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a b s t r a c t

All gammaherpsviruses encode at least one gene related to the cellular formylglycinamide ribonucleo-

tide amidotransferase (FGARAT) enzyme but their biological roles are relatively unknown. The murine

gammaherpesvirus 68 (MHV68) vFGARAT, ORF75c, mediates a proteasome-dependent degradation of

the antiviral promyelocytic leukemia (PML) protein by an unknown mechanism, which is addressed in

this study. We found that ORF75c interacts weakly with PML and SUMO-modified forms of PML are

important for its degradation by ORF75c. ORF75c-mediated PML degradation was not dependent on

two known cellular regulators of PML stability, Casein kinase II (CK2) and human papilloma virus

E6-associated protein (E6AP). Finally, ORF75c had self-ubiquitination activity in vitro and its expression

increased levels of ubiquitinated PML in transfected cells. Taken together, the evidence accumulated

in this study provides new insights into the function of a vFGARAT and is consistent with a model

in which ORF75c could mediate direct ubiquitination of PML resulting in its degradation by the

proteasome.

& 2013 Elsevier Inc. All rights reserved.
Introduction

Promyelocytic leukemia protein (PML) or tripartite motif-
containing protein 19 (TRIM19) is an interferon-inducible protein
essential for the formation of nuclear organelles known as PML
nuclear bodies (PML NBs), which are found in most mammalian
cells (Batty et al., 2009; Lallemand-Breitenbach and de Thé, 2010;
Ozato et al., 2008). PML NBs have been implicated in modulating
a diverse array of functions including, tumor suppression, apop-
tosis, cellular senescence, DNA repair, interferon responses and
antiviral responses (Bernardi and Pandolfi, 2007; Dellaire and
Bazett-Jones, 2004; Everett and Chelbi-Alix, 2007; Geoffroy and
Chelbi-Alix, 2011; Salomoni and Pandolfi, 2002). Eight isoforms of
PML have been characterized and are generated through alter-
native splicing, increasing the diversity of interacting partners
and subcellular localization. PML isoform I is the most abundantly
expressed isoform in human cells and is one of the two isoforms
that are conserved between human and mouse (Condemine et al.,
2006). Additionally, PML undergoes various post-translational
modifications, including modification by a small ubiquitin-
ll rights reserved.
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related modifier (SUMO) family at three lysine residues (Lys 65,
160 and 490), which is critical for the formation and recruitment
of protein partners to PML NBs (Fu et al., 2005; Kamitani et al.,
1998; Nichol et al., 2009; Zhong et al., 2000). In addition to PML
itself, several other proteins are commonly found within PML NBs
and have been implicated in mediating PML NB activities. These
factors include, speckled protein 100 (Sp100), Daxx, SUMO-1,
DNA damage response proteins (RAD50, nbs1, and mre11), p53,
regulators of p53, and CREB binding protein (Negorev and Maul,
2001).

The role of PML in cellular antiviral responses is supported by
the fact that PML NBs are targeted for disruption by many DNA
and RNA viruses and cells lacking PML are more susceptible to
viral infections (Everett and Chelbi-Alix, 2007; Geoffroy and
Chelbi-Alix, 2011; Reineke and Kao, 2009). Examples of herpes-
virus proteins that are known to induce PML degradation or PML
NB disruption include herpes simplex virus-1 (HSV-1) ICP0 (Chee
et al., 2003; Everett et al., 1998, 2006), human cytomegalovirus
(CMV) IE1 (Ahn and Hayward, 1997; Tavalai et al., 2006), Epstein-
Barr virus (EBV) EBNA1 (Sivachandran et al., 2008), EBV Zta
(Adamson and Kenney, 2001), and Kaposi’s Sarcoma-associated
herpesvirus (KSHV) LANA2 (Marcos-Villar et al., 2009). Altered
localization and/or inactivation of PML NB components is also
common. EBV EBNA-LP transcriptional coactivation functions are
mediated through binding and relocalization of Sp100A from PML
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NBs (Ling et al., 2005), herpesvirus saimiri (HVS) ORF3 induces
Sp100 degradation (Full et al., 2012), and EBV BNRF1 (ORF75
homolog) inactivates Daxx (Tsai et al., 2011). However, knowl-
edge about the consequences of PML-NB disruption during
human herpesvirus infection is limited largely to studies in cell
culture-based systems due to the species specificity of herpes-
viruses. Murine gammaherpesvirus 68 (MHV68) is closely related
to human gammaherpesviruses and naturally infects mice. Addi-
tionally, MHV68 can cause lymphoproliferative diseases and
establish long-term chronic infections similar to human gamma-
herpesviruses (Nash et al., 2001; Simas and Efstathiou, 1998).
Therefore, this system is ideal for investigating strategies utilized
by herpesviruses for establishing long-term infections in their
animal hosts.

