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In this paper, we prove with the aid of symbolic computational tools, that there does not exist
a non-trivial graphical 4·(v, 5, A) design for any v and A.

1. Background

A t-(v, k,A) design is a set 0 of v points together with some k·element subsets of 0 called
blocks such that any t-e1ement subset of 0 occurs in exactly A blocks. Formally, let 0
be a finite set. We denote by Lk(O) the set of all k-element subsets of O. An ordered
pair (0, ffi) is called a t-( v, k, A) design if 101 = v and £ilJ £; Ldn) such that for every
TeL,(O),

I{Be£ilJ: B'2 T}I=A.

It is well-known that the following divisibility conditions are necessary for the existence
of a t-(v, k, A) design:

A(V-~) == 0 mod (k- ~), Os; i:::; t.t-, t-,

A t.( v, k, A) design (0, £ilJ) with £ilJ =0 or ffi=Lk(n) is said to be trivial. One can show
by elementary counting arguments that in a trivial t-(v, k,A) design, we must have either
A=0 or A = (k=:)' The complement of a t.(v, k, A) design (0, £ilJ) is the ordered pair
(0, Lk(O)\£ilJ). It is easy to show that the complement of a t-(v, k, A) design is a t·
(v, k, (k=:) - A) design. A (k -1)-( v, k, A) design is also commonly called a k-tuple system.

Let 0 be the set of v =mlabelled edges of the undirected complete graph K p • An
ordered pair (0, £ilJ) is a graphical t-(v, k, A) design if

(i) (0, £ilJ) is a t-(v, k, A) design, and
(ii) if Be £ilJ, then all subgraphs of Kp isomorphic to B are also in ffi.

One may think of £ilJ as a collection of k-edge subgraphs of K; such that every r-edge
subgraph of K p is a subgraph of exactly A elements of £ilJ, and such that £ilJ is closed under
isomorphism of graphs. We note that for every t, k, and v =m, there always exists a
trivial graphical t-( v, k, A) design, by taking £ilJ =0 or £ilJ to be the set of all k-edge
subgraphs of x;

Kramer & Mesner (1976) seem to be the first to construct graphical t-(v, k, A) designs.
The investigation of graphical t-(v, k, A) designs was subsequently carried out by many
other researchers (Driessen (1978), Chouinard II et al. (1983), Kreher et al. (1990), Kramer
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(1990), Chee (1990a, b; 1991». In Chee (1991), the author proposed a symbolic computa­
tional approach to the problem of enumerating graphical t-(v, k; A) designs. As a result,
all graphical triple systems and graphical quadruple systems are determined. In this paper,
we prove that there do not exist any non-trivial graphical quintuple systems.

2. A Diophantine Equation

Suppose (ll, 0') is a non-trivial graphical 4-«~), 5, A) design. Let T1 e }:4(ll) be a
subgraph of K p isomorphic to the graph consisting of a cycle of length four and p-4
isolated vertices. For convenience of presentation, isolated vertices are not shown in
figures .

The blocks in 0' containing T1 must be isomorphic to one of the following graphs.

If we denote by #( T ~ B) the number of ways that a graph T can be extended to a graph
B, then

It follows from the isomorphism property that in any non -trivial graphical 4-m), 5, A)
design, we must have

for some (Xhx2,x3)e{0, 1}\{(O,O,O),(1, 1, 1)}. The cases (XhX2,X3)=(0,0,0) and
(xh X2 , X3) =(1,1,1) are excluded since they lead to A=0 and A=m-4, thus giving
trivial graphical quintuple systems.

Now let p ~ 8 and consider T2 e }:4(ll) a subgraph of K p isomorphic to the graph
consisting of a matching of size four together with p - 8 isolated vertices.

.-
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The blocks in D containing T2 must be isomorphic to one of the following graphs.
.- .- -
.- .- .-

B4~ B5~ B6~

r: - - I• • • .-
In this case, we have

#(T2 --,; B4 ) = 24,

#(T2~ Bs) =8(p -8),

#(T2--,; B6) = (p -8)(p -9)/2.

Since B h B20 ••• , B6 are .pairwise non-isomorphic, we have the following result.

LEMMA 1. For any non-trivial graphical 4-«n, 5, A) design with p 2: 8, we have

2x\ +4(p -4)X2+ (p -4)(p -5)X3/2= 24x4+8(P -8)xs+(p -8)(p -9)X6/2

for some (xh X2, X3), (X4'x,; X6) E {O, l}\{(0, 0, 0), (1,1, I)}.

