Higher-Order Generalized Invexity and Duality in Mathematical Programming

Shashi K. Mishra

Department of Mathematics, Raja Balwant Singh College, Bichpuri, Agra 283105, India

and

Norma G. Rueda

Department of Mathematics, Merrimack College, North Andover, Massachusetts 01845

Submitted by William F. Ames

Received September 23, 1999

In this paper, we introduce the concepts of higher-order type-I, pseudo-type-I, and quasi-type-I functions and establish various higher-order duality results involving these functions.

© 2000 Academic Press

1. INTRODUCTION

Consider the nonlinear programming problem

\[
\begin{align*}
(P) \quad \text{Minimize} & \quad f(x) \\
\text{subject to} & \quad g(x) \geq 0,
\end{align*}
\]

where \(f: \mathbb{R}^n \to \mathbb{R} \) and \(g: \mathbb{R}^n \to \mathbb{R}^m \) are twice differentiable functions.

The Mangasarian second-order dual [3] is

\[
\begin{align*}
(MD) \quad \text{Maximize} & \quad (u - y^T g(u) - \frac{1}{2} p^T \nabla^2 [f(u) - y^T g(u)] p \\
\text{subject to} & \quad \nabla [f(u) - y^T g(u)] + \nabla^2 [f(u) - y^T g(u)] y = 0, \\
& \quad y \geq 0.
\end{align*}
\]
Mangasarian [3] formulated the following higher-order dual by introducing two differentiable functions \(h: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \) and \(k: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \):

\[
\text{(HD1)} \quad \text{Maximize} \quad f(u) + h(u, p) - y^T g(u) - y^T k(u, p) \\
\text{subject to} \quad \nabla_p h(u, p) = \nabla_p (y^T k(u, p)), \quad y \geq 0. \quad (1.2)
\]

\[
\nabla_p h(u, p) \text{ denotes the } n \times 1 \text{ gradient of } h \text{ with respect to } p \text{ and } \\
\nabla_p (y^T k(u, p)) \text{ denotes the } n \times 1 \text{ gradients of } y^T k \text{ with respect to } p.
\]

If
\[
h(u, p) = p^T \nabla f(u) + \frac{1}{2} p^T \nabla^2 f(u) p
\]

and
\[
k(u, p) = p^T \nabla g(u) + \frac{1}{2} p^T \nabla^2 g(u) p
\]

then (HD1) becomes (MD).

Mond and Zhang [5] obtained duality results for various higher-order dual programming problems under higher-order invexity assumptions. They considered the following dual to (P):

\[
\text{(HD)} \quad \text{Maximize} \quad f(u) + h(u, p) - p^T \nabla_p h(u, p) \\
\text{subject to} \quad \nabla_p h(u, p) = \nabla_p (y^T k(u, p)), \quad y \geq 0. \quad (1.4)
\]

\[
y_i g_i(u) + y_i k_i(u, p) - p^T \nabla_p (y_i k_i(u, p)) \leq 0, \quad i = 1, 2, \ldots, m, \quad (1.5)
\]

\[y \geq 0. \quad (1.6)
\]

In this paper, we will give more general invexity-type conditions, such as higher-order type-I, higher-order pseudo-type-I, and higher-order quasi-type-I conditions, and establish various duality results under these conditions.

Mond and Zhang [5] proved duality results between (P) and (HD) assuming that there exists a function \(\eta: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) such that
\[
f(x) - f(u) \geq \alpha(x, u) \nabla_p h(u, p) \eta(x, u) + h(u, p) - p^T (\nabla_p h(u, p)) \quad (1.7)
\]

and
\[
g_i(x) - g_i(u) \leq \beta_i(x, u) \nabla_p k_i(u, p) \eta(x, u) + k_i(u, p) - p^T (\nabla_p k_i(u, p)), \quad i = 1, 2, \ldots, m, \quad (1.8)
\]

where \(\alpha: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \setminus \{0\} \) and \(\beta_i: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \setminus \{0\}, \ i = 1, 2, \ldots, m, \) are positive functions.
Combining the concept of type-I functions [2] and conditions (1.7) and
(1.8) when
\(h(u, p) = p^T \nabla f(u) \) and \(k_i(u, p) = p^T \nabla g_i(u), i = 1, 2, \ldots, m, \)
we say that \((f, g), i = 1, 2, \ldots, m, \) is V-type I at the point \(u \) with respect
to functions \(\eta, \alpha, \) and \(\beta; \)
\[
 f(x) - f(u) \geq \alpha(x, u) \nabla f(u) \eta(x, u)
\]
and
\[
 -g_i(u) \leq \beta_i(x, u) \nabla g_i(u) \eta(x, u), \quad i = 1, 2, \ldots, m.
\]
Mond and Zhang [6] extended the notion of V-invexity to second-order
and established duality theorems under generalized second-order V-invex-
ity conditions. If \((f, -g_i), i = 1, 2, \ldots, m, \) satisfies conditions (1.7) and
(1.8) with \(h(u, p) = p^T \nabla f(u) + \frac{1}{2} p^T \nabla^2 f(u) p + k_i(u, p) = p^T \nabla g_i(u)
+ \frac{1}{2} p^T \nabla^2 g_i(u) p \) then \((f, -g_i) \) is said to be second-order V-type I.

