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1. Introduction and results

Throughout this paper, we use standard notations in the Nevanlinna theory (see e.g. [8,13,18,20,21]). Let f(z) be a mero-
morphic function. Here and in the following the word “meromorphic” means meromorphic in the whole complex plane.
Moreover, we use notations o (f) and w(f) for the order and the lower order of a meromorphic function f(z) respectively.

Recently, there has been renewed interests in difference equations in the complex plane from the viewpoint of Nevan-
linna theory (see e.g. [1,2,5-7,9-12,15-17,19,22]).

In particular, Chiang and Feng [7] investigated the proximity function and pointwise estimates of ! (fz(;”), which are
discrete versions of the classical logarithmic derivative estimates of f(z). They also applied their results to obtain growth
estimates of meromorphic solutions to higher order linear difference equations.

Theorem 1.A. Let Aj(2), j =0, 1,...,n, be entire functions such that there exists an integer [ (0 <1< n) such that
max {o(Aj)} <o (A).
0 j<n
Jj#l

If f (z) is a meromorphic solution to

An@y@z+n)+---+A1(2y(z+ 1) + Ao(2)y(2) =0, (11)
then we have o (f) > o (A)) + 1.

When the coefficients in (1.1) are polynomials, they also obtain the following result.
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Theorem 1.B. Let Pj(z), j=0,1,...,n, be polynomials such that there exists an integer I (0 <1< n) such that

P; P)).
Jmax {deg(Pj)} < deg(P)
Jj#l
If f (z) is a meromorphic solution to
Pn@yz+n) +---+P1(@2y(z+1)+ Po(2)y(2) =0, (12)

then we have o (f) > 1.

Note that the above results occur when there exists only one dominant coefficient. In the case that there are more than
one dominant coefficients, Laine and Yang [19] obtained the following result.

Theorem 1.C. Let Aj(2), j =0,1,...,n, be entire functions of finite order such that among those having the maximal order o =
maxog j<n{o (Aj)}, exactly one has its type strictly greater than the others. Then for any meromorphic solution of (1.1), we have
o(fyzo+1.

In the following, we continue to consider growth estimates of meromorphic solutions to higher order linear difference
equations. Firstly, we consider the lower order of meromorphic solutions of homogeneous linear difference equations.

Theorem 1.1. Let Aj(2), j =0, 1, ..., n, be entire functions such that there exists an integer | (0 <1< n) such that
max{o (Aj), j=0,....n, j#I} <u(A) < oo, (1.3)
and
max{t(Aj): o (A}) = 1(AD, j=0,....n, j#I} <T(Ap, (14)
where
. logM(r, A) ——logM(r, Aj)
TN e A= I e

denote the lower type of Aj(z) and the type of Aj(z) respectively. If f(z) is a meromorphic solution to (1.1), then we have ju(f) >
w(A) + 1.

When the coefficients in (1.1) are polynomials, we obtain a similar result as Theorem 1.1, which is also a refinement of
Theorem 1.B.

Theorem 1.2. Let Pj(z), j=0,1,...,n, be polynomials such that there exists an integer 1 (0 <1< n) such that

max{deg(P;), j=0,...,n, j#I} <deg(P), (1.5)

and

> lajl < lail, (16)
je]
where | ={j € {0,...,n}\{l}: deg(Pj) =deg(P)}, and aj, j =0, ...,n, are the leading coefficients of Pj(z), j =0, ...,n, respec-
tively. If f(z) is a meromorphic solution to (1.2), then we have pu(f) > 1.

The following two examples illustrate the sharpness of Theorems 1.1 and 1.2.

Example 1.1. The function f(z) = e? satisfies the equations
e fz+2)+eF  fz+1)=2f(0)=0

and
e f(z+2) - f(2)=0,

where the coefficients satisfy the assumptions (1.3) and (1.4). Therefore, we have w(f) =2 = u(Ay) + 1, showing that
Theorem 1.1 may occur.
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Example 1.2. The function f;(z) = e?'%82 satisfies the equation
z+1Df(z+2)—2f(z+1)—4zf(z) =0,
and the function f2(z) = I'(z) satisfies the equation

f@+2)+@+1)f(z+1)—22(z+1)f(2) =0.