We previously demonstrated that MHV68 infection in fibro-
blast cells induces a rapid proteasome-dependent degradation of
PML and this was mediated by the viral tegument protein known
as ORF75c (Ling et al., 2008). ORF75c has homology to the cellular
formylglycinamide ribonucleotide amidotransferase (FGARAT)
enzyme (Ling et al., 2008), which carries out the fourth step in
de novo purine biosynthesis, although one study suggests that
ORF75c no longer retains this enzymatic function (Gaspar et al.,
2008). Other gammaherpesviruses also encode one or more
FGARAT homologs (Full et al., 2012; Tsai et al., 2011), but their
role in gammaherpesvirus pathogenesis has yet to be fully
defined. To gain more insights into the function of a viral FGARAT
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(vFGARAT), we investigated the undetermined mechanism by
which ORF75c mediates PML degradation. We found that ORF75c
is present continuously throughout infection; first delivered from
virion particles and then later expressed as a late gene. ORF75c
induces PML poly-ubiquitination in vivo and PML SUMOylation
is important for ORF75c-induced degradation. However, specific
ORF75c association with PML may occur through SUMO-
dependent and SUMO-independent mechanisms. Finally, ORF75c
contains self-ubiquitination activity in vitro suggesting that it may
be a specific PML E3 ligase, especially since other known PML E3
ligases were not required for ORF75c-mediated PML degradation.
This study provides a better understanding of another interesting
strategy used by gammaherpesviruses to modulate host intrinsic
cellular antiviral responses through its viral FGARAT.
Results

Expression kinetics of ORF75c in mouse fibroblasts

In order to understand and interpret subsequent experiments
aimed at investigating how ORF75c induces PML degradation, we first
sought to determine whether ORF75c effects on PML were due
entirely to incoming protein associated with virions or if there might
also be newly synthesized protein expressed early on during infec-
tion. Time-course infection experiments indicated that ORF75c was
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detectable from the start of infection. A small increase in protein was
detectable at 8 h and increased significantly by 24 h post-infection
(Fig. 1A). To assess whether the ORF75c detected at the beginning of
infection was derived from incoming virions, we infected 3T12 cells
in the presence or absence of cycloheximide (CHX). The level of
ORF75c detected in both conditions was similar (Fig. 1B), suggesting
that the bulk of ORF75c detected at early time-points after infection is
virion derived. As a control for cycloheximide efficiency, no ORF57
(a known immediate early/early gene) was detected in the cyclohex-
imide treated cells (Fig. 1B). Similar experiments were conducted in
the presence of concentrations of phosphonoacetic acid (PAA) that are
known to inhibit late gene expression (Rochford et al., 2001). The
conditions were sufficient to block synthesis of a known late gene,
ORF4, but not a known immediate early/early gene ORF57 as
expected (Cheng et al., 2012; Martinez-Guzman et al., 2003)
(Fig. 1C). Under these conditions, no additional synthesis of ORF75c
appears to occur above the ORF75c delivered from virions, indicating
that ORF75c displays characteristics of a late gene.
ORF75c interacts weakly with PML

