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This work deals with braneworld models driven by real scalar fields with nonstandard dynamics. We
develop the first-order formalism for models with standard gravity but with the scalar fields having
generalized dynamics. We illustrate the results with examples of current interest, and we find analytical
and numerical solutions for warp factors and scalar fields. The results indicate that the generalized
braneworld scenario is classically stable, and capable of localizing gravity.
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1. Introduction

The appearance of electromagnetism in the nineteenth century
has triggered a fundamental question, which culminated with the
establishment of Special Relativity. The relativity concept is based
on the Lorentz group, which was born confronting Galilei invari-
ance and its wrong concept that information may travel at arbitrar-
ily large speed. Not too much later, Special Relativity gave birth to
General Relativity, and nowadays, almost one century later, one is
facing another consistency problem, this time related to the Planck
length.

Since Relativity makes the speed of light a fundamental con-
stant of nature, it necessarily requires that both space and time
change when the coordinate system is changed to another one,
with different speed, and this seems to confront with the concept
of a fundamental length, the Planck length. We can add to this
problem the apparent inconsistency between General Relativity
and Quantum Mechanics, and the so-called dark energy problem,
which has appeared due to the recent experimental observation
that the universe is undergoing accelerated expansion.

The above issues have currently led researchers to consider
the possibility of including modifications of the standard sce-
nario involving matter and geometry. Several possible ways are
under consideration, and a very popular procedure is known as
the quintessence way, in which one in general includes dynamical
scalar fields that can interact through a diversity of possibilities.

In the present Letter, we will focus our attention on the
braneworld scenario, but we will deal with scalar fields with non-
standard kinetic terms coupled with standard gravity. In the well-
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known Randall–Sundrum model [1], we can further add scalar
fields [2] with usual dynamics and allow them to interact with
gravity in the standard way. In this scenario, the smooth character
of the solutions generate thick brane with a diversity of struc-
tures [3–5]. However, even when one look for static solutions,
the intrinsic nonlinear character of the Einstein equations usu-
ally result in an intricate system of coupled ordinary differential
equations that are hard to solve. Despite the possible numeri-
cal treatment, it is also of interest to find models which support
analytic solutions. In this particular, one can consider specific sit-
uations where first-order differential equations appear describing
the scalar field and metric functions, with the potential having a
very specific form [3–5].

In recent years, there appeared some interesting models with
noncanonical dynamics with focus on early time inflation or dark
energy, as good candidates to solve the coincidence problem [6].
These kind of models have also been discussed in investigations
of topological defects. In fact, global topological defects have been
considered in [7–10]. For instance, in Ref. [7] one has found do-
main walls, global strings and global monopoles, and in Ref. [8]
some formal aspects of unidimensional topological solutions has
been studied, and there it was shown that the linear stability is
preserved for some classes of models. Also, in [9] it was shown
that quartic potential can support compacton solutions for a spe-
cific Lagrangian, and some local vortices were investigated in [10].
In Ref. [11], the generalized models are used for stabilization of
inter-brane distance. The brane study was also considered in two
other works [12], under the action of specific scalar field model
which gives rise to compacton solutions.

The search for analytical solutions for such generalized mod-
els is a nontrivial task. Our motivation has arisen from a previous
investigation, in which one considers first-order differential equa-
tions to solve the corresponding equations of motion [13]. The
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presence of first order equations simplifies the investigation and
can yield to other extensions, as we will show in this work, where
we modify the standard braneworld scenario with the inclusion of
scalar fields with nonstandard dynamics.

We develop the investigations as follows. In Section 2 we study
(4,1) brane models with nonstandard kinetic term coupled with
gravity. As usual, we suppose that both the scalar field and the
warp factor depend only on the fifth extra dimension. After an
ansatz for the metric characterizing M4 branes with an asymp-
totically AdS5 bulk is implemented, the general structure of the
equations of motion are obtained. We show from stability anal-
ysis that metric and scalar field perturbations can be decoupled
in the transverse traceless gauge and that the spectrum of excita-
tions produces a zero-mode and a continuum of positive massive
modes. This shows that the proposed generalized scenario is stable
and capable of localizing gravity in a way similar to the standard
case. Encouraged by this general result, in Section 3 we implement
the first-order framework put forward in [13], in order to investi-
gate two distinct families of models. In Section 4 we end the work
with some comments and conclusions.

