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Laguerre functions on symmetric cones and recursion relations
in the real case
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Abstract

In this article we derive differential recursion relations for the Laguerre functions on the cone � of positive definite real matrices.
The highest weight representations of the group Sp(n, R) play a fundamental role. Each such representation acts on a Hilbert space
of holomorphic functions on the tube domain � + iSym(n, R). We then use the Laplace transform to carry the Lie algebra action
over to L2(�, d��). The differential recursion relations result by restricting to a distinguished three-dimensional subalgebra, which
is isomorphic to sl(2, R).
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0. Introduction

The theory of special functions has its origins in the late 18th and early 19th centuries when it was seen that
the algebraic, exponential, and trigonometric functions (and their inverses) were not adequate to express results to
differential equations that arose in the context of some important physical problems. New functions arose to which
we have associated names like Bessel, Hermite, Jacobi, Laguerre, and Legendre. Then there are the Gamma, Beta,
Hypergeometric and many other families of special functions. By the latter half of the 19th century these same functions
arose in different contexts and their name ‘special’ began to take on greater meaning. Their functional properties were
explored and included functional relations, differential and difference recursion relations, orthogonality relations,
integral relations, and others.

The preface of Vilenkin’s book [27] notes that the connection between special functions and group representations
was first discovered by É. Cartan in the early part of the 20th century. By the time Vilenkin’s book appeared in the 1960s
that interplay had been well established. The texts in [19,27,28], for example, well document the general philosophy.
In short, group representation theory made it possible to express the classical special functions as matrix entries of a
representation and to unify many of the disparate relationships mentioned above. The representation can then be used to
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derive differential equations and differential recursion relations for those functions. One of the problems then becomes
to find explicit expressions for the differential operators given abstractly by the representation theory.

Generalizations of the standard Laguerre functions on polynomials showed up as early as 1955 in the work of Herz
[11] on special functions on the space of complex m×m-matrices. Here the Laguerre polynomials were defined on the
cone of positive definite complex matrices in terms of generalized hypergeometric functions introduced in the same
article.

In 1964, Simon Gindikin published his paper: ‘Analysis on Homogeneous Domains’, cf. [10]. This important paper
developed special functions as part of analysis on homogeneous convex cones and built upon the earlier work of
Siegel [26] on the cone of positive definite matrices. The Siegel integral of the first and second kind generalize to
become the Beta and Gamma functions for the cone, respectively. Generalized hypergeometric functions are extended
to homogeneous cones. Many important differential properties also extend.

Around the same time Koecher [15,16] began to develop his analysis on symmetric cones and the complex tube
domains associated with them. Jordan algebras proved to be a decisive tool for framing and obtaining many important
fundamental results. The outstanding text in [9] documents this interaction (see also its extensive bibliography). Nev-
ertheless, the representation theory of Hermitian groups, which are naturally associated with tube domains, is not used
in any outstanding way.

In a series of papers [6,7,4,5] the second and third authors (with Genkai Zhang in the first two referenced articles) use
the representation theory of Hermitian groups in a decisive way to obtain differential and difference recursion relations
on series of special functions. Motivated by the results in [4] and this article, the authors were recently able to derive
the differential equations and recursions relations in general, cf. [1]. In the context of bounded symmetric domains the
relevant special functions are generalized Meixner polynomials and in the context of tube domains over a symmetric
cone the relevant special functions are Laguerre functions. These special functions exist in distinguished L2-spaces,
which are unitarily isomorphic to Hilbert spaces of holomorphic functions on either a bounded symmetric domain
or a tube domain T (�). The well-known representation theory that exists there then transfers to the corresponding
L2-space to produce differential and difference relations that exist among the special functions. In particular, abstract
representation theory shows that there exists three differential operators related to the Laguerre functions such that
one of them has the Laguerre functions as eigenfunctions, one of them raises the indices, and the third one lowers the
indices. Furthermore, the complex linear combinations of these three differential operators form a complex Lie algebra
isomorphic to sl(2, C). It should be noted that such a three-dimensional Lie algebra of differential operators has shown
up in several places in the literature. We would like to mention its important role in the study of the Huygens’ principle
[3,12,13], in representation theory [14] and the reference therein, and in the theory of special functions [23].

One cannot downplay the essential role that Jordan algebras play in establishing and expressing many of the fun-
damental results obtained about orthogonal families of special functions defined on symmetric cones. Nevertheless,
the theory of highest weight representations adds fundamental new results not otherwise easily obtained. In short,
our philosophy is that there is a strong interplay between Jordan algebras, highest weight representations, and special
functions which has not been fully exploited.

The starting point in this project has been the representation theory, wherein the Laguerre polynomials form an
orthogonal family of functions invariant under a group action. However, the Laguerre polynomials have also been
introduced in the literature using several variable Jack polynomials [2,8,18]. To explain the connection a little more
notation is needed. Let J be an irreducible Euclidean Jordan algebra of rank r . Let c1, . . . , cr ∈ J be a Jordan frame,
a =⊕r

j=1 Rcj and e = c1 + · · · + cr . Let � = {x2|x ∈ J and x regular} be the standard symmetric cone in J . Let
H = {g ∈ GL(J )|g� = �}0 and L the maximal compact subgroup of H fixing e. Then the Laguerre functions and
polynomials are L-invariant functions on �. Let

�1 = a ∩ � � (R+)r .

Then �= L · �1 and therefore the Laguerre polynomial and functions are uniquely determined by their restriction to
�1. Thus, the Laguerre functions can also be defined as polynomials on �1 or the vector space a, invariant under the
Weyl group WH =NL(a)/ZL(a). This is the way the Laguerre polynomials are defined in the above references.

In the case of symmetric matrices, this boils down to the fact that each symmetric matrix can be diagonalized. Thus

�1 = {d(�1, . . . , �n) | �j > 0}



M. Aristidou et al. / Journal of Computational and Applied Mathematics 199 (2007) 95 –112 97

and the Laguerre polynomials can be viewed as polynomials in the eigenvalues, invariant under permutations of the
eigenvalues.

