

restrict the processing of task-irrelevant distractors

according to the availability of residual perceptual pro-

cessing capacity. Conversely, if a task-relevant stimulus

places low demands on the perceptual system, spare

capacity becomes available to process unattended dis-

tractors [21–23]. Experiments exploiting this framework

typically involve a central target and peripheral distrac-

tors, a scenario akin to keeping focused on the traffic

warden at a crossing while still being able to detect a child

who strays onto the opposite side of the road.

The amount of processing appropriated to unattended

distractors can be inferred from the magnitude of fMRI

repetition suppression associated with distractor repeti-

tion [24]. The availability of resources for processing

unattended stimuli can be manipulated by varying the

perceptual clarity of the central target. Consistent with a

state related reduction in peripheral processing capacity,

sleep deprivation attenuated repetition suppression to

peripheral pictures when central perceptual load was

high but not when perceptual load was low [25]. This

contrasts with the situation with rested participants

where sufficient capacity is available such that perceptual

load has no significant effect on repetition suppression

(Figure 2A).

Impaired inhibition of distractors

Selective attention can be dissociated into enhancement

of task-relevant information, and suppression of distrac-

tions/task-irrelevant information [26,27]. By keeping sen-

sory input constant and manipulating the object of

attention using ambiguous, overlapping face and house

pictures [28], target facilitation and distractor suppression

can be dissociated [29�]. In addition to the robust finding
Current Opinion in Behavioral Sciences 2015, 1:56–63
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Figure 2
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(A) Sleep deprivation and reduced perceptual processing capacity. A series of scene–face composite pictures were shown. Faces were either

undistorted (low-load condition) or degraded (high-load condition). Surrounding each face were either alternately repeated or novel background

scenes. Activation in the PPA corresponding to repeated or non-repeated house pictures depicting repetition suppression when perceptual

processing capacity is normal or compromised. Repetition suppression was reduced under conditions of high perceptual load during SD (Adapted

from Kong et al. [25].) (B) Sleep deprivation results in attenuated suppression of distractors. The schematic shows an example of an ambiguous

face/house whose activation in PPA was compared across three conditions: attend face, ignore house (AFIH), and attend house, ignore face

(AHIF). Passive viewing of ambiguous pictures served as the control condition (CTRL). The middle schematic shows expected patterns of target

enhancement and distractor suppression in the rested state. The last panel shows that enhancement of attended houses was relatively preserved

but suppression of distractor houses was impaired during SD. RW = Rested wakefulness, SD = Sleep deprivation (from Kong et al. [29�]).
that PPA activation is reduced by SD, there is a selective

deficit in suppression of PPA activation to ignored houses,

sparing enhancement of PPA activation to attended

houses [29�] (Figure 2B). This observation parallels stu-

dies of cognitive aging that highlight similar deficits in

distractor suppression [30–32]. Suppressing distraction

and keeping to task goals can be thought of as an execu-

tive function with perceptual consequences, for example,

in the case of deficient filtering of target memoranda

during tests of visual short-term memory [33] or with

increased head turns toward peripheral distracting events

during SD [34].

Impaired visual short-term memory

The ability to maintain a sensory representation for

several seconds is crucial for enabling goal-directed

behavior and is a core feature of attention [35]. This
Current Opinion in Behavioral Sciences 2015, 1:56–63 
function is served by a capacity-limited visual short-

term memory (VSTM). Most individuals are only able to

store about four visual items at a time [36]. If short-term

memoranda fail to be maintained over brief delays,

critical items that we need queued for this manipulation

task will be unavailable, thus degrading higher order

cognitive functions which require access to such mem-

oranda. Visual short-term  memory capacity was reduced

after a night of total sleep deprivation in two studies

[37,38] but not in a third [33] where the circadian

contribution to performance degradation could have

been smaller. Interestingly, during sleep deprivation,

cortical activation in the intraparietal sulcus that partici-

pates in short-term storage is lowered irrespective of

memory load [37,38]. This suggests that fewer func-

tional circuits (see later) are available for recruitment

during SD.
www.sciencedirect.com
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Figure 3
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Overlap of BOLD activation associated with task, state, and time-on-