The generalized model that we consider has the form L =
F (X) − V (φ), and below we study two specific forms for the non-
standard kinetic term. The first one is given by F = X +α|X |X and
depends on a parameter α which drives the model away from the
standard case. Analytical expressions for small α are obtained and
compared with the numerical investigation done for a larger range
of values of α. We investigate the energy density of the brane as
well as the necessary conditions for gravity localization and mod-
ifications of Newton’s law, and there we show that the numerical
study confirms the analytical results obtained for small α. Here an
interesting result is that gravity localization seems to be more ef-
fective at smaller values of α, showing that the robustness of the
model seems to weaken for increasing values of α. The second
model is described by F = −X2, and although it is well distinct
from the former one, our classical investigation show that it is also
capable of localizing gravity.

2. Generalized dynamics

We start with a five-dimensional action in which gravity is cou-
pled to the scalar field in the form

S =
∫

d5x
√

g

(
−1

4
R + L(φ, X)

)
, (1)

where we are using G(5) = 1/(4π) and the signature of bulk metric
as (+ − − − −), with g = det(gMN ). We take the spacetime coor-
dinates and fields as dimensionless quantities, and the convention
M, N = 0,1,2,3,4 and μ,ν = 0,1,2,3. We also define the invari-
ant

X = 1

2
∇Mφ∇Mφ. (2)

The Einstein equations are G AB = 2T AB , with the energy–momen-
tum tensor having the form

T AB = ∇Aφ∇BφL X − g AB L. (3)

The equation of motion for the scalar field is given by

G AB∇A∇Bφ + 2X L Xφ − Lφ = 0, (4)

where G AB has the form

G AB = L X g AB + L X X∇ Aφ∇Bφ. (5)

We use the notation L X = ∂L/∂ X and Lφ = ∂L/∂φ, etc. In order
for the above differential equation to be hyperbolic, the condition

L X + 2X L X X
> 0 (6)
L X
must be fulfilled.
We use the standard notation, and write the metric as

ds2 = e2Aημν dxμ dxν − dy2, (7)

where A = A(y) describes the warp factor and only depends on
the extra dimension y. As usual, we suppose that the field φ is
static, and also, it only depends on the extra dimension. Thus, A =
A(y) and φ = φ(y), and so the equation of motion for the scalar
field reduces to

(L X + 2X L X X )φ′′ − (2X L Xφ − Lφ) = −4L Xφ′ A′, (8)

where prime denotes derivative with respect to the extra dimen-
sion. The Einstein’s equations with the metric (7) lead to

A′′ = 4

3
X L X , (9a)

A′ 2 = 1

3
(L − 2X L X ), (9b)

where for static solutions we have X = −φ′ 2/2. Eqs. (8) and (9) are
not independent, the last one being the null energy condition that
imposes a brane with positive pressure, obeying (L − 2X L X > 0).
In particular, we can multiply (8) by φ′ in order to get

(L − 2X L X )′ = −4φ′ 2 A′L X (10)

and now, if we substitute Eq. (9b) we then recover Eq. (9a).
We note that the Eqs. (8)–(9b) reduce to the known equations

in the standard case, in which L = X − V :

φ′′ + 4φ′ A′ + Vφ = 0, (11a)

A′′ + 2

3
φ′ 2 = 0, (11b)

A′ 2 − 1

6
φ′ 2 + 1

3
V (φ) = 0. (11c)

An important characteristic of the brane is its tension, which is
given by

T =
∫

dy e2A(y)T00 =
∫

dyρ, (12)

where ρ(y) = −e2A(y)L is the energy density.
The proposed investigation may be of direct interest to high en-

ergy physics, but it is important to know if the modification of the
scalar field dynamics will contribute to destabilize the geometric
degrees of freedom of the braneworld model. We investigate this
issue studying linear stability in the usual way. We consider metric
perturbations in the form

ds2 = e2A(y)
(
ημν + hμν(y, x)

)
dxμ dxν − dy2. (13)

We must also consider fluctuations of the scalar field

φ = φ(y) + φ̃(y, x). (14)

The first order contribution of the fluctuations to the scalar X is
written as X̃ (1) = (1/2)hμν∂μφ∂νφ + ∂μφ∂μφ̃. We found the first
order contributions of Einstein equations in Ricci form as R AB =
T̄ AB , with T̄ AB = T AB − (1/3)g AB T C