In this present paper, we will continue the themes outlined in [6,7,4,5] for the Laguerre functions defined of the cone
of positive definite real symmetric matrices. The underlying group is Sp(n, R) and its representation theory establishes
new differential recursion relations that Laguerre functions satisfy. The case n = 1 reduces to the Laguerre functions
defined on R+. Briefly, the Laguerre polynomials on R are defined by the formula

L�
m(x)=

m∑
k=0

�(m+ �)

�(k + �)

(m

k

)
(−x)k .

These are up to multiplication by m! and a shift by one in the � parameter the standard Laguerre polynomials on R.
The Laguerre functions are defined by

��
m(x)= e−xL�

m(2x).

The differential recursion relations are then expressed by the following three formulas:

(1) (xD2 + �D − x)��
m(x)=−(2m+ �)��

m(x),
(2) (xD2 + (2x + �)D + (x + �))��

m(x)=−2m(�+m− 1)��
m−1(x),

(3) (xD2 − (2x − �)D + (x − �))��
m(x)=−2��

m+1(x).

It is these three formulas that we generalize via the representation theory of Sp(n, R) to Laguerre functions defined
on the cone of positive definite real symmetric matrices. (In [6], but not [7], a factor of 1/m! is included in the
definition of L�

m. The inclusion of this factor changes the differential recursion relations slightly.) A key calculation is
an explicit formula for the Lie algebraic action of sp(n, C) on L2(�, d��). In [1] we use the triangular decomposition
of the Lie algebra g, g= n+�h�n−, as coordinates to derive this action. Here, however, we use the Harish–Chandra
decomposition of gC = p+�kC�p−.

This article is organized as follows: In the first section we introduce some standard Jordan algebra notation. In
particular, we introduce the Laguerre functions and polynomials. Even though this material and most of the material
in Sections 2 and 3 hold in general for simple Euclidean Jordan algebras, we specialize to the case J = Sym(n, R), the
Jordan algebra of symmetric real n× n-matrices. In Section 2 we introduce the tube domain T (�)=�+ iSym(n, R),
where � is the open self dual cone of positive definite matrices. We also discuss the structure of the group Sp(n, R)

and its Lie algebra sp(n, R). Some important subalgebras of sp(n, C) are introduced. This structure is later used to
construct the differential operators that give rise to the differential equations satisfied by the Laguerre functions.

Section 3 is devoted to the discussion of the highest weight representations (��,H�(T (�))). We also introduce the
Laplace transform as a special case of the restriction principle introduced in [22]. In Section 4 we describe how the
Lie algebra, sp(n, C) acts on H�(T (�)). In particular, Proposition 4.2 gives an explicit formula for the action of the
derived representation for each of the three subalgebras kC, p+, and p−, whose direct sum is sp(n, C). It should be
noted, however, that not all of this information is needed to establish the differential recursion relations for the Laguerre
functions. In fact, only the action of three elements are needed. The action of sp(n, C) on L2(�, d��) is described in
Section 5. The result is the following theorem:

Theorem 5.2. For f ∈ L2
�(�) a smooth vector we have

1. ��(X)f (x)= tr[(bx + (ax − xa − �b)∇ − x∇b∇]f (x), X =
(

a
b

b
a

)
∈ kC.

2. ��(X)f (x)= tr[(�a + ax + (ax + xa + �a)∇ + x∇a∇]f (x), X =
(

a
−a

a
−a

)
∈ p+.

3. ��(X)f (x)= tr[(�a − ax + (ax + xa − �a)∇ − x∇a∇]f (x), X =
(

a
a
−a
−a

)
∈ p−.

Here we use ∇ to denote the gradient, kC is the complexification of the Lie subalgebra u(n) ⊂ sp(n, R), and
p± are certain Abelian subalgebras of sp(n, C) on which kC acts. We explain the main ideas for the special case of
Sp(1, R) � SL(2, R).
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Specializing the above results to the elements

X =
(

1 1
−1 −1

)
∈ p+, Y =

(
1 −1
1 −1

)
∈ p− and Z =

(
0 1
1 0

)
∈ kC,

where 1 stands for the n×n identity matrix, using properties of highest weight representations, and employing Lemma
5.5 of [5] we get our main result.

Theorem 6.3. The Laguerre functions are related by the following differential recursion relations:

(1) tr(−x∇∇ − �∇ + x)��
m(x)= (n�+ 2|m|)��

m(x).

(2) tr(x∇∇ + (�I + 2x)∇ + (�I + x))��
m(x)=−2

∑r
j=1 (

m
m−ej

)(mj − 1+ �− (j − 1))��
m−ej

(x).

(3) tr(−x∇∇ + (−�I + 2x)∇ + (�I − x))��
m(x)= 2

∑r
j=1cm(j)��

m+ej
(x).

1. The Jordan algebra of real symmetric matrices

In this section we introduce the Jordan algebra J of real symmetric matrices. We then discuss the space of L-invariant
polynomial functions on J and the �-function associated to the cone of symmetric positive matrices. Finally we
introduce the generalized Laguerre functions and polynomials. We refer to [9] for more information on Jordan algebras.

1.1. The Jordan algebra J = Sym(n, R)

We denote by J the vector space of all real symmetric n×n matrices. The multiplication x ◦y= 1
2 (xy+yx) and the

inner product (x | y)= tr(xy) turn J into a real Euclidean simple Jordan algebra. The determinant and trace functions
for J are the usual determinant and trace of an n× n matrix and will be denoted det and tr, respectively. Observe that
dim J := d = n(n + 1)/2. Let � denote the interior of the cone of squares: {x2 | x ∈ J }. Then � is the set of all
positive definite matrices in J . Let

H(�)= {g ∈ GL(J ) | g�= �}
and let H be the connected component of the identity of H(�). Then H can be identified with GL(n, R)+ (where +
indicates positive determinant) acting on � by the formula

g · x = gxgt, g ∈ H, x ∈ �.