To determine whether ORF75c interacts with PML, PML-Flag
and ORF75c-HA epitope-tagged proteins were transiently
expressed in 293T cells followed by co-immunoprecipitation
analyses. PML-Flag coprecipitated ORF75c-HA but not ORF45-HA
control, indicating an association between these proteins under
these conditions (Fig. 2A). Attempts to coprecipitate ORF75c and
PML in infected cells proved to be technically challenging due to
low levels of ORF75c present at early time-points post-infection,
where only virion delivered protein is present (data not shown,
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MHV68-infected 3T12 cells stained PML (red) and ORF75c (green) at 90 min post-infec
Fig. 1). However, a prediction from the transient expression
experiments is that both proteins would colocalize in cells. To
address this question ORF75c and PML were analyzed by immu-
nofluorescence during infection in 3T12 cells. At 60 min post-
infection, ORF75c was spread throughout the cytoplasm, mostly
in punctate spots (Fig. 2B). However, by 90 min post-infection
most of the detectable ORF75c localized to the nucleus with a
diffuse-speckled pattern, which was maintained through 3 h post-
infection. Within 180 min post-infection, almost all of the PML
NBs disappeared (Fig. 2B), which correlated with loss of the PML
protein as we have described previously (Ling et al., 2008). High
resolution deconvolution microscopy at 90 min post-infection,
where both PML and ORF75c can be detected in the nucleus,
indicated a small proportion of colocalization between these
proteins (Fig. 2C). Infected cells treated with concentrations of
MG-132 known to prevent ORF75-mediated PML degradation
(Ling et al., 2008) showed similar partial localization of PML and
ORF75c (data not shown).
MHV68-induced PML degradation is enhanced by PML SUMOylation

but MHV68 does not ubiquitously target SUMO-modified cellular

proteins

To address whether SUMO-conjugated PML is required for
ORF75c-mediated PML degradation, we first looked at PML during
infection in SUMO1�/� cells. SUMO1 did not appear to be
required, as PML was degraded by MHV68 in these cells
(Fig. 3A). However, the loss of SUMOylation by SUMO1 in these
cells can be compensated by SUMO2 or SUMO3 (Evdokimov et al.,
2008), so this finding does not exclude a role for SUMOylation in
90 min.
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ORF75c-induced PML degradation. To address this issue further,
we introduced mutations into the major SUMO-conjugated lysine
residues (Lys 65, 160, and 490), which we refer to as PML-3KR
(Kamitani et al., 1998; Percherancier et al., 2009). PML�/� cells
were transduced to constitutively express wild-type PML isoform
I (PML1) or PML-3KR. The PML-3KR protein formed fewer PML
nuclear bodies that tended to be much brighter and larger than
wild-type PML, which agreed with earlier published reports for
this mutant (Lallemand-Breitenbach et al., 2001, 2008;
Percherancier et al., 2009; Zhong et al., 2000) (Fig. 3B). The two
cell lines were infected with MHV68 and analyzed for PML
expression. Unlike wild-type PML, the PML-3KR mutant protein
was not completely degraded following MHV68 infection
(Fig. 3C), although a modest reduction of PML-3KR levels was
consistently observed. To assess whether the differences
in degradation susceptibility are due to potential differences in
association between these proteins, we conducted coimmunopre-
cipitation experiments, similar to those described in Fig. 2A,
from cells expressing mutant or wild-type PML proteins. No
differences in ORF75c association with PML or PML-3KR was
observed (Fig. 3D). HSV-1 has been shown to target most of the
SUMO-conjugated cellular proteins for degradation through the
activity of ICP0 (Boutell et al., 2011). To determine whether
a general effect on cellular SUMO-conjugated proteins also
happens in the MHV68 system, we examined SUMO conjugates
following MHV68 infection. Unlike HSV-1, both SUMO1 and
SUMO2/3 conjugates were not globally degraded following
MHV68 infection and one or more SUMO-conjugated protein
species even appeared to increase in abundance following infec-
tion (Fig. 3E).
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ORF75c-mediated PML degradation is not regulated by CK2