C , and

T̄ (1)
μν = 2

3
ημνe2A(−X(L Xφφ̃ − L X Xφ′φ̃′) + Lφφ̃

)
− 2e2Ahμν(X L X − L), (15a)

T̄ (1)
μ4 = L Xφ′∇μφ̃, (15b)

T̄ (1)
44 = −2

3
(2L Xφ X + Lφ)φ̃ + 2

3
(2L X X X + 3L X )φ′φ̃′. (15c)

In this case, Einstein’s equations turn out to be
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e2A
(

1

2
∂2

y + 2A′∂y

)
hμν + 1

2
ημνe2Aa′∂y

(
ηαβhαβ

)

− 1

2
ηαβ(∂μ∂νhαβ − ∂μ∂αhνβ − ∂ν∂αhμβ)

= 4

3
e2Aημν

(−X(L Xφφ̃ − L X Xφ′φ̃′) + 2Lφφ̃
)

(16)

and

1

2
ηα∂(∂αhμβ − ∂μhαβ)

= L Xφ∂μφ̃ − 1

2

(
∂2

y + 2A′ 2∂y
)
ηαβhαβ

= −2

3
(2L Xφ X + Lφ)φ̃ + 2

3
(2L X X X + 3L X )φ′φ̃′. (17)

The equation of motion for the scalar field gives

L X e2A�φ̃ − (
(2L X X X + L X )φ̃′)′ − 4A′(2L X X X + L X )φ̃′

− (
4L Xφφ′ A′ + (L Xφφ′)′ + Lφφ

)
φ̃ = L Xφ′ηαβhαβ. (18)

Let us now consider the transverse traceless components for
metric fluctuations

h̄μν =
(

1

2
(πμαπνβ + πμβπμα) − 1

3
πμμπαβ

)
hαβ, (19)

where πμν = ημν − ∂μ∂ν/�. We note that the net effect of this
projection operation is to decouple the metric fluctuation equation
from the scalar field equation, even in the general case which is
being considered in the present work. Indeed, we can check that
Eq. (16) reduces to the known equation(
∂2

y + 4A′∂y − e−2A�)
h̄μν = 0. (20)

The next steps are known: we introduce the z-coordinate in
order to make the metric conformally flat, with dz = e−A(y) dy and
we write

Hμν(z) = e−ipxe3/2A(z)h̄μν. (21)

In this case, the 4-dimensional components of h̄μν obey the Klein–
Gordon equation and the metric fluctuations of the brane solution
lead to Schrödinger-like equation[−∂2

z + U (z)
]

Hμν = p2 Hμν, (22)

where

U (z) = 9

4
A′ 2(z) + 3

2
A′′(z). (23)

We can write this equation in the form(
∂z + 3

2
A′(z)

)(
−∂z + 3

2
A′(z)

)
Hμν = p2 Hμν. (24)

This factorization directly shows that there are no graviton bound-
states with negative mass, and the graviton zero mode Hμν(z) ∝
e

3
2 A(z) is the ground-state of the associated quantum mechanical

problem.
This result leads to the important conclusion that the modifica-

tion of the scalar field dynamics does not contribute to destabilize
the geometric degrees of freedom which appears in the standard
braneworld scenario. Thus, the modification here proposed is ro-
bust and may be of direct interest to high energy physics.

3. The braneworld scenario

Let us start reviewing the case without gravity, setting A(y) = 0,
which means that only the scalar field equation of motion has to
be considered. We follow [8,13] and we get

(L X + 2X L X X )φ′′ = 2X L Xφ − Lφ. (25)
In this case, we can use Eq. (10) to get L − 2L X X = C , where C
is an integration constant which can be identified with the pres-
sure T 44 in the absence of gravity. For stable configurations, the
pressureless condition is necessary. Thus we write

L − 2L X X = 0. (26)

This equation depends on the scalar field and its first derivative.
Therefore, it is a first-order equation. The tension of the solution is

T = −
∞∫

−∞
dy L =

∞∫
−∞

dy L Xφ′ 2. (27)

If we introduce the function W = W (φ) such that

L Xφ′ = Wφ, (28)

we can write the tension in the form

T = W
(
φ(∞)

) − W
(
φ(−∞)

)
. (29)

The interesting thing here is that the tension does not depend on
the explicit form of the solution, but only on its asymptotic values.