This action is transitive and, since � is self-dual, it follows that � is a symmetric cone. Let L be the stability subgroup
of the identity e ∈ �. Then L= SO(n, R) and

� � H/L. (1.1)

Let Ei,i be the diagonal n × n matrix with 1 in the (i, i)-position and zeros elsewhere. Then (E1,1, . . . , En,n) is a
Jordan frame for J . Let J (k) be the +1-eigenspace of the idempotent E1,1 + · · · +Ek,k acting on J by multiplication.
Each J (k) is a Jordan subalgebra and we have

J (1) ⊂ J (2) ⊂ · · · ⊂ J (n) = J .

If detk is the determinant function for Jk and Pk is orthogonal projection of J onto J (k) then the function �k(x) =
detkPk(x) is the usual kth principal minor for an n× n symmetric matrix; it is homogeneous of degree k. In particular
�(x) := �n(x)= det(x). Note also that

�(h · x)= det(h)2�(x) ∀h ∈ H . (1.2)

For m = (m1, . . . , mn) ∈ Cn we write m�0 if each mi is a nonnegative integer and m1 �m2 � · · · �mn �0. We
let �= {m | m�0}. For each m ∈ � define

�m = �m1−m2
1 �m2−m3

2 · · ·�mn−1−mn

n−1 �mn
n .
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These are the generalized power functions. It is not hard to see that the degree of �m is |m| := m1+· · ·+mn. Observe
that each generalized power function extends to a holomorphic polynomial on JC = Sym(n, C) in a unique way.

1.2. The L-invariant polynomials

For each m ∈ � we define an L-invariant polynomial, 	m, on JC by

	m(z)=
∫

L

�m(lz) dl, z ∈ JC,

where dl is normalized Haar measure on L. A well-known theorem of Schmid (cf. [25]) gives the following.

Lemma 1.1. If P(JC) is the space of all polynomial functions on JC and P(JC)L denotes the space of L-invariant
polynomials then {	m | m�0} is a basis of P(JC)L. Furthermore, if Pk(JC)L denotes the space of L-invariant
polynomials of degree less than or equal to k then {	m | |m|�k} is a basis of Pk(JC)L.

This lemma implies among other things that 	m(e + x) is a linear combination of 	n, |n|� |m|. The generalized
binomial coefficients, (

m
n ), are defined by the equation

	m(e + x)=
∑
|n|� |m|

(
m
n

)
	n(x).

1.3. The generalized Gamma function

For m ∈ Cn, we define �m(x), x ∈ �, by the same formula given above for m ∈ �. The generalized Gamma
function is defined by

��(m)=
∫
�

e−trx�m(x)�(x)−(n+1)/2 dx.

Conditions for convergence of this integral are given in the proposition below. If � is a real number we will associate
the multi-index (�, . . . , �) and denote it by � as well. The context of use should not cause confusion. Thus we define

(�)m = ��(�+m)

��(�)
.

For later reference we note the following facts about the generalized Gamma function:

Proposition 1.2. Let the notation be as above. Then the following holds:

(1) If m= (m1, m2, . . . , mn) ∈ Cn then the integral defining the generalized Gamma function converges if Re(mj ) >

(j − 1) 1
2 , for j = 1, . . . , n, and in this case

��(m)= (2�)n(n−1)/4
n∏

i=1

�

(
mi − (i − 1)

1

2

)
,

where � is the usual Gamma function. In particular it follows, that the �-function has a meromorphic continuation
to all of Cn.

(2) If ek is an n-vector with 1 in the kth position and 0’s elsewhere then the following holds for all m ∈ Cn:

(a)
��(m)

��(m− ek)
=mk − 1− (k − 1)

1

2
,

(b)
��(m+ ek)

��(m)
=mk − (k − 1)

1

2
.

Proof. Part (2) follows immediately from (1) and part (1) is Theorem 7.1.1 of Faraut and Koranyi [9]. �
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1.4. The generalized Laguerre functions and polynomials

Let � > 0 and m ∈ �. The generalized Laguerre polynomial is defined (cf. [9], p. 242) by the formula

L�
m(x)= (�)m

∑
|n|� |m|

(
m
n

)
1

(�)n
	n(−x), x ∈ J

and the generalized Laguerre function is defined by

��
m(x)= e−trxL�

m(2x).

Remark 1.3. In the case n= 1, i.e. in the case G � Sp(1, R)= SL(2, R), the generalized Laguerre polynomials and
functions defined above are precisely the classical Laguerre polynomials and functions defined on R+. We refer to [6]
for the discussion of that case.

The determinant Det(h) of h ∈ H acting on J is

Det(h)= det(h)n+1.

It follows from (1.2) that the measure

d�0(x)= �(x)−(n+1)/2 dx

is H -invariant. Here dx is the Lebesgue measure on J . More generally, we set d��(x)= �(x)�−(n+1)/2 dx and define

L2
�(�)= L2(�, d��).

We observe that by (1.2) it follows that H acts unitarily on L2
�(�) be the formula

��(h)f (x)= det(h)�f (ht · x).

Theorem 1.4 (Davidson, Ólafsson and Zhang [7], Faraut and Koranyi [9]). The set {��
m | m�0} forms a complete

orthogonal system in L2
�(�)L, the Hilbert space of L-invariant functions in L2

�(�).

In [6] it was shown, that the classical differential recursion relations and differential equations for the Laguerre
functions on R+ follows from the representation theory of Sp(1, R)=SL(2, R). In [4] this was generalized to the space
of complex Hermitian matrices. It is a goal of this article to extend this result to the generalized Laguerre functions
defined of the cone of symmetric matrices. This indicates nicely what the more general results should be. Here we use
heavily the structure of Sp(n, R) and its Lie algebra, but the proof of the general results should be more in the line of
Jordan algebras.

2. The tube domain T (�), the group Sp(n, R) and its lie algebra

In this section we introduce the tube domain T (�)=�+ iSym(n, R) and discuss the action of the group Sp(n, R)

on this domain. We then discuss some important Lie subalgebras of sp(n, C), the complexification of the Lie algebra
of g= sp(n, R). These subalgebras will show up again in Section 4 where we compute their action on Hilbert spaces of
holomorphic functions on T (�) introduced in the next section. We then use that information to construct the Laguerre
differential operators.