task. (A) Overlaps for between-run time-on-task. (B) Overlaps for

within-run time-on-task. Note the three-way overlapping of activation

in the middle frontal gyrus and ventral visual cortex (From Asplund

et al. [52�]).
Beyond the measurement of ‘capacity’, the qualitative

aspects of short-term memory representations also matter

[39]. Having participants maintain the location and color

of three stimuli over a delay and then to report the color of

the item at the cued location was used to assay memory

precision. SD did not impair the precision of representa-

tions held in VSTM. However extending the retrieval

delay to 10 s from 1 s reduced capacity [40].

The maintenance of short-term visual representations is

thought to depend on recurrent reverberatory activity

within cortical regions involved in sensory perception

[41] and fronto-parietal regions involved in maintaining

attention [42]. The probability that such representations

fail with delay increases as the fronto-parietal [43��] and

extrastriate areas [44] that support VSTM undergo ran-

dom dropouts in neuronal firing during SD.

Intensified time-on-task effects

Behavioral studies of vigilant attention show that SD and

time-on-task (ToT) interact to decrease performance

[45,46,47�]. This interaction suggests that similar proces-

sing stages and, perhaps, similar brain regions may

underlie such declines. Indeed, frontal and parietal

regions show activation declines in a broad array of SD

[18,37,48] and ToT studies [19�,49–51]. With sleep

restriction, ToT effects and those arising from transient

tracking errors can be differentiated [19�]. A direct com-

parison of the neural correlates of SD and ToT effects has

also shown that these both involve a partially overlapping

subset of task-activated regions (Figure 3), including

frontal-parietal attention regions and ventral visual cortex

[52�].

A possible explanation is that attentional circuits become

fatigued with repeated use [47�,53]. This use-depen-

dency account suggests that either prolonged wake or

sustained task engagement exhausts the neural circuits

supporting attention [54�]. Resource theories of the time

on task effect are consistent with this account, as they

argue that sustained attention requires effort and there-

fore drain cognitive resources [45,55]. These same

resources are limited during SD [25,29�], leading to more

severe ToT effects. Interestingly, even a brief �1-min

break between experimental runs is sufficient to return

stimulus detection to almost baseline levels for that state
[7].

While SD and ToT can both impair participant motiv-

ation, and lead to poorer performance [49,56] experimen-

tal participants typically evidence continued effort

through an increase in false alarms as the target detection

rates drop. Such results suggest a shift in detection ability,

rather than complete failure to engage with the task

[8,57]. This is consistent with the broader thesis that in

addition to obvious ‘wake-state instability’, information
www.sciencedirect.com 
processing in sleep-deprived persons is ‘tonically’

impaired as well (Figure 4).

Changes in resting-state connectivity

Changes in resting state functional connectivity occur in

sleep-deprived persons [58�,59] alongside alterations to

how the default mode network (DMN) or parts of it are

engaged during tasks [13�,37,60,61]. Changes in resting

state connectivity provide another major systems level

explanation for degraded behavioral performance in SD.

Examining resting state networks, in theory, affords the

identification of brain areas affected by SD but which are

not revealed with task-related fMRI because the task

used does not engage them.

Reduced connectivity within the DMN and reduced anti-

correlation between the DMN and ‘task-positive’ net-

works like the dorsal attention network has been robustly

reproduced [58�,59,62,63]. Changes in resting state con-

nectivity in the sleep-deprived state appear to be con-

sistent with those occurring along the descent from

wakefulness to light sleep [64�,65] and can be distin-

guished from those associated with deeper stages of

NREM sleep [65,66].

Increased daytime sleepiness in young adults and cogni-

tively intact older adults appears to be correlated with

reduced DMN connectivity [67]. However, changes in

DMN connectivity appear less clearly correlated with

reduced performance in SD compared to state shifts in

task-related activation [57].
Current Opinion in Behavioral Sciences 2015, 1:56–63
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Figure 4
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Schematic showing the inter-relationships between relevant environmental or endogenous factors affecting arousal, putative mechanisms that

influence cognitive processing capability, neuroimaging features and neurobehavioral manifestations of sleep deprivation.
Reduced thalamo-cortical connectivity is an important

change occurring in the transition from wake to sleep

[65,68], as well as in sleep-deprived persons [69]. This

disconnection of association cortex from afferent sensory

inputs could contribute to the reduced perceptual sensi-

tivity described in a number of studies reviewed here.