2. MANGASARIAN HIGHER-ORDER DUALITY

Theorem 2.1 (weak duality). Let \(x \) be feasible for \((P) \), and let \((u, y, p)\)
be feasible for \((HD1) \). If, for all feasible \((x, u, y, p)\), there exists a function \(\eta: \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) such that
\[
f(x) - f(u) \geq \eta(x, u)^T \nabla_p h(u, p) + h(u, p) - p^T (\nabla_p h(u, p)) \quad (2.1)
\]
and
\[
 -g_i(u) \leq \eta(x, u)^T \nabla_p k_i(u, p) + k_i(u, p) - p^T (\nabla_p k_i(u, p)),
\]
\[
i = 1, 2, \ldots, m, \quad (2.2)
\]
then infimum \((P) \geq \supremum \,(HD1)\).

Proof.
\[
f(x) - f(u) - h(u, p) + y^T g(u) + y^T k(u, p)
\]
\[
\geq \eta(x, u)^T \nabla_p h(u, p) - p^T (\nabla_p h(u, p))
\]
\[
+ y^T g(u) + y^T k(u, p), \quad \text{by } (2.1),
\]
\[
= \eta(x, u)^T \nabla_p (y^T k(u, p)) - p^T (\nabla_p y^T k(u, p))
\]
\[
+ y^T g(u) + y^T k(u, p), \quad \text{by } (1.2),
\]
\[
\geq 0, \quad \text{by } (1.3) \text{ and } (2.2).
\]

The following strong duality theorem is similar to [5, Theorem 2].
THEOREM 2.2 (strong duality). Let x_0 be a local or global optimal solution of (P) at which a constraint qualification is satisfied, and let

$$
h(x_0, 0) = 0, \quad k(x_0, 0) = 0, \quad \nabla_p h(x_0, 0) = \nabla f(x_0), \quad \nabla_p k(x_0, 0) = \nabla g(x_0). \quad (2.3)
$$

Then there exists $y \in \mathbb{R}^n$ such that $(x_0, y, p = 0)$ is feasible for (HD_1), and the corresponding values of (P) and (HD_1) are equal. If (2.1) and (2.2) are satisfied for all feasible (x, u, y, p), then x_0 and $(x_0, y, p = 0)$ are global optimal solutions for (P) and (HD_1), respectively.

Remark 2.1. If $\begin{align*} h(u, p) &= p^T \nabla f(u) \quad \text{and} \quad k_i(u, p) = p^T \nabla g_i(u), \quad i = 1, 2, \ldots, m, \end{align*}$
then (2.1) and (2.2) become the conditions given by Hanson and Mond [2] to define a type-I function. If

$$
h(u, p) = p^T f(u) + \frac{1}{2} p^T \nabla^2 f(u) p,
$$

and

$$
k_i(u, p) = p^T \nabla g_i(u) + \frac{1}{2} p^T \nabla^2 g_i(u) p, \quad i = 1, 2, \ldots, m,
$$

then (2.1) and (2.2) become the second-order type-I conditions given by Hanson [1] when $p = q = r$.

3. MOND–WEIR HIGHER-ORDER DUALITY

THEOREM 3.1 (weak duality). Let x be feasible for (P) and let (u, y, p) be feasible for (HD). If, for all feasible (x, u, y, p), there exists a function $\eta: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ such that

$$
\begin{align*}
f(x) - f(u) &\geq \alpha(x, u) \nabla_p h(u, p) \eta(x, u) + h(u, p) - p^T \left(\nabla_p h(u, p) \right) \\
\end{align*}
$$

and

$$
\begin{align*}
-g_i(u) &\leq \beta_i(x, u) \nabla_p k_i(u, p) \eta(x, u) + k_i(u, p) - p^T \left(\nabla_p k_i(u, p) \right), \quad i = 1, 2, \ldots, m, \quad (3.1)
\end{align*}
$$

where $\alpha: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+ \setminus \{0\}$ and $\beta_i: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+ \setminus \{0\}, i = 1, 2, \ldots, m$, are positive functions, then infimum $(P) \geq$ supremum (HD).