Let us now consider some explicit examples. For instance, we
can deal with

L = X + α|X |X − V (φ), (30)

where α is a real, non-negative parameter. We name this the type
I model. Alternatively, we could choose the function

L = X − αX2 − V (φ), (31)

but this does not change the classical scenario, as highlighted in
Ref. [12]. Of course, if α = 0 the standard scenario is restored. For
α a very small parameter, we can investigate the contribution of
this term as a perturbation to the standard scenario. This leads us
with the expressions

φ′ = Wφ − αW 3
φ, (32)

V (φ) = 1

2
W 2

φ − α

4
W 4

φ. (33)

We can also consider another model, for instance

L = −X2 − V (φ). (34)

We name this the type II model, and here the first order formalism
leads to the equations

φ′ = W 1/3
φ , (35)

V (φ) = 3

4
W 4/3

φ . (36)

More details of the first-order formalism in flat spacetime can be
seen in [8,13].

To extend the first-order framework to the braneworld scenario,
we follow some works in Ref. [4] and choose the derivative of the
warp factor with respect to the extra dimension to be a function
of the scalar field, and we write

A′ = −1

3
W (φ). (37)

This equation also appear in the standard braneworld scenario. Our
point here is that since in the action (1) the geometric sector re-
mains unchanged, we expect that this equation remains unchanged
too. In this case, we use Eq. (9a) to write

L Xφ′ = 1

2
Wφ (38)

which is the same that appears in the absence of gravity. The null
energy condition (9b) can be written as

L − 2L X X = 1
W 2. (39)
3
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Eqs. (38) and (39) impose a constraint in the Lagrange density. It
is not difficult to show that these first-order equations solve the
second-order equation of motion (8).

Let us consider the standard braneworld model. The Lagrange
density for the scalar field is given by

L = X − V (φ). (40)

The set of equations (37), (38) and (39) give

φ′ = 1

2
Wφ, (41a)

and the constrained potential is

V (φ) = 1

8
W 2

φ − 1

3
W 2. (41b)

These equations describe BPS solutions since they appear in su-
pergravity [3].

Now we consider the case in which the scalar field has gener-
alized dynamics. The general structure of the Lagrange density is
given by

L = F (X) − V (φ). (42)

For such models the scalar field is sometimes called a k-field. The
equation of motion is(

F ′ + 2X F ′′)φ′′ − Vφ = −4F ′φ′ A′, (43)

and from the Einstein equations we obtain

A′′ = 4

3
F ′ X, A′ 2 = 1

3
(F − V − 2X F ′). (44)

We notice that in the standard situation F (X) = X , the above equa-
tions lead to the standard braneworld case. In the generalized sit-
uation, the first-order equations are (37) and

F ′φ′ = 1

2
Wφ, (45a)

F − 2F ′ X − V (φ) = 1

3
W 2. (45b)

Eq. (45a) has the form G(φ′) = 1
2 Wφ . For some models this can be

rewritten as

φ′ = G−1
(

1

2
Wφ

)
. (46)

Now, substituting this into Eq. (45b) leads to the potential

V (φ) = (F − 2F ′ X)|
φ′=G−1( 1

2 Wφ)
− 1

3
W 2. (47)

Comparing this expression with Eq. (41b) for the potential of the
standard case, we see that only the Wφ portion is changed. The
reason for this is that the W portion follows from a pure geometric
contribution which remained unchanged.

We now illustrate the investigations with the type I and type II
models, as described in (30) and (34), respectively.

3.1. Type I model

We use the function F = X + α|X |X . In this case, the equation
of motion for the scalar field becomes

φ′′ + 4φ′ A′ − Vφ = α
(
3φ′′ − 4φ′ A′)φ′ 2. (48)

Using the first-order equations, we see that the scalar field has to
obey

φ′ + αφ′ 3 = 1
Wφ. (49)
2

This algebraic equation of third degree for φ′ has the only real
solution

φ′ = m(Wφ)

6α
− 2

m(Wφ)
, (50)

where

m(Wφ) = (
54α2Wφ + 6

√
3
(
16α3 + 27α4W 2

φ

)1/2)1/3
. (51)

From Eq. (47) we can write the potential as

V (φ) = 1

2
φ′ 2 + 3

4
αφ′ 4 − 1

3
W 2 (52)

or then, substituting (50)