However, it remains to be confirmed whether an

increased ‘small-worldness’ in connectivity where short-

range connectivity is enhanced and long-range connec-

tivity is reduced, is an adaptive change [70] or merely an

epiphenomenon.

Pattern analysis on a large number of participants

suggests that N1 (very light sleep) frequently intrudes

into resting state studies on ‘awake’ participants [71��].
This might contribute to inter-individual differences in

behavioral performance even in seemingly well-rested

and alert persons.

Reduced functional circuits in SD: the ‘local sleep’

hypothesis

Might there be a common mechanism that could underlie

this diverse set of neurobehavioral observations? We

could begin by noting that sleep deprivation consistently

lowers task-related activation of the intraparietal sulcus

and the lateral occipital parts of extrastriate cortex. The

extent of this decrement correlates with decline in
Current Opinion in Behavioral Sciences 2015, 1:56–63 
psychomotor vigilance [48] and its relief by cholinergic

augmentation [38,72] corresponds with benefit on beha-

vioral performance. A functional relationship between

intervention and neuroimaging change was also found

when rTMS was applied to the right lateral occipital

region [73�].

Thus, there appears to be a reduction in the number of

functional cortical circuits available to process visual

information during SD. A ‘functional circuit’, refers to

the assembly of neurons activated during the perform-

ance of a particular task. It could include neurons in close

proximity, for example, those in visual cortex, as well as

clusters connected by long-range fibers, such as those in

frontal and parietal areas mediating attention.

Sustained wakefulness results in an increase in homeo-

static sleep pressure resulting in ‘local sleep’ where

circumscribed patches of cerebral cortex demonstrate

physiological features of sleep in drowsy but still respon-

sive animals [44,74]. Goal directed behavior like reaching,

is more likely to fail during periods when clusters of

frontal and parietal neurons show transient reductions

in multi-unit activity [43��].

In human volunteers, correct responses elicit lower

BOLD signal changes in the sleep-deprived state than
www.sciencedirect.com
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in the rested state. This suggests that in the rested state,

there may be some redundancy in circuit activation

allowing for random failures without compromising beha-

vioral performance. When sleep-deprived, this reserve is

reduced, leading to occasional behavioral lapses.

This ‘local sleep’ account of neurobehavioral degradation

in SD is attractive in that it is relevant in both top-down or

bottom-up sensory system failure accounts of degraded

performance as well as time-on-task effects. However, at

the present time, it is unclear whether ‘local sleep’

triggers altered connectivity or, if brainstem, hypothala-

mic and basal forebrain structures are the originators of

lower cortical connectivity and reduced cortical activation

[9,75]. Newer methods to evaluate ‘dynamic functional

connectivity’ [76��] over temporal windows spanning

seconds instead of minutes using both fMRI and EEG

promise to shed light on this open question.

Conclusions
Deficits in visual perception or visual processing capacity

are central to explaining neurobehavioral changes in sleep

deprivation. Reduced engagement of fronto-parietal

regions that mediate top-down control of attention has

been demonstrated in multiple experiments evaluating

different facets of attention and visual processing

capacity. Independently of, or consequent to this, visual

extrastriate cortex activation is markedly reduced. The

onset of ‘local sleep’ at random intervals in these heavily

engaged brain areas following sustained wakefulness

could account for the observed reduction in task-related

activation. Concurrently, several changes in cortical-cor-

tical as well as thalamo-cortical connectivity can disrupt

the normal passage of sensory information to association

cortex. Over minutes, these physiological changes can be

reliably distinguished from rested wakefulness. However,

from trial-to-trial, on a temporal scale of seconds, they

appear more stochastic, having the characteristics of

‘wake-state’ instability. Additional exploration of the

sleep-deprived state will continue to contribute novel

insights into impaired brain function.
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