2.1. The group Sp(n, R)

Let T (�)=�+ iJ be the tube over � in JC, which we identify with the space of complex n×n symmetric matrices.
Let G0 be the group of biholomorphic diffeomorphisms on T (�). Then G0 is a Lie group with Lie algebra isomorphic
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to sp(n, R) and acts homogeneously on T (�). The group Sp(n, R) is isomorphic to a finite covering group of G0 in
the following precise way. The usual definition of Sp(n, R) is

Sp(n, R)= {g ∈ SL(2n, R) | gjgt = j},
where j =

(
0
−1

1
0

)
∈ SL(2n, R). Defined in this way Sp(n, R) acts by linear fractional transformations on the upper

half plane J + i�. Let G be the group defined by

G=
{(

A B

C D

)∣∣∣∣
(

A −iB

iC D

)
∈ Sp(n, R)

}
.

This means then that the (1, 2) and (2, 1) entries of an element of G are purely imaginary matrices. For a 2n×2n-matrix

g =
(

A
C

B
D

)
we have g ∈ G if and only if the following relations among A, B, C, and D hold:

AtC − CtA= 0, AB t − BAt = 0,

AtD − CtB = I, ADt − BCt = I,

B tD −DtB = 0, CDt −DCt = 0,

B tC −DtA=−I, ADt − BCt =−I.

Clearly G is isomorphic to Sp(n, R). It acts on the right-half plane T (�)=�+ iJ by linear fractional transformations:

if g =
(

A
C

B
D

)
∈ G and z ∈ T (�) then

g · z= (Az+ B)(Cz+D)−1.

It is also a finite covering group of G0.

2.2. Some subgroups of G

Let e be the n× n-identity matrix. Then e ∈ � ⊂ T (�). Let K be the stability subgroup of e in G. Then

K =
{(

A B

B A

)
∈ G | A± B ∈ U(n)

}
� U(n).

Here the isomorphism is given by(
A B

B A

)
	→ A+ B.

The subgroup K is a maximal compact subgroup of G and G/K is naturally isomorphic to T (�) by the map gK → g ·e.
The connected component of the identity of the subgroup of G that leaves � invariant is isomorphic to H via the map

h→
(

h 0
0 (ht)−1

)
.

This map realizes L as a subgroup of G as well. In fact, we have

L=H ∩K ,

via the above isomorphism.

2.3. Lie algebras

If P=
(

1
0

0
i

)
then G=P−1Sp(n, R)P . From this it follows that the Lie algebra, g, of G is given by g=P−1sp(n, R)P ,

and hence

g=
{(

a ib

−ic −at

)
∈ sl(2n, C) | a, b, c real, b = bt, c = ct

}
. (2.1)
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We define a Cartan involution on g by


(X)=−X∗.

It induces a decomposition of g and gC into ±1-eigenspaces, g= k+ p and gC = kC + pC. The +1-eigenspace k is the
Lie algebra of K . These spaces are given by

k= {X ∈ g | 
(X)=X} =
{(

a ib

ib a

)
∈ sl(2n, C) | a, b real, a =−at, b = bt, tr(a)= 0

}

and

p= {X ∈ g | 
(X)=−X} =
{(

a ib

−ib −a

)
∈ sl(2n, C) | a, b real, a = at, b = bt

}
.

Their complexifications are given by

kC =
{(

a b

b a

)
∈ sl(2n, C) | a, b complex, a =−at, b = bt, tr(a)= 0

}

and

pC =
{(

a b

−b −a

)
∈ sl(2n, C) | a, b complex, a = at, b = bt

}
.

It is clear that KC acts onpC. This representation decomposes into two parts. For that let Z=
(

0
1

1
0

)
. Then Z ∈Z(kC)

and ad(Z) : gC → gC has eigenvalues 0, 2,−2. The 0-eigenspace is kC, the +2-eigenspace is denoted by p− and is
given by

p− =
{(

a −a

a −a

)
∈ gC | a = at

}
⊂ pC

and the −2-eigenspace is denoted by p+ and is given by

p+ =
{(

a a

−a −a

)
∈ gC | a = at

}
⊂ pC.

Each of the spaces p± are invariant under KC and irreducible as KC representation. Note that this is not necessarily the
standard notation. In our notation the eigenvectors (in p+) with −2-eigenvalue correspond to annihilation operators
while the eigenvectors (in p−) with+2-eigenvalue correspond to creation operators. These operators will be described
is Section 4 below.

3. The highest weight representations (��,H�(T (�)))

In this section we introduce the highest weight representations (��,H�(T (�))) and state the main results needed.
We also introduce the Laplace transform as a special case of the restriction principle introduced in [22].

3.1. Unitary representations of G in O(T (�))

In this subsection we define a series of unitary representations of G on a Hilbert space of holomorphic functions on
T (�). These representations are well known. Let G̃ be the universal covering group of G. Then G̃ acts on T (�) by
(g, z) 	→ �(g) · z where � : G̃→ G is the canonical projection. For � > n let H�(T (�)) be the space of holomorphic
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functions F : T (�)→ C such that

‖F‖2� : =��

∫
T (�)

|F(x + iy)|2�(x)�−(n+1) dx dy <∞, (3.1)

where

�� = 2n�

(4�)d��

(
�− n+ 1

2

) .

Then H�(T (�)) is a non-trivial Hilbert space with inner product

(F |G)= ��

∫
T (�)

F (x + iy)G(x + iy)�(x)�−(n+1) dx dy. (3.2)

For ��n this space reduces to {0}. If �=n+1 this is the Bergman space. The space H�(T (�)) is a reproducing kernel
Hilbert space. This means that point evaluation

Ez :H�((T (�))→ C,

given by EzF=F(z), is continuous for every z ∈ T (�). This implies the existence of a kernel function Kz ∈H�(T (�)),
such that F(z)= (F |Kz) for all F ∈H�(T (�)) and z ∈ T (�). Set K(z, w)=Kw(z). Then K(z, w) is holomorphic in
the first variable and antiholomorphic in the second variable. The function K(z, w) is called the reproducing kernel for
H�(T (�)). We note that the Hilbert space is completely determined by the function K(z, w). In particular, we have:

(1) The space of finite linear combinations H�(T (�))0 : ={∑ cjKwj
| cj ∈ C, wj ∈ T (�)} is dense in H�(T (�));

(2) The inner product in H�(T (�))0 is given by⎛
⎝∑

j

cjKwj

∣∣∣∣∣∣
∑

k

dkKzk

⎞
⎠=∑

j,k

cj dkK(zk, wj ).

