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The generalized μ–τ interchange symmetry in the leptonic mixing matrix U corresponds to the relations: 
|Uμi | = |Uτ i | with i = 1, 2, 3. It predicts maximal atmospheric mixing and maximal Dirac CP violation 
given θ13 �= 0. We show that the generalized μ–τ symmetry can arise if the charged lepton and neutrino 
mass matrices are invariant under specific residual symmetries contained in the finite discrete subgroups 
of O  (3). The groups A4, S4 and A5 are the only such groups which can entirely fix U at the leading 
order. The neutrinos can be (a) non-degenerate or (b) partially degenerate depending on the choice of 
their residual symmetries. One obtains either vanishing or very large θ13 in case of (a) while only A5
can provide θ13 close to its experimental value in the case (b). We provide an explicit model based on 
A5 and discuss a class of perturbations which can generate fully realistic neutrino masses and mixing 
maintaining the generalized μ–τ symmetry in U . Our approach provides generalization of some of the 
ideas proposed earlier in order to obtain the predictions, θ23 = π/4 and δCP = ±π/2.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The data from various neutrino oscillation experiments ana-
lyzed in the context of three neutrino oscillations have revealed 
five fundamental parameters by now [1–3]. These include two 
squared differences of neutrino masses and three mixing angles 
in the Pontecorvo–Maki–Nakagawa–Sakata mixing matrix UPMNS. 
For any of the normal or inverted ordering in the neutrino masses, 
their 3σ ranges can be summarized as [1]:

0.270 < sin2 θ12 < 0.344, 0.385 < sin2 θ23 < 0.644,

0.0188 < sin2 θ13 < 0.0251

7.02 <
�m2

21

10−5 eV2
< 8.09,

2.325 <
�m2

31

10−3 eV2
< 2.599 or −2.259 <

�m2
32

10−3 eV2
< −2.307

Here �m2
i j ≡ m2

i − m2
j . Discrete symmetry based approaches have 

been quite widely used in order to explain the special values of 
lepton mixing angles, see for example recent reviews [4–8]. One 
assumes that the global symmetry group G f of the leptons is 
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spontaneously broken to the smaller symmetries Gν and Gl of 
the neutrino and the charged lepton mass matrices respectively. 
The leptonic mixing can solely be fixed from the choice of Gl and 
Gν in a given G f [9–13]. Possible choices of G f leading to three 
non-degenerate neutrinos are extensively studied in [14–21] and 
mixing patterns are analyzed. In a novel approach, it is shown that 
suitable choices of G f can also lead to the cases with one mass-
less neutrino [22,23], two or three degenerate neutrinos [24,25]
and two degenerate and one massless neutrino [25]. In an alter-
nate approach, it is shown recently in [26] that a massless neutrino 
with/without a degenerate pair of neutrinos can arise if neutrino 
mass matrix is assumed to be anti-symmetric under Gν .

After the clear evidence of nonzero θ13 and with the most re-
cent data, we now start to have an indirect indication of the sixth 
parameter, namely the Dirac CP phase δCP in the lepton sector. In 
fact the observed value of θ13 and measured combination of θ13
and δCP by T2K long-baseline experiment [27] are in good agree-
ment if δCP ∼ −π/2 [28,29]. This however is a mere indication at 
present and more data will certainly provide clear picture in the 
near future. Nevertheless, such a special value of CP phase may 
be indicative signal of some hidden symmetries in the lepton sec-
tor. The current global fits of neutrino oscillation data disfavor the 
maximal atmospheric mixing angle at 1σ however it is in accor-
dance with the data at 3σ in case of both normal and inverted 
ordering in the neutrino masses. The ansatz and symmetries of 
neutrino mass matrix predicting θ23 = π/4 and δCP = ±π/2 have 
been proposed earlier in [30–33]. In the simplest case, the above 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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prediction can be obtained if the Majorana neutrino mass matrix 
in the diagonal basis of the charged leptons, namely Mν f , satisfies

S T
23Mν f S23 = M∗

ν f , (1)

where

S23 =
⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠ . (2)

The symmetry transformation is a discrete Z2 symmetry cor-
responding to μ–τ interchange together with CP conjugation 
[33–43]. Such an Mν f leads to the relations among the elements 
of PMNS matrix, U ≡ UPMNS:

|Uμi| = |Uτ i| for i = 1,2,3 (3)

and predicts θ23 = π/4 and sin θ13 cos δCP = 0, equivalently δCP =
±π/2 if θ13 �= 0. The relations in Eq. (3) were first proposed in [31]
and we refer them as the results of “generalized μ–τ symmetry” 
in the leptonic mixing matrix.1