Proof. Since \((u, y, p)\) is feasible for (HD), we have
\[-y_i g_i(u) - y_i k_i(u, p) + p^T \nabla_p (y_i k_i(u, p)) \geq 0, \quad i = 1, 2, \ldots, m.\]
Since \(x\) is feasible for (P), then by (3.2) and \(y_i \geq 0\), we obtain
\[\beta_i(x, u) \nabla_p (y_i k_i(u, p)) \eta(x, u) \geq 0, \quad i = 1, 2, \ldots, m.\]
Since \(\beta_i(x, u) > 0\), we have
\[\nabla_p (y_i k_i(u, p)) \eta(x, u) \geq 0, \quad i = 1, 2, \ldots, m,
\]
hence
\[\nabla_p (y^T k(u, p)) \eta(x, u) \geq 0. \quad (3.3)\]
By (3.1), it follows that
\[f(x) - f(u) - h(u, p) + p^T \nabla_p h(u, p)\]
\[\geq \alpha(x, u) \nabla_p h(u, p) \eta(x, u)\]
\[= \alpha(x, u) \nabla_p (y^T k(u, p)) \eta(x, u), \quad \text{by (1.4)},\]
\[\geq 0, \quad \text{by (3.3) and } \alpha(x, u) > 0.\]

Theorem 3.2 (strong duality). Let \(x_0\) be a local or global optimal solution of (P) at which a constraint qualification is satisfied, and let conditions (2.3) be satisfied. Then there exists \(y \in \mathbb{R}^m\) such that \((x_0, y, p = 0)\) is feasible for (HD) and the corresponding values of (P) and (HD) are equal. If also (3.1) and (3.2) are satisfied for all feasible \((x, u, y, p)\), then \(x_0\) and \((x_0, y, p = 0)\) are global optimal solutions for (P) and (HD), respectively.

Proof. It follows on the linear of [5, proof of Theorem 5].

Remark 3.1. If \(h(u, p) = p^T \nabla f(u)\) and \(k_i(u, p) = p^T \nabla g_i(u), \quad i = 1, 2, \ldots, m,\) then \((f, -g), \quad i = 1, 2, \ldots, m,\) satisfying conditions (3.1) and (3.2), is V-type I, and the higher-order dual (HD) reduces to the Mond–Weir dual:

\[(D) \quad \text{Maximize } f(u) \]
subject to \(\nabla f(u) - y^T g(u) = 0\)
\[y_i g_i(u) \leq 0, \quad i = 1, 2, \ldots, m,\]
\[y \geq 0.\]

If
\[h(u, p) = p^T (u) + \frac{1}{2} p^T \nabla^2 f(u) p\]
and
\[k_i(u, p) = p^T \nabla g_i(u) + \frac{1}{2} p^T \nabla^2 g_i(u) p, \quad i = 1, 2, \ldots, m, \]
then \((f, -g_i), i = 1, 2, \ldots, m\), satisfying conditions (3.1) and (3.2), is second-order V-type I, and the higher-order dual (HD) reduces to the second-order Mond–Weir dual:

\[(2D) \quad \text{Maximize} \quad f(u) - \frac{1}{2} p^T \nabla^2 f(u) p
\]
\[\text{subject to} \quad \nabla f(u) + \nabla^2 f(u) p = \nabla y^T g(u) + \nabla^2 y^T g(u) p,
\]
\[y_i g_i(u) - \frac{1}{2} p^T \nabla^2 y_i g_i(u) p \leq 0, \quad i = 1, 2, \ldots, m,
\]
\[y \geq 0. \]

The conditions (2.1) and (2.2) are special cases of the conditions (3.1) and (3.2), where \(a(x, u) = 1\) and \(b(x, u) = 1\), \(i = 1, 2, \ldots, m\).

We can also show that (HD) is a dual to (P) under weaker conditions.

Theorem 3.3 (weak duality). Let \(x\) be feasible for (P), and let \((u, y, p)\) be feasible for (HD). If, for all feasible \((x, u, y, p)\), there exists a function \(\eta: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n\) such that
\[\eta(x, u)^T \nabla_p h(u, p) \geq 0 \]
\[\Rightarrow \quad f(x) - f(u) - h(u, p) + p^T \nabla_p h(u, p) \geq 0 \quad (3.4) \]
and
\[\sum_{i=1}^m \phi_i(x, u) \left[y_i g_i(u) + y_i k_i(u, p) - p^T \nabla_p (y_i k_i(u, p)) \right] \geq 0 \]
\[\Rightarrow \quad \eta(x, u)^T \nabla_p (y^T k(u, p)) \geq 0, \quad (3.5) \]
where \(\phi_i: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \setminus \{0\}, i = 1, 2, \ldots, m\), are positive functions, then infimum (P) \(\geq\) supremum (HD).