We refer to [7,17] for more details.

3.2. The unitary representations (��,H�(T (�)))

For g ∈ G̃ and z ∈ T (�), let J (g, z) be the complex Jacobian determinant of the action of g ∈ G̃ on T (�) at the
point z. We will use the same notation for elements g ∈ G. A straightforward calculation gives

J (g, z)= det(Cz+D)−n−1, g =
(

A B

C D

)
∈ G and z ∈ T (�).

We also have the cocycle relation

J (ab, z)= J (a, b · z)J (b, z)

for all a, b ∈ G̃ and z ∈ T (�). It is well known that for � > n the formula

��(g)f (z)= J (g−1, z)�/(n+1)f (g−1 · z)= det(A− z C)−�f (g−1 · z), (3.3)

defines a unitary irreducible representation of G̃. In [9,24,29] it was shown that this unitary representation (��,H�
(T (�))) has an analytic continuation to the half-interval � > (n− 1) 1

2 . Here the representation �� is given by the same
formula (3.3) but the formula for the norm in (3.1) is no longer valid. There are also finitely many equidistant values
of � that give rise to unitary representations, but they will not be of concern to us here.

In the following theorem we summarize what we have discussed and collect additional information from [7,9]
(cf. p. 260, in particular, Theorem XIII.1.1 and Proposition XIII.1.2).
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Theorem 3.1. Let the notation be as above and assume that � > n. Then the following hold:

(1) The space H�(T (�)) is a reproducing Hilbert space.
(2) The reproducing kernel of H�(T (�)) is given by

K�(z, w)= ��(�)�(z+ w̄)−�.

(3) If � > 1
2 (n− 1) then there exists a Hilbert space H�(T (�)) of holomorphic functions on T (�) such that K�(z, w)

defined in (2) is the reproducing kernel of that Hilbert space. The representation �� defines a unitary representation
of G̃ on H�.

(4) If � > 1
2 (n− 1) then the functions

q�
m(z) := �(z+ e)−�	m

(
z− e

z+ e

)
, m ∈ �,

form an orthogonal basis of H�(T (�))L, the space of L-invariant functions in H�(T (�)).

3.3. The restriction principle and the Laplace transform

The restriction principle [21,20] is a general recipe to construct unitary maps between a reproducing kernel Hilbert
space of holomorphic functions and L2-spaces on a totally real submanifold. Suppose M is a complex manifold and
H(M) is a reproducing kernel Hilbert space of holomorphic functions on M with kernel K . Suppose X is a totally real
submanifold of M and a measure space for some measure �.

Assume we have a holomorphic function D on M , such that D is positive on X, and such that the map

R : H(M)→ L2(X, �),

given by Rf (x)=D(x)f (x), is densely defined. As each f is holomorphic, its restriction to X is injective. It follows
that R is an injective map. We call R a restriction map. Assume R is closed and has dense range. If K(z, w)=Kw(z)

is the reproducing kernel for H(M), and f ∈ L2(X, d�), then

R∗f (z)= (R∗f |Kz)

= (f |RKz)

=
∫

X

f (x)D(x)K(z, x) d�(x).

In particular, if we set 
(x, y)=D(y)D(x)K(y, x), then RR∗ is given by

RR∗f (y)=
∫

X

f (x)
(x, y) d�(x)

and thus is an integral operator. Consider the polar decomposition of the operator R∗. We can write

R∗ = U
√

RR∗,

where U is a unitary operator

U : L2(X, �)→ H(M).

The unitary map U is sometimes called the generalized Segal–Bargmann transform. In many applications of the
restriction principle, M and X will be homogeneous spaces with a group H acting on both. When the restriction map
R is H -intertwining so will the unitary operator U . This is exactly what happens in the situation at hand. Here we can
take D = 1 and define R :H�(T (�))→ L2

�(�) by

Rf (x)= f (x) .

Then we obtain the following:
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Theorem 3.2. The map R is injective, densely defined and has dense range. The unitary part, U , of the polar decom-
position of R∗: R∗ = U

√
RR∗, is the Laplace transform given by

Uf (z)=L�f (z)=
∫
�

e−(z|x)f (x) d��(x).

Furthermore,

L�(��(h)f )= ��(h)L�(f )

for all h ∈ H . In particular, L� induces an isomorphism L� : L2
�(�)L→H�(T (�))L. Moreover

L�(�
�
m)= ��(m+ �)q�

m.

Proof. The first proof of this theorem was done for SL(2, R) in [6]. The general case is on pp. 187–190 of Davidson
and Ólafsson [7]. �

Remark 3.3. Rossi and Vergne [24] obtained the unitarity of the Laplace transform using a result of Nussbaum.

The unitarity of the Laplace transform allows us to transfer the representation, ��, of G onH�(T (�)) to an equivalent
representation of G on L2

�(�), which extends �� by the above theorem. We will denote the extension by �� as well. It
is possible to describe �� on various subgroups of G whose product is dense in G. However, it is a difficult problem at
best to describe a global realization of �� on all of G. However, part of the point of this paper is to give a formula for
the derived representation of �� on the Lie algebra of G and its complexification. It is from the derived representation
that new differential recursion relations arise that relate the generalized Laguerre functions.

4. The action of gC

In this section we introduce some subalgebras of sp(n, C), the complexification of the Lie algebra of G, and explain
how they act in the Hilbert space H�(T (�)).