We show that predictions in Eq. (3) or generalized μ–τ sym-
metry arise on more general grounds and can follow without in-
voking CP and/or the μ–τ symmetry and can follow even if Eq. (1)
is not satisfied by Mν f . As we shall see, Eq. (3) arises if neu-
trinos and the charged lepton mass matrices are invariant under 
specific residual symmetries contained in some discrete subgroups 
(DSG) of O (3). The residual symmetries contained in DSG of O (3)

can be used to get a neutrino mass matrix with non-degenerate 
or partially degenerate spectrum with two of the masses being 
equal. The generalized μ–τ symmetry follows in both the cases. 
While the general result that we derive holds for any DSG of O (3), 
we shall discuss specific examples of groups having three dimen-
sional irreducible representation (irreps). There are only three such 
groups, namely A4, S4 and A5. All of which have been widely dis-
cussed in the literature [4–8] and we shall recapitulate some of 
the known results and present new examples specifically in case 
of the partially degenerate neutrino mass spectrum.

The A5 symmetry together with CP transformation has been 
studied recently in [44–47] in order to predict the neutrino mix-
ing angles and CP phases in the case of three massive Majorana 
neutrinos. Our approach is different from these works as we do 
not impose CP explicitly but discuss situations under which the 
generalized CP predictions arise automatically. Also the choice of 
residual symmetry Gν leading to degenerate solar pair is not con-
sidered in the quoted works.

In the next section, we present our main result and discuss the 
emergence of generalized μ–τ symmetry from the DSG of O (3). 
We then discuss specific examples of the general result in Sec-
tion 3. An explicit model based on the A5 group is constructed in 
Section 4. Finally, we summarize in the last section.

2. Discrete subgroups of O (3) and maximal θ23 and δCP

We discuss the sufficiency conditions leading to generalized 
μ–τ symmetry predictions, Eq. (3). Let Tl , Tν and Saν with a = 1, 2
denote 3 × 3 real orthogonal matrices with the property

T n
l = T m

ν = S2
aν = 1 with n,m ≥ 3 (4)

and [S1ν, S2ν ] = 0, [Tl, Tν ] �= 0, [Tl, Saν ] �= 0. Let the Hermitian 
combination Ml M

†
l of the charged lepton mass matrix Ml satisfy

T †
l Ml M

†
l Tl = Ml M

†
l (5)

1 This is also referred as “μ–τ reflection symmetry” in some literature [31,35].
and neutrino mass matrix be invariant under either Saν or Tν :

(a) S T
aν Mν Saν = Mν or (b) T T

ν Mν Tν = Mν . (6)

Then the resulting UPMNS displays the exact generalized μ–τ sym-
metry with elements satisfying Eq. (3). It is clear that if (Tl, Saν)

or (Tl, Tν) close to a finite group, then the minimal such group 
would be a DSG of O (3). Thus the DSG of O (3) can naturally lead 
to the generalized μ–τ symmetry.

The case (a) in Eq. (6) corresponds to three non-degenerate 
neutrino masses and (b) to partially degenerate spectrum with 
two equal neutrino masses. The neutrino mass matrix is invari-
ant under a Z2 × Z2 symmetry in the case (a). This symmetry 
corresponds to changing the signs of any two of the three neu-
trino fields in their mass basis. Such a symmetry is always present 
if all three neutrinos are massive Majorana particles and non-
degenerate. If two of the neutrinos are degenerate then the resid-
ual symmetry is bigger since one can multiply the corresponding 
fields ν1 and ν2 by complex phase η and η∗ respectively leaving 
their combined mass term invariant. The residual symmetry in this 
case is Zm with m ≥ 3 and implies a partially degenerate spectrum 
which has been considered in detail in [24,25].