Proof. Since \((u, y, p)\) is feasible for (HD), then by (1.5),
\[-y_i g_i(u) - y_i k_i(u, p) + p^T \nabla_p (y_i k_i(u, p)) \geq 0, \quad i = 1, 2, \ldots, m. \]
Since \(x\) is feasible for (P) and \(\phi_i(x, u) > 0\), it follows that
\[\sum_{i=1}^m \phi_i(x, u) \left[y_i g_i(u) + y_i k_i(u, p) - p^T \nabla_p (y_i k_i(u, p)) \right] \geq 0. \]
By (3.5), we obtain
\[\eta(x, u)^T \nabla_p (y^T k(u, p)) \geq 0. \]
Using (1.4), it follows that
\[\eta(x, u)^T \nabla_p h(u, p) \geq 0. \]
Therefore by (3.4), we have
\[f(x) \geq f(u) + h(u, p) - p^T \nabla_p h(u, p). \]

Remark 3.2. If \(h(u, p) = p^T \nabla f(u) \) and \(k_i(u, p) = p^T \nabla g_i(u) \), \(i = 1, 2, \ldots, m \), then (3.4) becomes the condition for \(f \) to be pseudo-type I (see [7]), and if \(\phi = 1 \), (3.5) becomes the condition for \(-g\) to be quasi-type I [7]. If
\[h(u, p) = p^T \nabla f(u) + \frac{1}{2} p^T \nabla^2 f(u) p \]
and
\[k_i(u, p) = p^T \nabla g_i(u) + \frac{1}{2} p^T \nabla^2 g_i(u) p, \quad i = 1, 2, \ldots, m, \]
than (3.4) becomes the condition for \(f \) to be second-order pseudo-type I [4] and if \(\phi = 1 \), (3.5) becomes the condition for \(-y^2 g\) to be second-order quasi-type I [4].

Strong duality between (P) and (HD) holds if (3.1) and (3.2) are replaced by (3.4) and (3.5), respectively.

Theorem 3.4 (strict converse duality). Let \(x^0 \) be an optimal solution of (P) at which a constraint qualification is satisfied. Let condition (2.3) be satisfied at \(x^0 \), and let conditions (3.4) and (3.5) be satisfied for all feasible \((x, u, y, p)\). If \((x^*, y^*, p^*)\) is an optimal solution of (HD), and if, for all \(x \neq x^* \)
\[\eta(x, x^*)^T \nabla_p h(x^*, p^*) \geq 0 \]
\[\Rightarrow \quad f(x) - f(x^*) - h(x^*, p^*) + p^*^T \nabla_p h(x^*, p^*) > 0, \quad (3.6) \]
then \(x^0 = x^* \); i.e., \(x^* \) solves (P) and
\[f(x^0) = f(x^*) + h(x^*, p^*) - p^*^T \nabla_p h(x^*, p^*). \]

Proof. We suppose that \(x^0 \neq x^* \) and exhibit a contradiction. Since \(x^0 \) is a solution of (P) at which a constraint qualification is satisfied, it follows by strong duality that there exists \(y^0 \in R^m \) such that \((x^0, y^0, p = 0)\) solves (HD) and the corresponding values of (P) and (HD) are equal. Therefore,
\[f(x^0) = f(x^*) + h(x^*, p^*) - p^*^T \nabla_p h(x^*, p^*). \quad (3.7) \]
Since \((x^*, y^*, p^*)\) is feasible for (HD), we have that
\[-y_i g_i(x^*) - y^*_i k_i(x^*, p^*) + p^* T \nabla_p (y^*_i k_i(x^*, p^*)) \geq 0\]
for \(i = 1, 2, \ldots, m\).

Since \(x^0\) is feasible for (P) and \(\phi_i(x^0, x^*) > 0\), it follows that
\[-\sum_{i=1}^{m} \phi_i(x^0, x^*) \left\{ y^*_i g_i(x^*) + y^*_i k_i(x^*, p^*) - p^* T \nabla_p (y^*_i k_i(x^*, p^*)) \right\} \geq 0.\]

By (3.5), we obtain
\[\eta(x^0, x^*) T \nabla_p (y^* T k(x^*, p^*)) \geq 0,\]
and then, by (1.4),
\[\eta(x^0, x^*) T \nabla_p h(x^*, p^*) \geq 0.\]

From (3.6), it follows that
\[f(x^0) - f(x^*) - h(x^*, p^*) + p^* T \nabla_p h(x^*, p^*) > 0,\]
which is a contradiction to (3.7).