phosphorylation of PML or by E6AP

One potential mechanism by which ORF75c mediates PML
degradation is through stimulating known cellular pathways that
regulate PML protein stability. Previous studies have indicated
that CK2-mediated phosphorylation of PML leads to its degrada-
tion through a proteasome dependent pathway (Scaglioni et al.,
2006). In fact, evidence suggests that disruption of PML NBs by
EBV EBNA1 is mediated by stimulating CK2 association with PML
(Sivachandran et al., 2010). In addition, the cellular ubiquitin E3
ligase E6AP has also been implicated in regulating PML stability
(Louria-Hayon et al., 2009). To address the role of CK2-phosphor-
ylation, we generated a PML mutant plasmid (PML-CK2mut),
which destroyed CK2 phosphorylation. PML-CK2mut exhibited a
similar localization phenotype as wild-type PML when expressed
in 3T12 cells (Fig. 4A). However, the PML-CK2mut was degraded
as efficiently as wild-type PML when co-expressed with ORF75c
(Fig. 4B). This result was supported by the finding that there was
no effect on PML degradation during acute MHV68 infection in
3T12 cells in which about 70% of CK2 activity was lost after being
treated with 4,5,6,7-tetrabromobenzotriazole (TBB), a selective
CK2 inhibitor (Fig. 4C and D). To address the role of E6AP, PML
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MHV68 infection was sufficient to degrade PML in the absence
of E6AP (Fig. 5).

ORF75c induces PML poly-ubiquitination in vivo and ubiquitinates

itself in vitro

Although ORF75c induced degradation of PML is dependent on
the proteasome, it has not been demonstrated that ORF75c can
induce poly-ubiquitination of PML in vivo. To address this issue,
ORF75c was co-expressed with PML and Myc-tagged ubiquitin in
293T cells followed by treatment with the proteasome inhibitor
MG-132. Compared to co-expression with ORF75b, which does
not induce PML degradation (Ling et al., 2008), ORF75c induced a
significant increase in conjugation of Myc-tagged ubiquitin under
these conditions (Fig. 6A). To determine whether ORF75c might
contain ubiquitin E3 ligase activity itself, we expressed His-
tagged ORF75c using a baculovirus expression system (Fig. 6B).
The protein was purified with a metal binding resin followed by
gel filtration (Fig. 6B). Highly purified ORF75c increased the
overall level of ubiquitin chains and ubiquitinated proteins in
the in vitro ubiquitination reactions (Fig. 6C) and demonstrated
self-ubiquitination activity even without E1 and E2 (UbcH5c)
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enzymes in the reaction (Fig. 6D). The rabbit polyclonal
anti-ORF75c antibody was used in Fig. 6D to demonstrate the
equal amount of purified ORF75c in each reaction. However, this
antibody was unable to detect the ubiquitin-modified forms
MHV68 + +- -

E6AP+/+ E6AP-/-
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E6AP
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Discussion

This study shows that ORF75c is present during the entire
infection cycle, first as protein most likely delivered from infec-
tious virion particles and then later as a gene product whose
expression is dependent on viral DNA replication (i.e., a late gene)
(Fig. 1). The mechanism by which ORF75c targets PML for
degradation appears to occur through weak or transient interac-
tions with PML as evidenced by their association with each other
in co-immunoprecipitation assays and partial colocalization in
the nucleus (Fig. 2). Furthermore, interaction between these
proteins appears to be facilitated by SUMO modification of PML,
although ORF75c does not globally target cellular SUMO conju-
gated proteins for degradation (Fig. 3). While ORF75c does not
stimulate the activity of other known regulators of PML protein
stability, namely CK2 and E6AP, it does possess an intrinsic ability
to ubiquitinate itself in vitro and is sufficient to increase the level
of PML ubiquitination in transfected cells (Figs. 4–6). Taken
together, the evidence accumulated in this study is consistent
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with a model in which ORF75c could mediate direct ubiquitina-
tion of PML resulting in its degradation by the proteasome.