The proof of the above uses an important and well known re-
sult that matrices diagonalizing symmetry operators of the mass 
matrices also diagonalize the corresponding mass matrices them-
selves [9–13]. Specifically, let Vl (Vν) be 3 × 3 unitary matrix 
diagonalizing the symmetry operators Tl (Saν or Tν ). Then the 
matrices Ul and Uν , diagonalizing Ml M

†
l and Mν respectively, are 

given by Ul = Vl Pl and Uν = Vν Pν , where Pl and Pν are arbi-
trary diagonal phase matrices. As a result, the elements of the 
U ≡ UPMNS matrix satisfy

|Uij| = |(U †
l Uν)i j| = |(V †

l Vν)i j|. (7)

Eqs. (5), (6) allow us to determine the general form of Vl and Vν . 
For this, we note that eigenvalues of any unitary unimodular ma-
trix satisfy

λ3 − χλ2 + χ∗λ − 1 = 0, (8)

where χ denotes the trace of the matrix (or character) and all the 
eigenvalues λ satisfy |λ| = 1. If χ is real then one of the roots 
of the above equation is λ1 = 1 and the other two are given by 
λ2,3 = 1

2

(
χ − 1 ± √

(χ − 1)2 − 4
)

. This has only two real solu-

tions of modulus one corresponding to χ = 3 and χ = −1. These 
respectively correspond to an identity element and elements of or-
der 2. The remaining solutions are non-real and complex conjugate 
to each other. Such elements necessarily have order ≥ 3. It fol-
lows that the matrices Tl , Tν satisfying Eq. (4) have eigenvalues 
λi = (1, η, η∗) with η �= ±1 and |η|2 = 1 while Saν have eigenval-
ues (1, −1, −1).

Any Tl with a pair of complex conjugate eigenvalues is neces-
sarily non-diagonal in the basis in which it is real and its eigen-
value equation is given by

Tl vi = λi vi, (9)

where vi are eigenvectors. It follows from the eigenvalues of Tl
that v1 can be chosen real and v2 = v∗

3. Thus, Vl diagonalizing Tl
can be chosen to have a general form

Vl =
⎛
⎝ x1 z1 z∗

1
x2 z2 z∗

2
x3 z3 z∗

3

⎞
⎠ , (10)

with real xi and complex zi . The corresponding matrix diagonal-
izing Ml M

†
l would be given by Ul = Vl Pl . Next, we show that the 

matrix Uν diagonalizing Mν has the form
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Uν = O ν Q ν (11)

in both the cases (a) and (b), where O ν is a real orthogonal matrix 
and Q ν is a diagonal phase matrix. Since [S1ν , S2ν ] = 0, both Saν

are diagonalized by a common unitary matrix and since Saν and 
their eigenvalues are real, the eigenvectors of Saν can also be cho-
sen real. The same O ν would diagonalize the neutrino mass matrix 
also due to symmetry relation Eq. (6). But the neutrino masses can 
be complex and Q ν in Eq. (11) corresponds to their phases. For 
the case (b), the matrix Vν that diagonalizes Tν is formally the 
same as Eq. (10) which diagonalizes Tl . This follows from the fact 
that both Tl and Tν are real and have a pair of complex conjugate 
eigenvalues. Thus we can write

Vν =
⎛
⎝ u1 u∗

1 w1
u2 u∗

2 w2
u3 u∗

3 w3

⎞
⎠ (12)

with wi real. Note that the ordering of eigenvectors is not de-
termined from the symmetry arguments and we have chosen an 
ordering in Eq. (10) which would give generalized μ–τ symmetry. 
Other choices would correspond to e–τ or e–μ symmetries lead-
ing to the predictions |Uei | = |Uμi | or |Uei | = |Uτ i | respectively in 
UPMNS. The ordering in Vν in Eq. (12) is however chosen requir-
ing that the degenerate pair of neutrinos corresponds to the solar 
neutrinos pair. While Vν diagonalizing Tν is given above, the di-
agonalizing matrix Uν does not differ from it merely by a phase 
matrix as in the case of non-degenerate neutrinos. The degeneracy 
in the first two masses implies [25]

Uν = VνU12 R12(θX )Pβ2 , (13)

with

U12 =

⎛
⎜⎜⎝

i√
2

1√
2

0

−i√
2

1√
2

0

0 0 1

⎞
⎟⎟⎠ , (14)

R12 denoting arbitrary rotation in the 1–2 plane by an angle θX

and Pβ2 = Diag.(1, 1, eiβ2/2). It then follows from Eqs. (13), (14)
that Uν also has the same form as given by Eq. (11). It is then 
straightforward to verify that Ul = Vl Pl with Vl as in Eq. (10) and 
Uν as in Eq. (11) lead to UPMNS matrix satisfying Eq. (3).