4. GENERAL HIGHER-ORDER MOND–WEIR DUALITY

In this section we consider the following general Mond–Weir type higher-order dual to (P) as in [5],
\[
\text{(M-WHD)} \quad \text{Max} \quad f(u) + h(u, p) - p^T \nabla_p h(u, p)
\]
\[- \sum_{i \in I_0} y_i g_i(u) - \sum_{i \in I_0} y_i k_i(u, p)
+ p^T \nabla_p \left[\sum_{i \in I_0} y_i k_i(u, p) \right] \]
subject to
\[\nabla_p h(u, p) = \nabla_p (y^T k(u, p)) \]
\[
\sum_{i \in I_u} y_i g_i(u) + \sum_{i \in I_u} y_i k_i(u, p) - p^T \nabla_p \left[\sum_{i \in I_u} y_i k_i(u, p) \right] \leq 0,\]
\[\alpha = 1, 2, \ldots, r,\]
\[y \geq 0,\]
where $I_a \subseteq \mathcal{M} = \{1, 2, \ldots, m\}, \alpha = 0, 1, 2, \ldots, r$ with $\bigcup_{\alpha=0}^{r} I_a = \mathcal{M}$ and $I_a \cap I_\beta = \emptyset$, if $\alpha \neq \beta$.

In [5], it is shown that (M-WHD) is a dual to (P) under the conditions

$$
\eta(x, u)^T \left[\nabla_p h(u, p) - \nabla_p \left(\sum_{i \in I_0} y_i k_i(u, p) \right) \right] \geq 0
$$

$$
\Rightarrow \quad f(x) - \sum_{i \in I_0} y_i g_i(x) - \left(f(u) - \sum_{i \in I_0} y_i g_i(u) \right)
$$

$$
- \left(h(u, p) - \sum_{i \in I_0} y_i k_i(u, p) \right)
$$

$$
+ p^T \nabla_p h(u, p) - \nabla_p \left(\sum_{i \in I_0} y_i k_i(u, p) \right) \geq 0 \quad (4.1)
$$

and

$$
\sum_{i \in I_a} y_i g_i(x) - \sum_{i \in I_a} y_i g_i(u) - \sum_{i \in I_a} y_i k_i(u, p) + p^T \nabla_p \left(\sum_{i \in I_a} y_i k_i(u, p) \right) \geq 0
$$

$$
\Rightarrow \quad \eta(x, u)^T \left[\sum_{i \in I_a} y_i k_i(u, p) \right] \geq 0, \quad \alpha = 1, 2, \ldots, r. \quad (4.2)
$$

We can generalize (4.1) and (4.2) under which (M-WHD) is a dual to (P), to generalized type-I conditions, i.e., pseudo-type-I and quasi-type-I conditions. Since the proof follows along the lines of the one in [5], we state the theorem without proof.

Theorem 4.1 (weak duality). Let x be feasible for (P), and let (u, y, p) be feasible for (M-WHD). If for all feasible (x, u, y, p)

$$
\eta(x, u)^T \left[\nabla_p h(u, p) - \nabla_p \left(\sum_{i \in I_0} y_i k_i(u, p) \right) \right] \geq 0
$$

$$
\Rightarrow \quad f(x) - \sum_{i \in I_0} y_i g_i(x) - \left(f(u) - \sum_{i \in I_0} y_i g_i(u) \right)
$$

$$
- \left(h(u, p) - \sum_{i \in I_0} y_i k_i(u, p) \right)
$$

$$
+ p^T \nabla_p h(u, p) - \nabla_p \left(\sum_{i \in I_0} y_i k_i(u, p) \right) \geq 0 \quad (4.3)
$$
and

$$- \sum_{i \in I_0} y_i g_i(u) - \sum_{i \in I_0} y_i k_i(u, p) + p^T \nabla_p \left(\sum_{i \in I_0} y_i k_i(u, p) \right) \geq 0$$

$$\Rightarrow \eta(x, u)^T \nabla_p \left(\sum_{i \in I_0} y_i k_i(u, p) \right) \geq 0, \quad \alpha = 1, 2, \ldots, r, \quad (4.4)$$

then infimum (P) \geq supremum (M-WHD).

Remark 4.1. If $I_0 = \emptyset$ and $I_i = \{i\}, \ i = 1, 2, \ldots, m \ (r = m)$, then (M-WHD) becomes (HD) and the conditions (4.3) and (4.4) reduce to the conditions (3.4) and (3.5), respectively.

REFERENCES