Several additional characteristics of ORF75c are consistent
with the hypothesis that it is a viral ubiquitin E3 ligase that can
target specific proteins for ubiquitination and degradation.
Although ORF75c does not contain a recognizable RING-finger
domain, it does have a cys-rich region between residues 624 and
693, as noted in our earlier study (Ling et al., 2008). Such regions
can be members of the HECT E3 family that typically form
thioester bonds with an activated ubiquitin at the catalytic
cysteine residue before transfer to target proteins, which in the
case of ORF75c, would be consistent with its ability to ubiquiti-
nate itself (Fig. 6) and that has been demonstrated for another
gammaherpesvirus protein, KSHV Rta (Yu et al., 2005). Whether
SUMO-conjugated PML facilitates an interaction with ORF75c
remains unclear, but ORF75c does contain up to 12 consensus
SUMO interaction motifs (SIMS) indicating that it has the poten-
tial to interact with SUMO-conjugated proteins. As shown else-
where, the function of ubiquitin E3 ligases that specifically target
SUMO-conjugated proteins, known as SUMO Targeted Ubiquitin
Ligases (STUbLs), is mediated by their multiple SIMs (Boutell
et al., 2011; Tatham et al., 2008). Which ORF75c SIMs might be
important for PML degradation, presumably via facilitation of an
interaction between these proteins, is unknown and is part of a
separate study. However, it is likely that other specific interac-
tions may be required since ORF75c seems to interact with PML-
3KR similar to wild-type PML (Fig. 3D), although PML-3KR may
still retain low levels of SUMO-conjugation on other lysine
residues, which would be consistent with this observation. An
alternative possibility is that ORF75c might contain a SUMO E3
ligase activity that increases the level of PML SUMOlyation, which
in turn fosters enhanced interaction followed by ORF75c-
mediated (or possibly an unknown cellular E3 ligase) ubiquitina-
tion, leading to PML degradation. The destruction of PML is almost
complete by 3 h post-infection (Ling et al., 2008) as shown in
Fig. 2B, which is exceedingly rapid compared to cellular pathways
that mediate PML degradation (i.e., CK2 phosphorylation or STUbL
RNF4) (Lallemand-Breitenbach et al., 2008; Scaglioni et al., 2006)
and so at the current time, we favor the model that ORF75c is an
E3 ligase that directly modifies PML. Several herpesviruses
encoded proteins known to mediate PML degradation or disrup-
tion of PML NBs are immediate early genes, suggesting that these
interactions are critical early events for establishment of robust
infection (Adamson and Kenney, 2001; Ahn and Hayward, 1997;
Everett et al., 2006). Consistent with this, ORF75c is delivered
from the viral tegument and is able to counteract the presumed
antiviral activities of PML NBs at the earliest stages of infection.

Despite mounting evidence supporting the idea that ORF75c is
a vial ubiquitin E3 ligase that can target PML, one limitation to
this conclusion has been our inability to demonstrate direct
polyubiquitination of PML in vitro. At the current time, technical
challenges have prohibited production of enough soluble full
length SUMO-conjugated PML protein (or the correct post-
translational modified forms of PML protein) to test this hypoth-
esis. A second limitation is that we have not fully ruled out
participation by the STUbL RNF4, which is known to mediate the
degradation of SUMO-modified PML following cellular stress
induced by exposure to arsenic (Lallemand-Breitenbach et al.,
2008; Tatham et al., 2008). Unfortunately, we have not been able
to detect murine RNF4 with currently available anti-RNF4 anti-
bodies, which has compromised our ability to evaluate knock-
down experiments using either transient transfection of siRNAs
or retroviral transduction of shRNAs targeting RNF4 in mouse
fibroblast cells (data not shown). Finally, the failure to detect
ORF75c-PML interactions via co-immunoprecipitation analysis
during viral infection may simply be due to technical constraints,
since overall levels of ORF75c present at early time points post-
infection (2–4 h) are low. Attempts to perform these assays at
later time points, when additional ORF75c is synthesized, proved
to be difficult as the toxic effects of MG-132 were apparent at
12 h post-infection when ORF75c expression begins (data not
shown). Notably, despite the discovery of an association of HSV-1
ICP0 with PML almost 20 years ago, it was not until recently that
evidence for a physical association between these proteins was
demonstrated during HSV-1 infection and this required the use of
cells expressing EYFP-PML fusion proteins of single PML isoforms
(Cuchet-Lourenc-o et al., 2012). Similar types of reagents may be
needed to examine ORF75c-PML interactions during viral
infection.