V (φ) = 1

2

(
m(Wφ)

6α
− 2

m(Wφ)

)2

+ 3α

4

(
m(Wφ)

6α
− 2

m(Wφ)

)4

− 1

3
W (φ)2. (53)

In order to ease investigations, let us focus our study in the
case of α very small. Here we get, up to first-order in α, the field
equation

φ′ = 1

2
Wφ − α

8
W 3

φ (54)

with the corresponding potential

V (φ) = 1

8
W 2

φ − α

64
W 4

φ − 1

3
W 2. (55)

Eq. (54) yields, after an integration,

2
∫

dφ

Wφ

+ α

2
W (φ) = y, (56)

and so φ(y) = φ0(y − αW (φ0)/2), where φ0(y) is the solution
when α vanishes. We expand this solution to get

φ(y) = φ0(y) − α

2
φ′

0(y)W
(
φ0(y)

)
, (57)

or using (54)

φ(y) = φ0(y) − α

4
Wφ

(
φ0(y)

)
W

(
φ0(y)

)
. (58)

The warp factor obeys the equation

A′ = −(1/3)W
(
φ0(y) − (α/2)φ′

0(y)W
(
φ0(y)

))
. (59)

It is then easy to see that

A(y) = A0(y) + α

12
W

(
φ0(y)

)2
, (60)

where A0 represents the standard warp factor, for α = 0. The brane
tension (12) is

T =
∫

dy e2A(y)

(
1

4
W 2

φ − 1

3
W 2 − α

W 4
φ

16

)
, (61)

or better

T = T0 − α

48

∫
dy e2A(y)

(
6W W 3

φ − 8W 2W 2
φ + 3W 4

φ

)∣∣∣∣
φ=φ0

, (62)

where T0 is the tension of the brane in the standard scenario.
We can consider the explicit example, with W (φ) given by

W (φ) = 3a sin(bφ). (63)

In this case the potential for α small has the form

V = 9
a2b2 cos2(bφ) − 3a2 sin2(bφ) − 81α

a4b4 cos4(bφ). (64)

8 64
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Fig. 1. Plots of the potential (53) for b = √
6/3, a = 1 and for α = 0.1 (solid line),

α = 1 (dashed line) and α = 10 (dot-dashed line).

In Fig. 1, we plot the potential for some values of α, not neces-
sarily small. We have also depicted the other Figs. 2, 3, and 4
numerically, for several values of α, and we have also checked that
the corresponding analytic expressions, obtained for α very small,
completely agrees with the numerical results with α small. We
then note that the numerical study give full support to the ana-
lytical expressions which we have obtained for α very small. We
further note that the numerical study shows the robustness of the
model for a large range of possibilities for the parameter α.

We can use (58) to write for the scalar field φ(y) = φ0(y) −
(9αa2b/8) sin(2bφ0), or explicitly

φ(y) = 1

b
arcsin

[
tanh

(
3

2
ab2 y

)]

− 9αa2b

4
tanh

(
3

2
ab2 y

)
sech

(
3

2
ab2 y

)
. (65)

Fig. 2 shows the kink profile (upper panel), with the α parame-
ter increasing the brane thickness, as can also be seen from the
plots of the energy density (lower panel). This is an interesting re-
sult, since it shows that the α-dependent term used to modify the
dynamics of the scalar field contributes to thicker the brane.

We use Eq. (60) to get

A(y) = 2

3b2
ln

(
sech

(
3

2
ab2 y

))
+ 3a2α

4
tanh2

(
3

2
ab2 y

)
, (66)

which is depicted in Fig. 3. For b2 = 2/3, we use the transforma-
tion dz = e−A(y)dy to write

dz = cosh(ay) − 3a2

4
sinh2(ay) sech(ay), (67)

where

z = sinh(ay)

a
+ 3aα

4

(
arctan

(
sinh(ay)

) − sinh(ay)
)
, (68)

y = 1

a
arcsinh(az) − 3aα

4

(arctan(az) − az)√
1 + a2z2

. (69)

The warp factor is now written in terms of the z variable

A(z) = −1

2
ln

(
1 + a2z2) + 3a3α

4

z arctan(az)

1 + a2z2
. (70)

The Schrödinger-like potential is given by

U (z) = 9

4
A′ 2(z) + 3

2
A′′(z), (71)

and has the explicit form
Fig. 2. Plots of the scalar field φ(y) (upper panel) and the energy density ρ(y)

(lower panel) for α = 0.1 (solid line), α = 1 (dashed line) and α = 10 (dot-dashed
line). We use b2 = 2/3.