3. Non-existence Results

Given the six possibilities for (Xh X2,X3) and for (x4, Xs, X6),we can easily derive a set
E of 36 quadratic equations involving only the variable p. We are interested in integers
2:8 which obey at least one of these identities. Let S be the set of such solutions. It is
possible to determine S by solving the 36 equations in E manually. However, this laborious
and error-prone task makes it more suitable for machines to handle. The symbolic
computational system MAPLE (Char et al. (1988» was used to solve the equations in E
over Z. MAPLE yielded the result that S ={10, 12, 20}. Since the complement of a
4-m), 5, A) design is a 4-m), 5, m-4- A) design, we need only consider cases when
A:5 L<m -4)/2J. In addition to S itself, we computed the possible values of A for each
value of pES. Our computations with MAPLE are summarized in the following lemma.

LEMMA 2. There exists a non-trivial graphical 4-«~), 5, A) design with p 2: 8 only if (p, A)E

{(10, 17),(12,30),(20,66)~

In the remainder of this section, we prove that there are no non-trivial graphical-l-Ifj), 5, A)
designs for any p and A.

LEMMA 3. There does not exist a graphical 4-(45,5,17) design.

PROOF. Let (n, 0) be a graphical 4-(45,5,17) design. Consider T3E2in) a subgraph
of K tO isomorphic to the graph consisting of a star on five vertices together with five
isolated vertices.
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The blocks in !if) containing TJ must be isomorphic to one of the following graphs.

BT~ x: B8~~ B9~ ><-.
BI0~ X I

We have #(TJ-+B7)=6, #(TJ-+Bg)=5, #(TJ-+B9)=20, #(TJ-+B1o)=10, and there is
no subset of {5, 6,10, 20} whose sum is 17.

LEMMA 4. There does not exist a graphical 4-(66,5,30) design.

PROOF. Consider the same graphs as in Lemma 3 (except in K 12 instead of K IO) . We
now have #(TJ-+ B7) = 6, #(TJ-+ Tg) =7, #(TJ-+ B9 ) = 28, #(TJ-+ B IO) = 21, and there is
no subset of {6, 7, 21, 28} whose sum is 30.

LEMMA 5. There does not exist a graphical 4-(190,5,66) design.

PROOF. Let (0, !if) be a graphical 4.(190,5,66) design. Consider T4 E ~4(O) a subgraph
of K 20 isomorphic to the graph consisting of a triangle, an edge that is vertex-disjoint
from the triangle, and 15 isolated vertices .

L.

--The blocks in ~ containing T4 must be isomorphic to one of the following graphs.

• • •

I
We have #(T4-+ B II ) =6, #(T4-+ B 12 ) =30, #(T4-+ BIJ) =45, #(T4-+ B 14 ) = 105, and there
is no subset of {6, 3D, 45, 105} whose sum is 66.

Combining the results above gives the following.

LEMMA 6. There exist no non-trioial graphical 4-(m, 5, A) designs for any A and p ~ 8.

Since the divisibility conditions force all 4-(m, 5, A) designs to be trivial for p < 6, we
need only consider the two remaining values p = 6 and p = 7 to complete the solution of
the existence problem for non-trivial graphical quintuple systems. Kramer & Mesner
(1976) have established that there do not exist any non-trivial graphical 4-(15, 5, A)designs.
We now prove that there are no non-trivial graphical 4-(21,5, A) designs.
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LEMMA 7. There does not exist a non-trivial graphical 4-(21,5, A) design for any A.

PROOF. Let A be the set of integers A such that there exists a non-trivial graphical
4-(21,5, A) design. By considering the number of ways that T1 (in K 7 ) can be extended
to each of B h B2 , and B3 , we have A~ {2, 3, 5}. By considering the number of ways that
T3 (in K 7 ) can be extended to each of B7 , Bg , B9 , and BIO , we have 5eA. Finally,
consideration of the number of ways that T4 (in K7 ) can be extended to each of BlI , B12 ,

Bn , and B I 4 shows that 2,3eA .

We can now state:

THEOREM 1. There do not exist non-trivial graphical 4-(v, 5, A) designs for any v and A.

4. Conclusion

In this paper, we proved that no non-trivial graphical quintuple systems exist. An
immediate problem is suggested:

PROBLEM 1. Determine if there are any, or find all, non-trivial graphical k-tuple systemsfor
k <:: 6.

We make the conjecture that there are no non-trivial graphical k-tuple systems for k <:: 6.
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