It is clear that the assumptions (1.5) and (1.6) hold. Therefore, we have w(f1) = i (f2) =1, showing that Theorem 1.2 may
occur.

The following theorems investigate the order of meromorphic solutions of (1.1) in the case when there are more than
one coefficients which have the maximal orders.

Theorem 1.3. Let H be a complex set satisfying logdens{r = |z|: z € H} > 0, and let Aj(2), j =0,1,...,n, be entire functions
satisfying max{o (Aj), j=0,...,n} <ay. If there exist a positive constant a; (a3 < 1) and an integer [ (0 <1< n) such that for
any given e (0 < & <1 — o),
|Al(2)| = exp{r**~¢}, zeH, (1.7)
|Aj(2)| <exp{r**}, zeH, j=0,....n, j#I, (1.8)

then every meromorphic solution f(z) of (1.1) satisfieso (f) > a1 +1=0(A)) + 1.
Theorem 1.4. Let Aj(2), j =0,1,...,n, be entire functions. If there exists an integer | (0 <1 < n) such that maxogj<n{o(Aj)} <
o (A)) and

.—Zj;&tm(rs Aj)

1, (1.9)
r—>oo  m(r, Aj)

then every meromorphic solution f(z) of (1.1) satisfies o (f) > o (A;) + 1.

The following example illustrate the sharpness of Theorems 1.3 and 1.4.

Example 1.3. The function f(z) = 7’37 satisfies the equation

e f(z+2)+e*f(z+1) —2e372f(z) =0,

where Ay(z) = e7%, A1(2) = €%, Ag(2) = —2e3*72, satisfying o (A2) = 0 (A1) =0 (Ag) = 1.

(i) Set H={z: argz=m} and | =2, it is clear that dens{r = |z|: z€ H} =1 > 0. Moreover, A;(z), i =0, 1, 2, satisfy the
assumptions (1.7) and (1.8). Therefore, we have o (f) =2 =0(A) + 1.

(ii) Set [ =0, it is clear that A;(z), i =0, 1, 2, satisfy the assumption (1.9). Therefore, we also have o (f) =2 =0(Ap) + 1.

Secondly, we consider the growth of entire solutions of non-homogeneous linear difference equations. Note that the
above results may not be applicable to the equation

An@yz+nm)+---+A1(Dy(z+ 1)+ Ao(2)y(2) = F(2), (110)

to which (1.1) is the corresponding homogeneous equation (see the following Example 1.4). But we can obtain similar results
with some additional conditions.

Theorem 1.5. Let Aj(z), j=0,1,...,n, F(z) be entire functions such that there exists an integer | (0 <1< n) such that

b=max{o(Aj), j=0,....n, j#I, o(F)} <o(A) < % (111)

then every nontrivial entire solution f(z) of (1.10) satisfies o (f) > o (A} + 1.

Theorem 1.6. Let Aj(z), j=0,1,...,n, F(z) be entire functions such that there exists an integer | (0 <1< n) such that
b=max{o(Aj). j=0,....n, j#I, 0(F)} <o (A) < . (112)
Suppose also that Aj(z) =Y o2 1 G, 7' satisfies that the sequence of exponents {\,} satisfies the Fabry gap condition
A
?n — 00, (1.13)

then every nontrivial entire solution f(z) of (1.10) satisfies o (f) > o (A;) + 1.
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Theorem 1.7. Let Pj(2), j=0,1,...,n, F(2) be polynomials such that there exists an integer | (0 <1< n) such that (1.5) and (1.6)
hold. If f(z) is a transcendental entire solution to

Ph@yz+m+---+P1(@Dy(z+1) + Po(2)y(2) = F(2), (114)
then we have u(f) > 1

Example 1.4. The function f(z) = e satisfies the equation

fz+2)—ef(z+ 1)+ f(2) =¢7,
and
f@+2)—efz+D+e*f(=1.

Though there is only one dominant coefficient such that the assumptions in Theorems 1.1, 1.3-1.4 hold, we cannot get
similar results in the non-homogeneous equation case.

Example 1.5. The function f(z) = r(z) + 1 satisfies the equation

2z+1)f@z+2) —zf(z+1) =22,

where the polynomial coefficients satisfy the assumption (1.5). Therefore, we have w(f) = o (f) =1, showing that Theo-
rem 1.7 may occur.