Fig. 3. Plots of the warp factor e2A(y) (upper panel) and the Schrödinger-like po-
tential U (z) (lower panel) for α = 0.1 (solid line), α = 1 (dashed line) and α = 10
(dot-dashed line). We use b2 = 2/3.
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Fig. 4. Plots of z2U (z) for the type I model (upper panel) for α = 0.1 (solid line),
α = 1 (dashed line) and α = 10 (dot-dashed line), showing the asymptotic regime
for large z. We use b2 = 2/3. We also plot the ratio M2

4/M3∗ (lower panel) between
4-dimensional coupling and fundamental 5-dimensional Planck scale as a function
of α.

U (z) = 3a2(5a2z2 − 2)

4(1 + a2z2)2

+ 9

8

a4α

(1 + a2z2)3

(
az

(
5a2z2 − 9

)
arctan(az) + (

2 − 7a2z2)).
(72)

In Fig. 3 (lower panel) we plot the potential U (z) for several
values of α. We see that the characteristic volcano profile for dy-
namically generated M4 brane immersed in an asymptotically AdS5
bulk. The increase of α leads to a reduction of the maximum of the
potential, and this may modify the way gravity is localized in the
brane. Thus, we have to investigate if this behavior produces any
sensible effects on the localization of gravity in the brane gener-
ated in this case.

To investigate this possibility, let us look at the asymptotic be-
havior of U (z). In Fig. 4 (upper panel) we plot z2U (z), indicat-
ing that we have U (z) ∼ 1/z2 for large z, even for large values
of the parameter α. We see from this figure that the asymp-
totic regime is better achieved for smaller values of α, whereas
for larger values one must consider still larger values of z. For
instance, for −30 < z < 30, Fig. 4 shows that we can study ana-
lytically the correction for the Newtonian potential in the range
0 < α < 0.1. This is the region where our analytic expansion for
small α agrees sensibly with the numerical simulations. We find
U (z) ∼ (15/4)/z2 + (45/16)πaα/z3 + O(1/z5) for large z. Note that
the leading term of the expansion does not depend on α. It is well
known that potentials which asymptotes as U (z) ∼ β(β + 1)/z2

gives a correction for the Newtonian potential O(1/R2β) for two
massive objects at a distance R from each other. In our case, we
have β = 3/2, and this gives the correction O(1/R3) for the New-
tonian potential, independent of α. This is the same correction
given by at the standard Randall–Sundrum scenario, and it con-
firms that the model localizes gravity for all chosen values of α
where the expansion applies. The simulations also indicate that the
same applies for larger values of α. This means that a whole class
of braneworld models were constructed with different properties
related to matter distribution and geometry, all being able to lo-
calize gravity.

Another point is that the next to leading term depends on α for
the Schrödinger potential. It shows that for larger α the asymptotic
regime is achieved for larger values of z, as demonstrated by the
simulations shown in Fig. 4. In order to better see the influence of
α in the gravitational interaction we remind that the Newtonian
potential are corrected by the contribution of all massive modes,
solutions of the Schrödinger-like equation, as

U (R) = G
1

R
+ 1

M3∗

∞∫
0

dm
e−mR

R

∣∣ψm(0)
∣∣2

, (73)

where the 4-dimensional coupling is G = M−2
4 , and M∗ is the fun-

damental 5-dimensional Planck scale, and the integration is con-
sidered at the brane position z = 0. We can write an expression
relating the two scales as

M2
4 = M3∗

+∞∫
−∞

dz e3A(z). (74)

In this way one can see that those scales are related to the inte-
gral of a function depending on the warp factor. In Fig. 4 (lower
panel) we plot the ratio M2

4/M3∗ between the two scales. Note the
greater importance of M4 for larger values of α. Since G = 1/M2

4,
this means that smaller values of α contribute to increase the in-
tensity of the gravitational interaction, and that gravity localization
is then favored. From Eq. (70) we can write M2

4/M3∗ = 2/a +αa2/3
for small α. This is related to the fact that the Schrödinger po-
tential achieves the asymptotic region at smaller values of z, for
smaller values of α. This effect seems to be in perfect agreement
with the former result, which has shown that the brane thickness
decreases with decreasing values of α, since in a thicker brane,
gravity localizes less importantly.