A neutrino mass matrix which is Z2 × Z2 symmetric can in gen-
eral possess non-trivial phases represented by Q ν in Eq. (11). If 
these phases are trivial and if Ul is in the form of Eq. (10) then 
the Majorana neutrino mass matrix in the diagonal basis of the 
charged leptons is given by

Mν f ≡ U T
l MνUl =

⎛
⎝ X A A∗

A B C
A∗ C B∗

⎞
⎠ , (15)

where X and C are real parameters. This provides the most general 
solution of Eq. (1). The above Mν f was first obtained [30,32] in 
the context of A4 model with quasidegenerate neutrinos. It was 
then argued in [33] that this form can result from a combined 
operation of the μ–τ and CP symmetry and leads to prediction of 
the maximal δCP.

If Mν is Z2 × Z2 symmetric but Majorana phases are non-trivial 
then even with Ul as in Eq. (10) one does not get the above spe-
cific form of Eq. (15) but Eq. (3) still holds. Thus the combined 
operation of CP and μ–τ symmetry is sufficient but not necessary 
to get the maximal θ23 and δCP.

It has been noticed before [48–50] that the form given in 
Eq. (15) follows if Vl is given by
Vl = Uω = 1√
3

⎛
⎝ 1 1 1

1 ω ω2

1 ω2 ω

⎞
⎠ (16)

with ω = e2π i/3 and if neutrino mass matrix is real. The above 
form of Vl is a special case of our general form, Eq. (10) and re-
sults when Tl is identified with a Z3 group associated with cyclic 
permutations of three objects. A similar case is also studied re-
cently in the contexts of type II seesaw [51–53].

We end this section with some important remarks connected 
with the above result.

• If one were to replace Zn invariance of Ml M
†
l also by a Z2 × Z2

symmetry then both Ul and Uν would be real upto a diagonal 
phase multiplication on right and δCP would be zero. If Z2 ×
Z2 invariance of Mν in case of the non-degenerate neutrinos 
is replaced by a single Z2 then reality of Vν and hence the 
prediction of the generalized μ–τ symmetry does not hold. 
An example of this is found in a specific model [54] based on 
the A5 group which uses a single Z2 symmetry for neutrinos. 
As far as the degenerate neutrinos are concerned, the order of 
Tν is necessarily > 2. Thus all DSG of O (3) giving degenerate 
neutrinos necessarily also give Eq. (3).

• If neutrinos are degenerate then both the solar angle and δCP
are undefined. This is reflected by the presence of the un-
known angle θX in Eq. (13). But note that the relations in 
Eq. (3) hold even if U → U R12(θX )Pβ2 and therefore the ar-
bitrariness in defining Uν arising from the degeneracy of the 
solar pair does not affect the underlying generalized μ–τ
symmetry. Equivalently, one finds [24,25] that the quantity 
Iα ≡ Im(U∗

α1Uα2) remains invariant under U → U R12(θX )Pβ2 . 
These quantities can be written in the standard parameteriza-
tion of UPMNS as

c12s12 sin
β1

2
= 1

c2
13

Ie,

c2
12 sin

(
δCP − β1

2

)
+ s2

12 sin

(
δCP + β1

2

)

= 1

s23c23s13

(
Iμ − s2

23s2
13 − c2

23

c2
13

Ie

)
, (17)

where si j = sin θi j and ci j = cos θi j . Using the form of UPMNS
obtained in the degenerate case above, one finds that Ie = 0
and Iμ = −Iτ = ± 1

2 sin θ13. Since these invariants are inde-
pendent of θX , one can use the leading order values of θ12
to obtain information on δCP. Theses are determined by the 
choice of Tl and Tν . If c12s12 �= 0 at the leading order, then 
the above equations predict β1 = 0 and δCP = ±π

2 . On the 
other hand if c12s12 = 0 at the leading order than one gets 
sin(δCP ± β1

2 ) = ±1. It is thus expected that small perturba-
tions will stabilize δCP around the values obtained in these 
two cases depending on the choice of the residual symmetries. 
Examples of specific perturbations doing this have been con-
sidered in [24]. Also general perturbations to the UPMNS matrix 
obtained in case of the A5 group were numerically analyzed 
in [25] and δCP was found to be near ±π

2 for the choices of 
Tl and Tν made there. We shall give here an explicit model 
where one gets the same result after perturbations.