Example 1.6. The function f(z) = z satisfies the equation

2fZ+2)— @+ Dfz+ D) +22f@2)=2° -1,

where the polynomial coefficients satisfy the assumption (1.5), showing Eq. (1.14) may have non-transcendental solutions.

2. Lemmas for Proofs of the theorems

We introduce some results of the proximity function and pointwise estimates of ! (fz(;”) as following:

Lemma 2.1. (See [7].) Let f(z) be a meromorphic function, n(s# 0), n1, n2 (1 # n2) be complex numbers, and let y > 1, and € > 0
be given real constants, then there exists a subset E1 C (1, +00) of finite logarithmic measure,

(a) and a constant A depending only on y and n, such that for all |z| =r ¢ (E1 U [0, 1]), we have

fz+n) H (T(yr ) n(y r
f@
(b) and ifin addition that f(z) has finite order o, and such that for all |z| = ¢ (E1 U [0, 1]), we have

log

log” rlog™ n(yr)) (2.1)

ol [FEE v
or
o— fz+m) o
exp{—r? 71} < f(Tn;) <exp{ro 1t} (2.2)

The following Lemmas 2.2 and 2.7 are essentially known in [8,13,20]. For the convenience of readers, we give their proof.

Lemma 2.2. Let f(z) be a meromorphic function with ((f) < oo. Then for any given & > 0, there exists a subset E; C (1, 4+00)
having infinite logarithmic measure such that for all r € Eo, we have that

T(r, f) <ri+e, (2.3)

Proof. By the definition of the lower order, there exists a sequence {r,} tending to oo satisfying (1 + %)rn <Tp41 and

lim 08T f) _
m ——
n—00 logr,

w(f).
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Then for any given & (> 0), there exists an ny such that for n > ny, we have

(H+5
T(ra, fy<ry 72,

Let E; = Uﬁinl [(%)rn, a1, then for any r € E;, we have

n+1 /'C(f)Jr%
T(r, f) <T@, f) < "“”%(%r) < e,

and mEy =3 12, —rn =) nep, log(1+ 1) = co. Thus, Lemma 2.2 is proved. O

By substituting (2.3) into (2.1), we can generalize (2.2) in Lemma 2.1(b) into finite lower order case as following.

Lemma 2.3. Let f(z) be a meromorphic function with (f) < oo, n1, 2 be distinct complex numbers, and let ¢ (> 0) be given real
constant, then there exists a subset E5 C (1, +00) of infinite logarithmic measure such that for all |z| = € E3, we have

exp{—riD =1t} < fe+n)|_

<ex rrH)=1+e)
Farn| <o }

Lemma 2.4. (See [7].) Let 11, n2 be two complex numbers such that n1 # 12, and let f(z) be a finite order meromorphic function. Let
o be the order of f(z), then for each ¢ > 0, we have

m<r, f(z+7]l)> — O(rg_l.:,.g).

fz+m)

We also make use of the following minimal moduli theorems for entire functions of slow growth.

Lemma 2.5. (See [3].) Let f(z) be an entire function of order o (f) =0 < % and denote A(r) = inf;—rlog|f(2)|, B(r) =
supjy=r log|f(2)|. If o <& < 1, then

logdens{r: A(r) > (cosma)B(r)} > 1 — g.

Lemma 2.6. (See [4].) Let f(z) be entire with u(f) = u < % and u <o =0 (f). If u <38 < min{o, }and8 <a < 3, then

logdens{r: A(r) > (cosma)B(r) >’} > C(0, 8, ),

where C (0, 8, ) is a positive constant depending only on o, §, «.

Lemma 2.7. Let f(z) be an entire function of order 0 < o (f) = 0 < oo, then for any 8 < o, there exists a set E4 with positive upper
logarithmic density such that for all |z| =r € E4, we have that

logM(r, f) > 15,

where M(r, f) = maxzj=r | f (2)|.
Proof. By the definition of the order, there exists a sequence {r;} tending to oo such that for any given ¢ > 0, we have

logM(ry, f) >15 %,
Since 8 < o, we can choose ¢ (sufficiently small) and « to satisfy 1 <« < "‘%8 Then for all r € [y, 1] (n > 1), we have

log M(r, f) > logM(ra, f) > 5 ¢ >1°% > 1P,
Setting E4 = Jp2;[rn, 5], we have

——m(E4N[1,r ——m(E4N[1,r% my([rp, 1% -1
logdensE4 lim 1(4—[]) > lim 1(47[”]) > lim ({rn, T 1 = o > 0.
n—00 logr n—00 logryy n—oo  logry o