3.2. Type II model

We now study models with the function F = −X2/2. In this
case, the equation of motion of the scalar field is

3

2
φ′ 2φ′′ + 2φ′ 3 A′ − Vφ = 0. (75)

Using the first order formalism, the equation for φ′ is

φ′ = W 1/3
φ , (76)

and the potential has the form

V (φ) = 3

8
W 4/3

φ − 1

3
W 2. (77)

We choose an explicit function

W (φ) = 9a3b2 sin(bφ)
(
2 + cos2(bφ)

)
. (78)

Here the potential has the explicit form

V (φ) = 243

8
a4b4 cos4(bφ) − 27a6b4 sin2(bφ)

(
2 + cos2(bφ)

)2
. (79)

In Fig. 5 we plot the potential for a = 1 and several values of b,
and for b = 1 and several values of a. We note that in the first
case, for a = 1 the effect of increasing b is to deepen and narrow
the potential wells. In the second case, however, for b = 1 and for a
increasing, each potential well deepens and widens, and this nicely
contributes to distinguish the two cases, as we show below.
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Fig. 5. Plots of the potential for a = 1 (upper panel) and for b = 1 (solid line), b = 1.1
(dashed line) and b = 1.2 (dot-dashed line), and for b = 1 (lower panel), and for
a = 1 (solid line), a = 1.1 (dashed line) and a = 1.2 (dot-dashed line).

Fig. 6. Plots of the warp factor for b = 1 and for a = 1 (solid line), a = 1.1 (dashed
line) and a = 1.2 (dot-dashed line).

The scalar field obeys φ′ = 3ab cos(bφ), with the solution

φ(y) = 1

b
arcsin

(
tanh

(
3ab2 y

))
. (80)

We can also get for A

A(y) = −1

6
a2 tanh2(3ab2 y

) + 2

3
a2 ln

(
sech

(
3ab2 y

))
, (81)

which results in the warp factor depicted in Fig. 6, for b = 1, with
a = 1,1.1, and 1.2; we are not showing the other plots, for a = 1
and for b varying, because they are essentially the same.

In the plots of Fig. 7, we see that gravity localization seems to
be favored in the case b = 1, for increasing a, since there we see
that the height of the maxima of U (z) is higher then in the other
case, with a = 1 for increasing b. However, to check this behavior
quantitatively, we repeated the procedure included in Section 3.1
in order to numerically obtain the functions z(r), A(z) and U (z).
Fig. 7. Plots of the Schrödinger-like potential U (z) for type II model. In the upper
panel a = 1 and b = 1 (solid line), b = 1.1 (dashed line) and b = 1.2 (dot-dashed
line). In the lower panel b = 1 and a = 1 (solid line), a = 1.1 (dashed line) and
a = 1.2 (dot-dashed line).

The function U (z) was graphically analyzed to investigate the in-
fluence of the parameters a and b for gravity localization. This is
done in Fig. 7, in which one displays U (z) for several values of
parameters a and b, and there we note that: (i) both figures have
similar volcano profile. However, the numerical analysis shows that
fixing b = 1 with 1 < a < 3 leads to larger extremes for the poten-
tial than fixing a = 1 with 1 < b < 3. In this way, we can infer that
the parameter a has greater influence for gravity localization; (ii)
fixing one of the parameters a or b, the increasing of the second
parameter leads to a corresponding increasing on the maxima and
minima of the potential, indicating that the increasing the param-
eters favors gravity localization. This is better seen in Fig. 8, where
we study z2U (z).