• The third column of U is not affected by arbitrariness in the 
choice of θ12 and the values of θ13 is uniquely fixed by the 
choice of Tν and Tl . We consider leading order prediction of 
θ13 for DSG of O (3) in the next section concentrating mainly 
on A5.
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3. Examples of generalized μ–τ symmetry and A5

The groups S3, D N , A4, S4 and A5 are the only finite DSG of 
O (3). Of these only A4, S4 and A5 posses faithful three dimen-
sional irreducible representations. Any choice of residual symme-
tries within them consistent with the previous discussion would 
lead to prediction Eq. (3). The mixing angle predictions for A5
group have already been studied [55–58] in case of the non-
degenerate neutrinos. One gets either vanishing or large θ13 at the 
leading order in this case. The same holds for the groups A4 and 
S4 even in case of the partially degenerate spectrum. The group 
A5 provides only non-trivial example which gives a non-zero θ13
close to its experimental value if two of the neutrinos are degener-
ate. We discuss this case explicitly and enumerate all the residual 
symmetries within A5 giving generalized μ–τ symmetry.

The A5 group has sixty elements which are generated using E , 
F and H where

H = 1/2

⎛
⎝ −1 μ− μ+

μ− μ+ −1
μ+ −1 μ−

⎞
⎠ ; E =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ ;

F =
⎛
⎝ 1 0 0

0 −1 0
0 0 −1

⎞
⎠ , (18)

with μ± = 1/2(−1 ± √
5). We list all the sixty elements in terms 

of E , F , H defined above in Appendix A. Properties of A5 group has 
been studied earlier in [55–57] and Ref. [58] also gives list of all 
elements using different matrices. We have defined them in a way 
which makes the appearance of the generalized μ–τ symmetry for 
A5 explicit.

We divide the sixty elements into four categories: (i) An iden-
tity element, (ii) the 15 elements of order 2 to be collectively 
called O 2. The character χ of these elements is −1, (iii) the 20 
elements of order 3 to be called O 3, all with χ = 0 and (iv) 24 
elements of order 5 collectively called O 5. The 12 of these have 
χ = −μ+ and another 12 have χ = −μ− . All these elements and 
their diagonalizing matrices are listed in Table 1 in Appendix A. 
Following Eq. (8), we find that all the elements in category O 3 and 
O 5 have one real and two complex conjugate eigenvalues. Thus 
there are 44 elements belonging to O 3 and O 5 which qualify to be 
the residual symmetry Tν , Tl of neutrinos and the charged leptons 
respectively. The 15 elements in O 2 contain five distinct Z2 × Z2
subgroups which can be used as residual symmetry of Mν in case 
of the non-degenerate spectrum. For each of these five choices, 
there exists 44 Tl giving generalized μ–τ or e–τ or e–μ symme-
try. The last two can be converted to UPMNS satisfying Eq. (3) after 
proper reordering in the columns of Tl . If any of the five Z2 × Z2
group is used as residual symmetry of Mν and any of 24 elements 
in class O 5 as Tl then one gets the following |UPMNS|:

|UPMNS| =
⎛
⎝ 0.8507 0.5257 0

0.3717 0.6015 0.7071
0.3717 0.6015 0.7071

⎞
⎠ (19)

or matrix which differs from above by reordering of row and 
columns. This matrix has the property of golden ratio predic-
tion [59] for the solar mixing angle sin2 θ12 = 0.276. It however 
predicts sin2 θ13 = 0. This case provides a good zeroth order ap-
proximation and it has already been discussed in [55–59]. If one 
chooses any of 20 elements in O (3) as Tl then one gets gener-
alized μ–τ symmetry but the resulting form of |UPMNS| differs 
significantly from the observed one.

In case of the partially degenerate neutrino spectrum, one has 
the choice of 44 elements as residual symmetries of Mν and Ml
consistent with generalized μ–τ . The structure of the PMNS ma-
trix follows from the basic structure of Ul , Uν . In particular, one 
gets from Eq. (10) and Eq. (12)

sin2 θ13 =
∣∣∣∣∣
∑

i

xiui

∣∣∣∣∣
2

,

where xi (ui ) denotes the eigenvector of Tl (Tν ) corresponding to 
the eigenvalue 1. This can be determined from the structure of the 
elements O 2 and O 5 as given in Appendix A. All possible values of 
θ13 obtained in this way are give by

sin2 θ13 = {0.035, 0.111, 0.2, 0.556, 0.632}.
Similar exercise in case of the A4 and S4 groups gives:

A4 : sin2 θ13 = 0.111;
S4 : sin2 θ13 = {0, 0.111, 0.333}. (20)

The same results also follow from [25] in which an extensive anal-
ysis was performed on several discrete subgroups of SU (3) which 
can lead to the appropriate symmetries for degenerate solar pair. 
The numerical results presented in Table I in [25] show that among 
all the analyzed groups, the only group with prediction maximal 
θ23 and δCP for 0 < sin2 θ13 < 0.05 is A5 or the group which con-
tains it as a subgroup, for example �(1080).

Of all the predicted values, sin2 θ13 = 0.035 can be considered 
close to experiments which can be brought within 3σ limit of the 
experimental value with relatively small corrections. This value is 
obtained if Tl belongs to O 5 and Tν to O (3) or vice versa. There 
exists more than one structures of |UPMNS| corresponding to the 
same value of s2

13. We note here two qualitatively different cases.
If Tl = T and Tν = E−1 AE then one gets

|UPMNS| =
⎛
⎝ 0.8507 0.4911 0.1876

0.3717 0.616 0.6946
0.3717 0.616 0.6946

⎞
⎠

upto a rotation by an angle θX in the 12 plane, where A, T are 
defined in Appendix A. The same Tl but Tν = AE A−1 gives instead

|UPMNS| =
⎛
⎝ 0.9822 0 0.1876

0.1326 0.7071 0.6946
0.1326 0.7071 0.6946

⎞
⎠

In the first case, c12s12 is non-zero at the leading order. Then in-
variants given in Eq. (17) lead to β1 = 0, δCP = ±π

2 . In the second 
case, c12s12 = 0 and one gets sin(δCP ± β1/2) = ±1. The small per-
turbations are then required to fix θ12 to its experimental value 
and to generate splittings in the solar pair. Such perturbations 
would also fix δCP close to the values around this.

4. An A5 model

We now provide explicit model in which the results of previ-
ous section can be realized. The model is very similar to the one 
presented in [54]. Major difference being a different vacuum align-
ment and the form of the charged lepton mass matrix. The group 
A5 has 1, 31 , 32 , 4 and 5 dimensional irreps where 31 and 32 are 
non-equivalent irreps. The model is supersymmetric with the three 
generations of leptons lL and lc both transforming as 31 under A5
as in [54]. It follows from the product

31 × 31 = (1 + 5)sym. + 31antisym.

that symmetric neutrino masses can arise from 1 + 5 and the 
charged lepton masses can arise from all three irreps. Accordingly, 
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we introduce two flavons, a 5-plet φν and a singlet sν to generate 
neutrino masses. The Higgs doublets of the minimal supersymmet-
ric standard model, Hu and Hd , are singlet of A5. We introduce a 
weak triplet � as an A5 singlet. The relevant superpotential is:

Wν = 1

2�
lT
L �lL(hsν sν + h5νφν). (21)

The charged lepton masses are generated by three additional 
flavons, a singlet sl , a 5-plet φl and a triplet χl . The correspond-
ing superpotential is

Wl = 1

�
lL Hdlc(hslsl + h5lφl + h3lχl). (22)

Among the various possible choices of the residual symmetries 
given in Appendix A, we specialize to a particular choice with 
Tl = E and Tν = f2T f2. A hermitian combination of the charged 
lepton mass matrix Ml M

†
l invariant under Tl results if the vacuum 

expectation values (VEV) 〈χl〉 and 〈φl〉 satisfy

Tl(3) 〈χl〉 = 〈χl〉 , wTl(5) 〈φl〉 = 〈φl〉 , (23)

where Tl(3) (Tl(5)) denotes the matrices corresponding to the 31
(5) representation. The Tl(3) = E and Tl(5) is given [54] by:

Tl(5) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0

0 0 0 − 1
2 −

√
3

2

0 0 0
√

3
2 − 1

2

⎞
⎟⎟⎟⎟⎟⎠ . (24)

Denoting 〈χl〉 = (χ1, χ2, χ3)
T and 〈φl〉 = (q1, q2, q3, q4, q5)

T ,
Eqs. (23) are solved by

v1 = v2 = v3 ≡ vl, q1 = q2 = q3 ≡ ql and q4 = q5 = 0. (25)