Gammaherpesviruses have captured and retained cellular
FGARAT proteins but their biological functions contributing to
viral pathogenesis are relatively uncharacterized. This study
shows that ORF75c contains intrinsic ubiquitin E3 ligase activity
and preferentially targets SUMO-conjugated PML for ubiquitina-
tion and degradation by the proteasome, thereby counteracting
this antiviral defense. Taken together, the evidence accumulated
in this study provides new insights into the function of a vFGARAT
and is consistent with a model in which ORF75c could mediate
direct ubiquitination of PML resulting in its degradation by the
proteasome. Because MHV68 naturally infects laboratory mice, it
provides a robust model system to investigate basic mechanisms
of herpesvirus pathogenesis in an animal. This system is ideal for
pursuing future studies to interrogate the role of PML during
herpesvirus acute infection, latency, and reactivation.
Materials and methods

Cells

Human embryonic kidney 293T cells, NIH 3T12 cells (ATCC),
and other murine fibroblast cells used in this study were grown in
Dulbeco’s Modified Eagle Medium (DMEM)/High Glucose
(Hyclone) with 10% fetal bovine serum (Gibco) and 1�
antibiotic-antimycotic (Gibco), and in 5% CO2 tissue culture
incubator at 37 1C. Ube3a�/� (E6AP�/�) murine fibroblast cells
were kindly provided by Arthur Beaudet (Jiang et al., 1998) and
SUMO1�/� murine fibroblast cells were kindly provided by
Michael Kuehn (Evdokimov et al., 2008). PML�/� murine fibro-
blast cells were converted to express PML isoform I containing
mutations at all three SUMOylation sites (PML-3KR) using pre-
viously described methods (Ling et al., 2008).

Plasmids

Plasmids encoding carboxy-terminal hemagglutinin (HA)-
tagged ORF75a, ORF75b and ORF75c in the eukaryotic expression
vector pCI have been described previously (Ling et al., 2008).
Plasmids encoding carboxy-terminal Flag-tagged wild-type PML
isoform I and a CK2-site alanine substitution mutant, SSSED-
S560AAAAA (which will be referred to as PML-CK2mut) were
generated by PCR using previously described methods (Ling et al.,
2008). A cDNA encoding PML isoform I containing Lys-to-Arg
substitution mutations at all three SUMOylation sites, K65, K160,
and K490 (PML-3KR) (Kamitani et al., 1998) with no epitope tag
was PCR amplified and cloned into the murine stem cell virus
(MSCV) vector (Clontech) for transduction into PML�/� murine
fibroblast cells and PML-3KR with a carboxy-terminal Flag epi-
tope tag was cloned into pCI. A cDNA encoding a carboxy-
terminal poly-histidine (6xHis)-tagged ORF75c was generated
by PCR and cloned into the pFastBac HT B vector (Invitrogen).
This clone was used to generate a recombinant bacmid in
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DH10BAC Escherichia coli as described in Invitrogen’s Bac-to-Bac
Expression Kit handbook.