In Fig. 8 one notes that the behavior of U (z) suggests that
U (z) ∼ 1/z2 for z 	 1. Writing U (z) = β(β + 1)/z2 we can, as in
the analysis of the type I model, determine β such that the New-
tonian potential has correction of order 1/R2β for large separation
R between unit masses. Now from these figures we can conclude
that: (i) for a = 1 and fixed zmax, the asymptotic approximation is
easier obtained for larger values of b. On the other hand, larger
values of b leads to larger values of β , and this corresponds to
a correction with a greater power law for the Newtonian poten-
tial. This agrees with our previous analysis that larger values of
a or b favor gravity localization; (ii) for zmax = 20 and a = 1, we
can affirm that the asymptotic region where U (z) = (β)(β + 1)/z2

is achieved with considerable precision for b � 2. From the nu-
merical values obtained we can estimate that: for b = 2, we get
(β)(β+1) = 3.7180, β = 1.492, and a correction O(1/R2.98) for the
Newtonian potential (compare with O(1/R3) for Randall–Sundrum
model); for b = 3, we get (β)(β + 1) = 3.7338, β = 1.496, and a
correction O(1/R2.99) for the Newtonian potential.

We further note that for zmax = 20 and b = 1 we can affirm
that the asymptotic region is achieved for a � 2. With the same
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Fig. 8. Plots of z2U (z) for the type II model. In the upper panel a = 1 and b = 1
(solid line), b = 2 (dashed line) and b = 3 (dot-dashed line). In the lower panel
b = 1 and a = 1 (solid line), a = 2 (dashed line) and a = 3 (dot-dashed line).

procedure we estimate that: for a = 2, we get (β)(β + 1) = 3.7809,
β = 1.508, and a correction O(1/R3.02) for the Newtonian po-
tential; for a = 3 we get (β)(β + 1) = 3.8565, β = 1.526, and a
correction O(1/R3.05) for the Newtonian potential.

The above comments agree with the previous observation that
larger values for a and b lead to corrections for the Newtonian po-
tential with larger power law. The corrections are near to O(1/R3)

obtained from Randall–Sundrum model for small parameters, and
tend to be larger for larger a and b, showing that gravity is then
easier localized.

If we compare the case a = 1, b = 3 (correction O(1/R2.99))
with the case a = 3, b = 1 (correction O(1/R3.05)), we see that the
increasing of the parameter a is more effective for gravity localiza-
tion in comparison with similar increasing of parameter b.

4. Ending comments

In this work we have investigated generalized braneworld mod-
els, that is, models in which the standard gravity action is ex-
tended to include scalar fields with generalized dynamics, with the
Lagrange density having the nonstandard form L(φ, X) = F (X) −
V (φ). This study is a continuation of our program to investigate
the scalar field behavior under the presence of generalized dynam-
ics [8,13]. In particular, in the present study we have included two
distinct families of models, one given by F (X) = X − αX |X |, and
the other by F (X) = −X2.

An interesting and general result is that the proposed scenario,
in which gravity acts standardly and the scalar field has general-
ized dynamics, is linearly stable, capable of localizing gravity in a
way similar to the standard case.

Other investigations included in this work engender both ana-
lytical and numerical results. For the type I model, with F (X) =
X − αX |X |, we have presented analytical results up to first or-
der in α for α very small, and our numerical study confirms the
correctness of the perturbative expansion up to first order in α.
In this case, for α small, we have calculated analytically the cor-
rections to the Newtonian potential, showing the localization of
gravity. The ratio between the masses leads to a nice estimate of
how α quantitatively affects the gravitational interaction. And nu-
merically, we could extend this result to much larger values of α.
As another interesting result, we have shown that gravity local-
ization is more effective at smaller values of α. It seems that for
F (X) = X + α|X |X , the robustness of the model weakens for in-
creasing values of α, as we get away from the standard braneworld
scenario.

The type II model is more involved. However, thanks to the
first-order framework put forward in [13], we could study it and
obtain analytic solutions for both the scalar field and warp fac-
tor. The analytic solutions has helped us to ease the subsequent
numerical investigations, to study gravity localization. The results
show that, like in the former case, this new and well distinct fam-
ily of models engenders similar behavior, and it is also capable
of localizing gravity. For the two families of models, we can also
control gravity localization with the specific form of the potential
V (φ), an effect that also appears in the braneworld model with
the scalar field with standard dynamics.

There are other possibilities of study. For instance, in the case of
the type II model, we can find compacton solutions for the scalar
field, so we can also investigate this case, in a way similar to the
study done in [12]. Another possibility is to extend the present
investigations to the case of bent brane, as we have already done
in some of our work in [4] in the case of standard dynamics. We
can also consider the harder case, in which we also change R to
F (R), extending the F (R) brane study done in [14] to this new
F (R, X) braneworld scenario. We hope to report on these issues in
another work in the near future.
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