Inserting this solution in the superpotential in Eq. (22) leads to a 
charged lepton mass matrix

Ml =
⎛
⎝ m0 m1 − m2 m1 + m2

m1 + m2 m0 m1 − m2
m1 − m2 m1 + m2 m0

⎞
⎠ . (26)

The Ml M
†
l is diagonalized by the matrix Uω which also diagonal-

izes the corresponding symmetry generator Tl(3) = E . Explicitly,

U †
ωMl M

†
l Uω = Diag.(m2

e ,m2
μ,m2

τ ), (27)

with

m2
e = |m0 + 2m1|2,

m2
μ = |m0 − m1 − √

3i m2|2,
m2

τ = |m0 − m1 + √
3i m2|2 (28)

Here m0 can be taken real without loss of generality. Note that the 
electron mass given above corresponds to the eigenvector (1, 1, 1)T

of Uω . This has to be identified as the first column of Ul in order to 
get the μ–τ symmetry as already mentioned. The remaining two 
eigenvalues can be identified with muon and tau lepton masses 
and can be interchanged. The contributions labeled by m0, m2, 
m1 arise from the VEVs of singlet, triplet and the 5-plet. The Ml
is symmetric in the absence of triplet. In this case, Tl invariance 
implies two degenerate charged leptons. Thus a large triplet con-
tribution m2 is essential to split the muon and tau lepton masses. 
Moreover, simultaneous presence of m0 and m1 is also required to 
suppress the electron mass. But given all the three contributions, 
one can fit the charged lepton masses with appropriate choice of 
parameters.

Neutrino masses follow analogously from Eq. (21). In order to 
get degeneracy, we impose the residual symmetry Tν = f2T f2 and 
require that

Tν(5) 〈φν〉 = 〈φν〉 , (29)

where Tν(5) can be shown to be2

Tν(5) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2 0 1

2
1

2
√

2

√
3

2
√

2

0 1
2

1
2 − 1√

2
0

1
2 − 1

2 0 − 1
2
√

2

√
3

2
√

2

− 1
2
√

2
− 1√

2
1

2
√

2
− 1

4 −
√

3
4

−
√

3
2
√

2
0 −

√
3

2
√

2
−

√
3

4
1
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

Let 〈φν〉 = (p1, p2, p3, p4, p5)
T . A solution for Eq. (29) is given by

p1 = p3 = 0, p2 = −√
2p4, p5 = − p4√

3
. (31)

Inserting these in the neutrino superpotential leads to a neutrino 
mass matrix

M0ν =
(m0ν − m1ν

3 (μ+ − μ−) 0 0

0 m0ν − m1ν
3 (μ− − 1) −m1ν

0 −m1ν m0ν − m1ν
3 (1 − μ+)

)
.

(32)

As a consequence of the residual symmetry, one gets two degen-
erate neutrinos with a mass m0ν − m1ν

3 (μ+ − μ−) and the third 
mass is given by m0ν + 2m1ν

3 (μ+ − μ−). The lower 2 × 2 block of 
Mν is diagonalized by a rotation matrix with an angle θ given by:

tan θ = −μ−.

The full PMNS matrix at the leading order is thus given by

U0 ≡ U †
ω R23(θ) = 1√

3

⎛
⎝ 1 cθ + sθ cθ − sθ

1 cθω
2 + sθω cθω − sθω

2

1 cθω + sθω
2 cθω

2 − sθω

⎞
⎠ , (33)

where cθ = cos θ, sθ = sin θ . The generalized μ–τ symmetry is ap-
parent from the above. Moreover,

s2
13 = 1

3
(cθ − sθ )

2 = 1

3

(
1 + 2μ−

1 + μ2−

)
≈ 0.035 (34)

as would be expected from the specific choice of the residual sym-
metry made in this example.