4.1. The derived representation on H�(T (�))

Denote by H�(T (�))∞ the space of functions F ∈H�(T (�)) such that the map

R � t 	→ ��(exp tX)F ∈H�(T (�))

is smooth for all X ∈ g=sp(n, R). If f ∈ C∞c (G), then ��(f )F =∫
G

f (g)��(g)F dg is in H�(T (�))∞ and it follows,
that H�(T (�))∞ is dense in H�(T (�)). The Lie algebra representation, denoted also by ��, of g on H�(T (�))∞ is
given, by differentiation as follows:

��(X)F = lim
t→0

��(exp tX)F − F

t

= d

dt
��(exp(tX))F |t=0.

Note that the limit is taken in the Hilbert space norm in H�(T (�)), but it is easy to see that if F ∈H�(T (�))∞, then
in fact for X ∈ g:

��(X)F (z)= d

dt
J (exp(−tX), z)�/(n+1)F (exp(−tX) · z)|t=0, (4.1)

for all z ∈ T (�). We extend this by complex linearity to gC.
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Define Dw by

DwF(z)= d

dt
F (z+ tw)|t=0 = F ′(z)w,

where F ′ denotes the derivative of F .

Lemma 4.1. Suppose z, w are n× n matrices over C and z is invertible. Then

Dw det(z)n = n det(z)n tr(z−1w).

Proof. This follows from the chain rule and the fact that

Dw det(z)= d

dt
det(z+ tw)|t=0 = det z

d

dt
det(1+ tz−1w)|t=0 = det(z) tr(z−1w). �

The following proposition expresses the relevant formulas on kC,p+, andp−. Its proof is a straight forward calculation
using Lemma 4.1.

Proposition 4.2. For each piece of the Lie algebra of gC introduced in Subsection 2.3, we have

(1) ��(X)F (z)= � tr(bz)F (z)+Dza−az−b+zbzF (z), X =
(

a
b

b
a

)
∈ kC.

(2) ��(X)F (z)=−� tr(az+ a)F (z)−D(za+az)+zaz+aF (z), X =
(

a
−a

a
−a

)
∈ p+.

(3) ��(X)F (z)=−� tr(−az+ a))F (z)+D−(za+az)+zaz+aF (z), X =
(

a
a
−a
−a

)
∈ p−.

4.2. Highest weight representations

The fact that �� is a highest weight representation plays a decisive role in the recursion relations that we obtain. At
this point we explain what this notion means.

We assume G is a Hermitian group, which means that G is simple and the maximal compact subgroup K has a
one dimensional center. The Hermitian groups have been classified in terms of their Lie algebras. They are su(p, q),
sp(n, R), so∗(2n), so(2, n), and two exceptional Lie algebras. The assumption that K has a one dimensional center
implies that G/K is a bounded symmetric domain. In particular, there is a G-invariant complex structure on G/K .
It also implies that the complexification of the Lie algebra, gC, has a decomposition of the form gC = p+�kC�p−,
Specifically, p+, kC, and p− are the −2, 0, 2-eigenspaces of ad(Z), respectively, where Z is in the center of kC.

Lemma 4.3. We have the following inclusions:

[kC, p±] ⊂ p±,

[p+, p−] ⊂ kC.

Suppose that � is an irreducible representation of G on a Hilbert space H. We say � is a highest weight representation
if there is a nonzero vector v ∈ H such that

�(X)v = 0,

for all X ∈ p+. Let H0 be the set of all such vectors. The following theorem is well known.

Theorem 4.4. Suppose � is an irreducible unitary highest weight representation of G on H and H0 is defined as above.
Then (�|K, H0) is irreducible. Furthermore, there is a scalar � such that

�(Z)v = �v,

for all v ∈ H0. If

Hn = {v ∈ H | �(Z)v = (�+ 2n)v},
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then

H=
⊕
n�0

Hn.

Additionally,

�(Z) : Hn −→ Hn, Z ∈ kC,

�(X) : Hn −→ Hn−1, X ∈ p+,

�(Y ) : Hn −→ Hn+1, Y ∈ p−,

where in the case n= 0, H−1 is understood to be the {0} space.

Proof. By Lemma 4.3, H0 is an invariant K-space. Suppose V0 is a nonzero invariant subspace of H0 and W0 is its
orthogonal complement in H0. Define Vn inductively as follows:

Vn = span{�(Y )v | Y ∈ p−, v ∈ Vn−1}.
Let V=�Vn. Define Wn in the same way as Vn and let W=�Wn. Then, by Lemma 4.3, V and W are invariant
gC subspaces of H. Since � is unitary V and W are orthogonal. However, since � is irreducible and V is nonzero, it
follows that V =H and hence W = 0. This implies W0 = 0 and thus �|K is irreducible. Since �(Z) commutes with
�(K) Schur’s lemma implies that �(Z) = � on H0 for some scalar �. Since V0 = H0, induction, Lemma 4.3, and
irreducibility of � implies that Vn =Hn. The remaining claims follow from Lemma 4.3. �

Remark 4.5. The operators �(X), X ∈ p+, are called annihilation operators because, for v in the algebraic direct
sum �Hn, sufficiently many applications of �(X) annihilates v. For Y ∈ p− the operators �(Y ) are called creation
operators.

Remark 4.6. A straightforward calculation gives

��(X)q�
0 = 0,

for all X ∈ p+ and thatH�(T (�))0=Cq�
0 .Thus (��,H�(T (�))) is an irreducible unitary highest weight representation

of G and by unitary equivalence so is (��, L
2
�(�)).

5. The realization of �� acting on L2(�, dµ�)

In this section we determine explicitly the action of gC on L2(�, d��). More specifically, we define �� via the Laplace
transform by the following formula

��(X)=L−1
� ��(X)L�

and will determine explicit formulas for ��(X), for X ∈ p+, X ∈ kC, and X ∈ p−.