Viruses

MHV68 virus expressing HA-tagged ORF75c was generated by
allelic exchange as described previously (Ling et al., 2008). Virus
stocks of both wild-type MHV68 and MHV68 expressing HA-
tagged ORF75c were generated by transfecting MHV68-bacterial
artificial chromosome (BAC) DNA containing wild-type or HA-
tagged ORF75c into 3T12 cells. Viruses were harvested as P0 stock
when the cytopathic effect (CPE) of transfected cells reached
approximately 50% (4–6 days). P1 stocks were derived by infect-
ing large amounts of 3T12 cells with P0 stocks at an MOI of 0.05
and harvested at days 4–6 when the CPE of infected cells reached
about 50%. Titers of P1 stocks, which were used for experiments,
were determined by plaque assays on 3T12 cells as described
previously (Ling et al., 2008). Baculovirus stocks and infected sf9
cell pellets expressing His-tagged ORF75c were made by the
Baculovirus/Monoclonal Antibody Core Facility at Baylor College
of Medicine.

Antibodies

Polyclonal antibodies against MHV68 ORF75c and ORF57 were
generated by immunizing rabbits with recombinant His-tagged
ORF75c and ORF57 proteins produced in baculovirus and E. coli

respectively. To reduce the background signals on immunoblots,
these two sera were pre-absorbed with boiled 3T12 cell lysates at
4 1C overnight. A mouse monoclonal antibody (9C7/A6) against
MHV68 ORF4 was generously provided by Philip Stevenson (Gillet
et al., 2007). Primary mouse monoclonal antibodies used in this
study were against a-tubulin (Sigma), HA (Covance), Flag M2
(Sigma), mouse PML (Upstate), UBE3A (BD Biosciences) and Myc
(Cell Signaling). Primary rabbit monoclonal antibodies used in
this study were against HA (Upstate) and SUMO1 (abcam) and a
rabbit polyclonal antibody against SUMO2/3 (abcam). Horserad-
ish peroxidase-conjugated secondary antibodies against mouse or
rabbit IgG (Jackson ImmunoResearch laboratories) and Alexa
Fluor 594 or 488-conjugated antibodies against mouse or rabbit
IgG (Invitrogen) were used according to the manufacturers
recommendations.

Immunoblot analysis

Transfected or infected cells were harvested and lysed in
hypotonic buffer (20 mM Tris–HCl pH 7.4, 2 mM EDTA, 2 mM
EGTA, 10% (v/v) glycerol, 0.05% (v/v) NP-40, 10 mM 2-
mercaptoethanol and protease inhibitor cocktail tablets)
(Ruzzene et al., 2002). Then, the protein concentration of the
lysates was measured by Bradford assay and equal amounts
subjected to SDS-PAGE analysis. Proteins were transferred to
0.2 mm nitrocellulose membranes, and then incubated with
blocking buffer (5% non-fat dried milk in PBS with 0.01% Tween
20) for 1 h at room temperature. Primary antibody was incubated
in blocking buffer diluted 1:10 in PBS at 4 1C overnight. Mem-
branes were washed with PBS for 15 min for 4 times and
incubated in secondary antibody in blocking buffer diluted 1:10
in PBS for 40–50 min at room temperature. The blots were then
washed with PBS again for 20 min 4 times and developed by using
SuperSignal West Pico Chemiluminescent substrate (Thermo).

Immunoprecipitation

2.5�106 293 T cells were plated in 10 cm tissue culture dishes
1 day before cotransfection with 6 mg of plasmid expressing HA-
tagged ORF75c and 4 mg of plasmid expressing Flag-tagged mouse
PML isoform I using Lipofectamine (Invitrogen) according to the
manufacturer’s protocol. An extra dish was transfected with a
pEGFP-C1 plasmid (Clontech) as a control for transfection effi-
ciency. At 24 h post-transfection, 10 mM MG-132 (Calbiochem)
was added and cells were harvested 24 h after MG-132 treatment.
Cells were washed once with cold 1� PBS and lysed in cold IP
buffer (10 mM Tris–HCl pH 7.4, 1 mM EDTA, 150 mM NaCl, 10%
(v/v) glycerol, 1% (v/v) NP-40, 10 mM MG-132, 1 mM DTT and
protease inhibitor cocktail tablet) for 1 h. Supernatants were
incubated with 1 mL of selected antibody and rotated at 4 1C
overnight. The supernatants were centrifuged to eliminate non-
specific aggregates and added to 50 mL IP buffer-washed Protein G
agarose (Pierce). After gentle rotation at 4 1C for 1 h, the agarose
was washed with IP buffer three times and proteins were eluted
by 25 mL of 2X SDS sample buffer (0.5 M Tris–HCl pH 6.8, 4% (w/v)
SDS, 20% (v/v) glycerol, 0.2 M DTT and 0.001% (w/v) bromphenol
blue). Precipitated proteins were resolved by SDS-PAGE and
transferred to nitrocellulose membranes for immunoblot analysis
as described above but in some cases membranes were treated
with Qentix Western Blot Signal Enhancer (Thermo) to enhance
protein signals before incubation with blocking buffer.