Thus, Lemma 2.7 is proved. O
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Lemma 2.8. (See [14].) Let f(2) = Y o, ¢3,2*" be an entire function of order 0 < o (f) < oo. If the sequence of exponents {An}
satisfies the Fabry gap condition (1.13), then for any B < o (f), there exists a set Eg with positive upper logarithmic density such that
forall |z| =r € Eg, we have

logL(r, f) > rP,
where L(r, f) =ming— | f(2)|.

3. Proofs of Theorems 1.1-1.7

Proof of Theorem 1.1. Suppose that f(z) is a meromorphic solution to (1.1) satisfying

W(f) < u(A) +1 < 0. (31)
In relation to (1.3) and (1.4), we set

o =max{o(Aj): 0(A)) <u(A), j=0,....,n, j#l}
and

T =max{t(Aj): 0(Aj) = (A, j=0,....n, j#lI}
Then for any given & (> 0) and sufficiently large r, we have that

|Aj(2)| < exp{rote}, (3.2)
if O'(A]') < pL(A[), and

|Aj(2)| < exp{(r + &)r* A}, (3.3)

if 0(Aj) = u(Ap). Moreover, by Lemma 2.3, there exists a subset E3 C (1, 400) having infinite logarithmic measure such
that for all z satisfying |z| =r € E3, we have

f(z+j) w(f)—1+e . .
’41,(2_‘_1) < exp{r }oj=0,....n j#L (3.4)
Then we can choose ¢ (> 0) sufficiently small to satisfy
max{o, u(f) — 1} +2¢ < uw(A) and T +2e <1(A). (3.5)
Now, we divide Eq. (1.1) by f(z+1) to get
_ fz+n) f@z+1+1) fz+1-1) f(2
—A|(2) = An(z)m +--+ AH_](Z)W + Al—1(l)w + -+ Ao(2) <D (3.6)

Substituting (3.2)-(3.4) into (3.6), we have that

M(r, A)) < exp{r“D=1He10 (exp{r ¢} + exp{(x + &)r*™}), reEs.
Consequently, we have by (3.5) that

log M(r, A)

) <t+e<1(A)—¢,

T(A) < lim
r—o0o
reEs

a contradiction. Therefore, we have w(f) > w(A)+1. O

Proof of Theorem 1.2. Suppose that f(z) is a meromorphic solution to (1.2) satisfying ;(f) < 1. We divide through Eq. (1.2)
by f(z+1) to get

f(z+n) f@z+1+1) fz+1-1) f@
Tary MO TGy P @ e @

Since w(f) <1, we may choose ¢ (> 0) sufficiently small to satisfy w(f)+ & < 1. Then by Lemma 2.3, there exists a subset
E3 C (1, 400) having infinite logarithmic measure such that for all z satisfying |z| =r € E3, we have

’f@+D
f@z+D

—Pi(2) = Pn(2) (3.7)

Lexp{rtP =1+ —explo()} =140(1), j=0,....n, j#L (3.8)
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Substituting (3.8) into (3.7), we have that

P@|< Y |P@) g(( J_:))’ 1+0m) Y [Pj@| reks
0<j<n 0<j<n
Jj#l j#

which is a contradiction to the assumptions (1.5) and (1.6). Therefore, we have w(f)>1. O

Proof of Theorem 1.3. If o (f) = 0o, then the result is trivial. Next, we suppose that o (f) < co. Denote H; = {r = |z|: z€ H}.
Since logdens Hy > 0, then H; is a set of r of infinite logarithmic measure. By the assumptions that o (A;) < o1 and (1.7), it
is easy to obtain o (A;) = 1. Moreover, by Lemma 2.1(b), there exists a subset E; C (1, +00) of finite logarithmic measure
such that for any given ¢ (> 0) and for all z satisfying |z| =1 ¢ ([0, 1]U E1), we have