5.1. Preliminaries

Let Eij be the n × n matrix with a 1 in the (i, j) position and 0’s elsewhere. Define Ẽi,j = 1
2 (Ei,j + Ej,i). Then

the collection {Ẽi,j | 1� i�j �n} is a basis of J and JC, the real and complex symmetric matrices. Furthermore,
(Ẽi,j | Ẽk,l) = 1

2 (�jk�il + �j l�ik), which implies {Ẽi,j | 1� i�j �n} is an orthogonal basis. Set Di,j = D
Ẽi,j

and
observe that Di,j =Dj,i . The gradient of f , ∇f , is defined by

(∇f (x) |u)=Duf (x).
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Proposition 5.1. Suppose f, g ∈ L2(�, d��) are smooth and f vanishes on the boundary of the cone �. Let 1� i, j �n.
Then

(1)
∫
� Di,jf (s)g(s) ds =− ∫

� f (s)Di,j g(s) ds,
(2) zi,j

∫
� e−(z|s)f (s) ds = ∫

� e−(z|s)Di,j f (s) ds.

Proof. Step (1) is Stokes Theorem and (2) follows from (1) and the fact that Di,j e−(z|s) =−e−(z|s)zi,j , z ∈ JC. �

5.2. The representation ��

Recall that we determined the action of kC, p+ and p− on H�(T (�))∞ in Proposition 4.2. We denote the subspace
of smooth vectors in L2

�(�) by L2
�(�)∞. Thus f ∈ L2

�(�)∞ if and only if the map

R � t 	→ ��(exp tX)f ∈ L2
�(�)

is smooth for all X ∈ g. Thus

L2
�(�)∞ =L−1

� (H�(T (�))∞).

The action of g on L2
�(�)∞ is, as usual, defined by

��(X)f = lim
t→0

��(exp tX)f − f

t
,

for X ∈ g, and then by complex linearity the action extends to gC. The following theorem collects the corresponding
equivalent action on the Hilbert space L2

�(�)∞. We remark again that these formulas can be stated in terms of the
Jordan algebra structure of J indicating the extension of these results to other tube domains, cf. [1].

Theorem 5.2. For f ∈ L2
�(�) a smooth function we have

(1) ��(X)f (x)= tr[(bx + (ax − xa − �b)∇ − x∇b∇]f (x), X =
(

a
b

b
a

)
∈ kC,

(2) ��(X)f (x)= tr[�a + ax + (ax + xa + �a)∇ + x∇a∇]f (x), X =
(

a
−a

a
−a

)
∈ p+,

(3) ��(X)f (x)= tr[(�a − ax + (ax + xa − �a)∇ − x∇a∇]f (x), X =
(

a
a
−a
−a

)
∈ p−.

5.3. Idea of the proof

Our first proof was similar to the one given in [4] for the Jordan algebra of Hermitian symmetric matrices. After
submitting this paper we extended this result to arbitrary irreducible Euclidean Jordan algebras. See [1] for a detailed
proof. For the purpose of exposition we discuss here only the case of Sp(1, R). A detailed account of this case (modeled
on the upper half plane) is found in [6].

Let G =
{(

a
−ic

ib
d

)∣∣∣ ( a
c

b
d

)
∈ SL(2, R)

}
. The group G acts on the right half-plane T (R+) by linear fractional

transformations. The complexification, gC, of the Lie algebra of G is sl(2, C), a three-dimensional Lie algebra spanned
by

Z =
(

0 1
1 0

)
, X =

(
1 1
−1 −1

)
and Y =

(
1 −1
1 −1

)
.

Proposition 4.2 for this case reads as follows.
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Theorem 5.3. The action of sl(2, R) on the right half-plane is given by:

(1) ��(Z)F (z)= �zF (z)+ (z2 − 1)F ′(z),
(2) ��(X)F (z)=−�(z+ 1)F (z)− (z+ 1)2F ′(z),
(3) ��(Y )F (z)= �(z− 1)F (z)+ (z− 1)2F ′(z).

To find the corresponding action on L2
�(R
+) we must compute the operators that corresponds to Dz, Mz, Mz2 , Mz◦Dz

and Mz2 ◦Dz in L2
�(R
+)∞. Here M stands for “multiplication operator”. To do this, requires several uses of integration

by parts, a special case of Stokes theorem. It was exactly this kind of computation that was done in [6] and we repeat
it here:

For Dz we have:

d

dz
L�(f )(z)=

∫ ∞
0

de−zt

dz
f (t)t�−1 dt

=L�(−tf (t)).

Thus Dz ←→ M−t .
For Mz we have

zL�(f )(z)=
∫ ∞

0
−de−zt

dt
f (t)t�−1 dt

=
∫ ∞

0
e−zt d

dt
(f (t)t�−1) dt

=
∫ ∞

0
e−zt

(
f ′(t)+ �− 1

t
f (t)

)
t�−1 dt .

Thus Mz ←→ D +M(�−1)/t .
We calculate Mz2 similarly and get

Mz2 ←→ D2 + 2(�− 1)

t
D + (�− 1)(�− 2)

t2 .

Thus,

Lemma 5.4. Let the notation be as above. Then the following holds:

(1) Dz ◦L� =−L� ◦ (Mt),
(2) Mz ◦L� =L� ◦

(
D + �−1

t

)
,

(3) Mz ◦Dz ◦L� =L� ◦ (−tD − �),
(4) Mz2 ◦Dz ◦L� =L� ◦ (−tD2 − 2�D − �(�−1)

t
).

Combining Theorem 5.3 and Lemma 5.4 gives

Lemma 5.5. Let the notation be as above. Then the following holds:

(1) ��(Z)=−tD2 − �D + t ,
(2) ��(X)= tD2 + (�+ 2t)D + (�+ t),
(3) ��(Y )=−tD2 + (−�+ 2t)D + (�− t).

Note that this is Theorem 5.2 for this special case.
One more ingredient is necessary for determining the classical recursion relations. This is a direct calculation and

given in the following lemma. We note at this point that such a direct calculation is not done in the general case; deeper
properties of the representation theory must be used. (cf. Proposition 6.1.)
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Lemma 5.6. Let q�
m(z)= (z+ 1)−�( z−1

z+1 )m. Then

(1) ��(Z)q�
m = (�+ 2m)q�

m,
(2) ��(X)q�

m =−2mq�
m−1,

(3) ��(Y )q�
m = 2(�+m)q�

m+1.