Immunofluorescence analysis

2.5�104 3T12 cells were plated onto coverslips overnight and
then infected the next day with MHV68 expressing HA-tagged
ORF75c at an MOI of 200. Infected cells were washed at 1 h after
infection with 1 ml DMEM and then fixed with 4% formaldehyde
at 60, 90, and 180 min after infection and stained as described
previously (Ling et al., 2008). Cells treated with DMEM were used
as negative control and were fixed at 180 min after treatment. In
some experiments 3T12 cells were transfected with expression
plasmids as described previously (Ling et al., 2008). Transfected
cells were fixed at 24 h after transfection and fixed and stained as
described above.

In vitro casein kinase 2 assay

To determine CK2 activity in cells treated with the CK2
inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) (Calbiochem),
cells were lysed in hypotonic buffer containing 1 mM okadaic acid
(Calbiochem) to inhibit protein phosphatases and assayed with
a Casein Kinases II Assay Kit (Sigma) according to the manufac-
turer’s instructions. Lysates from cells treated with dimethyl
sulfoxide (DMSO) (Fisher Bioreagents) were used as baseline
controls.

Protein purification

Baculovirus infected cells expressing ORF75c were lysed in
Ni-NTA lysis buffer (50 mM Tris pH 8.0, 150 mM NaCl, 350 mM
Na-malonate, 10 mM imidazole, 5 mM 2-mercaptoethanol and
10% glycerol) and protein was bound to Ni-NTA agarose beads
(Qiagen), eluted in buffer containing 350 mM imidazole and
dialysed over night at 4 1C in gel filtration buffer (20 mM Tris
pH 8.0, 150 mM NaCl, 350 mM Na-malonate, 1 mM DTT and 10%
glycerol) containing TEV protease. The dialyzed protein was
applied to a gel filtration column (HiLoad 16/60 Superdex 200
prep grade), and fractions containing ORF75c were collected and
concentrated using a centrifugal filter (Amicon Ultracel-30K).

In vitro ubiquitination assay

Reactions were prepared in a total 30 mL, which contained 10�
ubiquitin buffer (500 mM Tris–HCl pH 7.5, 1 M NaCl, 100 mM
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MgCl2, 5 mM DTT), 1 mM MG-132, 3 mM ubiquitin aldehyde (Boston
Biochem), 5 mM ATP (Fermentas), 10 mg HA-tagged human recom-
binant ubiquitin (Boston Biochem), 110 ng ubiquitin activating
enzyme UBE1 (Boston Biochem), 300 ng ubiquitin conjugating
enzyme UbcH5c (Boston Biochem), and 3 mg ORF75c. Reactions
were incubated at 37 1C for 2 h and stopped by adding 6� SDS
sample buffer (0.5 M Tris–HCl pH 6.8, 10% (w/v) SDS, 30% (v/v)
glycerol, 0.6 M DTT and 0.012% (w/v) bromphenol blue). For self-
ubiquitination experiments, reactions were prepared in total 60 mL
and ORF75c was precipitated by 10 mL rabbit polyclonal anti-
ORF75c antibody before analysis by SDS-PAGE.
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