PELP <exp{D1e), j=0.n AL 39

Substituting (3.9) and (1.7)-(1.8) into (3.6), we have that
exp{r®~*} < |Ai(2)] <nexp{r"‘z}exp{r(’(f)_”g}, |zl =r € H1\([0, 1]U Ey). (3.10)

By (3.10) and the assumption that oy + € < o, we have that o (f) > a1 +1=0(A)+1. O

Proof of Theorem 1.4. If o (f) = oo, then the result is trivial. Next, we suppose that o (f) < co. By Lemma 2.4, we have that
for sufficiently large r and any given ¢ (> 0),

fz+)) - . .
mlr, =22 ) =o(eH-1+8), j=o0,....n, l. 3.11
< FZrD ( ), j# (3.11)
Substituting (3.11) into (3.6), we have that for sufficiently large r,
Z+ _
mr,Ap< Y m( g(( JJ))) + Y mEAp=0("DH) £ 3" m(r, A, (3.12)
o0<jsn 0 jsn 0<jsn
Jj#l Jj#l Jj#l

By (3.12) and the assumption (1.9), we have that

o(A)<o(f)—1+e.

Since ¢ (> 0) is arbitrary, we have that o (f) >0 (A)+1. O

Proof of Theorem 1.5. If o (f) = oo, then the result is trivial. Next, we suppose that o (f) < co. We divide through Eq. (1.10)
by f(z+1) to get

~A@) = An(ﬂ% ot Al+1(2)% +A,_1(z)%
f@  F@ f@

fe+h  f@ f@E+D

By Lemma 2.1(b), we have that (3.9) holds for any given ¢ (> 0) and for all z satisfying |z| =1 ¢ ([0, 1] U E1), where

Eq C (1, 400) has finite logarithmic measure. By the assumption (1.11), we have that for sufficiently large r = |z|,

+ Ao(2) (3.13)

|Aj@)| <exp{rP™®}, j=0,....n, j#I, (3.14)

and

|F(2)| <exp{r®*¢}.
Since M(r, f) > 1 for sufficiently large r = |z|, we have that
|F(2)]
M, f)

By Lemma 2.5 (if w(A;)) = o (A))) or Lemma 2.6 (if w(A;) < o(A))), there exists a subset E7 C (1,+00) having infinite
logarithmic measure such that for all z satisfying |z| =r € E7, we have that

< |F(2)| <exp{r"**}). (3.15)

|AI(2)| > exp{r7A=¢]. (3.16)
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Substituting (3.9), (3.14)-(3.16) into (3.13), for all z satisfying |z| =r € E7\([0, 1JU E1) and |f(2)| = M(r, f), we have

exp{ro ¢} < |Ai(2)| < (n+ 1) exprPT€ ) exp[roH-1+e] (317)

Now, we may choose ¢ (> 0) sufficiently small to satisfies b + 2¢ < o (A;). Then (3.17) gives that o (f) >0 (A)+1. O

Proof of Theorem 1.6. By using Lemma 2.8 instead of Lemmas 2.5 and 2.6 in the proof of Theorem 1.5, we can prove
Theorem 1.6 similarly. O

Proof of Theorem 1.7. Suppose that f(z) is a transcendental entire solution to (1.14) satisfying wu(f) < 1. We now divide
through Eq. (1.14) by f(z+1) to get

f(z+n) f@z+1+1) fz+1-1)
fe+n Tt @yt @y
f@  F@ f@

f@+h  f@ fE+D

Since w(f) <1, we have that (3.8) holds for any given ¢ (0 <& <1 — u(f)) and for all z satisfying |z| =r € E3, where

E3 C (1, 400) has infinite logarithmic measure. Since f(z) is transcendental, then we have that for sufficiently large r = |z|,

F(z
—l @ =o0(1). (3.19)
M, f)
Substituting (3.8) and (3.19) into (3.18), we have that for all z satisfying |z| =r € E3, r — o0, and | f(2)| = M(r, f),

fe+p|, IF@I_1f@)|
[Pi(2)] < IP'<Z>|’ < (140(D) |P;(2)
Og%n’ f@+D | 1f@I1f@+D] Og%n’

Jj#l Jj#l

which is a contradiction to the assumptions (1.5) and (1.6). Therefore, we have w(f)>1. O

—Pi(2) = Py(2)

+ Po(2) (3.18)

)
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