The combination of Lemmas 5.5 and 5.6 gives the classical recursion relations stated in the introduction and proves
Theorem 6.3 for the classical case.

6. Differential recursion relations for ��
m

We now turn our attention to differential recursion relations that exist among the generalized Laguerre functions.
These relations are obtained by way of the highest weight representation �� and generalize the classical case mentioned
in the introduction.

We begin with some preliminaries and a result found in [7]. First we notice that in general the Lie algebra gC does
not map (L2

�(�)∞)L into itself. For the Laguerre functions the full Lie algebra is too big; we will in fact only need
the much smaller Lie algebra gLC, which maps (L2

�(�)∞)L into itself. It is well known, that in case g is simple, then
gLC � sl(2, C). We choose Z, X, Y so that the isomorphism, which we will denote by �, is given by

Z 	→
(

0 1
1 0

)
, X 	→

(
1 1
−1 −1

)
and Y 	→

(
1 −1
1 −1

)
.

Furthermore, we can assume that �(Xt)= �(X)t . This shows that several calculations can in fact be reduced directly
to sl(2, C). We will come back to that later.

Define Z0 := 1
2 (X + Y ). Then �(Z0)=

(
1
0

0
−1

)
and Z0 is in the center of h. For m ∈ � let

cm(j)=
∏
j �=k

mj −mk − 1
2 (j + 1− k)

mj −mk − 1
2 (j − k)

.

Then by Lemma 5.5 in [7] we have:

Proposition 6.1. The action of Z and Z0 is given by:

(1) ��(Z)q�
m = (n�+ 2 |m|)q�

m.

(2) ��(−2Z0)q�
m =

∑r
j=1(

m
m−ej

)q�
m−ej

−∑r
j=1(�+mj − 1

2 (j − 1)))cm(j)q�
m+ej

.

Corollary 6.2. Let the notation be as above. Then the following holds:

(1) ��(Z)��
m = (n�+ 2|m|)��

m.

(2) ��(−2Z0)��
m =

∑r
j=1(

m
m−ej

)(mj − 1+ �− (j − 1))��
m−ej

−∑r
j=1cm(j)��

m+ej
.

Proof. This statement follows from Proposition 6.1 and the following three facts: ��(X)=L−1
� ��(X)L�, L�(�

�
m)=

��(m+ �)q�
m, and Proposition 1.2. In each of these formulas if either index m+ ej or m− ej is not in � then it should

be understood that the corresponding function does not appear. �

Theorem 6.3. The Laguerre functions are related by the following differential recursion relations:

(1) tr(−x∇∇ − �∇ + x)��
m(x)= (n�+ 2|m|)��

m(x).
(2) tr(x∇∇ + (�I + 2x)∇ + (�I + x))��

m(x)=−2
∑r

j=1(
m

m−ej
) (mj − 1+ �− (j − 1))��

m−ej
(x).

(3) tr(−x∇∇ + (−�I + 2x)∇ + (�I − x))��
m(x)= 2

∑r
j=1cm(j)��

m+ej
(x).
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Proof. If Z =
(

0
1

1
0

)
then substituting a = 0 and b = 1 into Proposition 5.2, part 1, gives

��(Z)= tr(−x∇∇ − �∇ + x).

Combining this with part 1 of Corollary 6.2 gives the first formula.
Recall that X ∈ p+ and Y ∈ p−. According to Theorem 4.4 we have that ��(X)��

m has to be a linear combination of
��

m′ , with m′j �mj for all j . Similarly, ��(Y )��
m has to be linear combination of those ��

m′ with m′j �mj . The statement

follows now from Corollary 6.2 and the fact that 2Z0 =X + Y . �

Remark 6.4. Note that viewing x as a constant with respect to differentiation we can write tr(x∇∇)= tr(∇x∇) and,
in terms of Jordan algebras the last operator is just (P (∇)x | e) where P is the quadratic representation, (· | ·) is the
canonical inner product in the Jordan algebra, and e is the identity element. This is the operator used in the final version
of the general case, cf. [1].

7. Some open problems

There are still several open question that require further work. We mention three of these. One is a relation to the
classical Laguerre polynomials, the other two are natural generalizations of classical relations.

7.1. Relation to classical Laguerre functions

Every positive symmetric matrix A can be written as A = kDk−1, where k ∈ SO(n) and D = d(t1, . . . , tn) is a
diagonal matrix with tj > 0. Thus, if

�1 = {d(t) | t ∈ (R+)n} � (R+)n

then

�= L · �1.

As the Laguerre functions are L-invariant, it follows that they are uniquely determined by their restriction to �1. Let
T (�1) := {d(x)+ id(y) | x ∈ (R+)n, y ∈ Rn}. Then T (�1) � (R+ + iR)n, and the group SL(2, R)n acts transitively
on the right hand side. But it is well known, that SL(2, R)n can be realized as a closed subgroup of Sp(n, R). It follows
therefore, that the generalized Laguerre functions can be written as a finite linear combinations of products of classical
Laguerre functions. It is a natural problem to derive an exact formula.

7.2. Relations in the �-parameter

It is well known that the classical Laguerre polynomials satisfy the following relations:

xL�
n = (n+ �+ 1)L�−1

n − (n+ 1)L�−1
n+1,

xL�
n = (n+ �)L�−1

n−1 − (n− x)L�−1
n ,

xL�−1
n = L�

n − L�
n−1.

In [6] it was shown, that these relations follows directly from the representation theory of sl(2, R). It is therefore natural
to look for similar relations for the generalized Laguerre polynomials and functions.

7.3. Relations in the x, y parameters

Several other classical relations should be extended to the general case. We name here only the following

L
�+�+1
m (x + y)=

m∑
n=0

L�
n(x)L

�
m−n(y).
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This relation is closely related to the decomposition of the tensor product of two highest weight representations and
we expect that a similar relation can be derived also for the general case. Notice, however, that for general Laguerre
polynomials the right hand side is L-invariant in the x and y variable while that is not the case on the left hand side.
As the function on the left hand side is not L-invariant in x and y separately, any generalization will have to include
averaging over L, i.e., the projection onto the space of L-invariant functions.
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