The above zeroth order prediction would get modified from the 
perturbations which are required to split the degenerate states, fix 
the solar angle and to change the zeroth order predictions for the 
mixing angles θ13 and θ23. Effects of general perturbations were 
studied in [25] in the context of A5 symmetry with a slightly dif-
ferent choice of the residual symmetry which also leads to the 
same zeroth order predictions as here. It was found that small 
perturbations can cause significant changes in θ13 as required ex-
perimentally and relatively small perturbations in the zeroth order 
values of θ23 and the maximal CP violating phase. Moreover, all 
three neutrinos are required to be quasidegenerate in order to re-
produce all the mixing angles correctly as long as perturbations 

2 This is determined by noting that the presentations a, b, c introduced in [54]
are given in terms of our presentation as f3 = a, E = b, f1 = b2ab and H = bc.
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are smaller than ≤ 5%. The analysis in [25] was for the most gen-
eral possible perturbations. In the context of specific models, such 
perturbations can arise from the non-leading higher order terms 
in the Yukawa superpotential which directly correct the leptonic 
mass matrices and/or from the Higgs potential which may perturb 
the Higgs vacuum expectation values from the symmetric choice. 
Let us consider effect of a simple but interesting perturbation in 
the latter category. Assume that the perturbations change one of 
the VEVs given in Eq. (31), namely p2 → p2(1 + ε). Similar per-
turbations in the VEV of other component would also arise in 
general but as we discuss here, this perturbation alone has inter-
esting consequences. The zeroth order mass matrix in Eq. (32) now 
gets changed to

Mν =
(mν0 − m1ν

3 (μ+ − μ−) 0 0

0 mν0 − m1ν
3 (μ− − 1) −m1ν (1 + ε)

0 −m1ν (1 + ε) mν0 − m1ν
3 (1 − μ+)

)
.

(35)

The above perturbed matrix is also diagonalized by a rotation in 
the 2–3 plane but with a slightly different θ which is now given 
by

tan θ ≈ −μ−
(

1 − ε√
5

)
+O(ε2).

This changes the zeroth order prediction of the mixing angle θ13
and Eq. (34) gets replaced by

s2
13 = 1

3
(cθ − sθ )

2

= μ2+
3(1 + μ2−)

− 2ε

3
√

5

μ2−
(1 + μ2−)2

+O(ε2). (36)

Thus the appropriate choice of perturbation can be used to get 
agreement with experiments. The other major effect of ε is to split 
the degenerate pair and induce the solar scale:

�m2
sol

�m2
atm

≡ �m2
21

�m2
31

= 4ε

5

(
3
√

5m0ν − 5m1ν

6
√

5m0ν + 5m1ν

)
+O(ε2)

The overall effect of the perturbation is best appreciated by go-
ing to the flavor basis with Ml M

†
l diagonal. In this basis

Mν f ≡ U T
ωMνUω

=
(

m0ν − 2
3 m1ν (1 + ε) − m1ν

3 (μ+ + ω2 − ε) − m1ν
3 (μ+ + ω − ε)

− m1ν
3 (μ+ + ω2 − ε) − m1ν

3 (1 − μ− − ω2 + 2ε) m0ν + m1ν
3 (1 + ε)

− m1ν
3 (μ+ + ω − ε) m0ν + m1ν

3 (1 + ε) − m1ν
3 (1 − μ− − ω + 2ε)

)

(37)

The interesting features of this matrix are:

• Elements of Mν f satisfy∑
i

(Mν f )ei =
∑

i

(Mν f )μi =
∑

i

(Mν f )τ i .

This condition implies that one of the column vectors of UPMNS
has a tri-maximal form as is the case with the zeroth or-
der mixing matrix, Eq. (33). Thus one gets the prediction 
sin2 θ12 cos2 θ13 = 1

3 if perturbation makes the state with an 
eigenvector corresponding to the first column in Eq. (33) heav-
ier compared to the second degenerate state. Perturbation in 
this case does not change the zeroth order solar angle but it 
stabilizes it to that value by splitting the degenerate states.
• If parameters m0ν , m1ν and ε are real then the Mν f satis-
fies (Mν f )12 = (Mν f )

∗
13 and (Mν f )22 = (Mν f )

∗
33. Thus Mν f

simultaneously enjoys the Z2 × Z2 symmetries corresponding 
to a tri-maximal solar angle and generalized μ–τ as envis-
aged and studied in [37]. In particular, one gets the maximal 
atmospheric angle and the maximal CP violating phase as pre-
dictions even after perturbation.

As an example, we give a set of specific values of ε , m0ν , m1ν

determined numerically which fit the experimental values:

m0ν = 0.025 eV, m1ν = 0.016 eV, ε = 0.228

This gives the following mixing matrix

|UPMNS|2 =
⎛
⎝ 0.6421 0.3333 0.0246

0.179 0.3333 0.4877
0.179 0.3333 0.4877

⎞
⎠

corresponding to

sin2 θ12 cos2 θ13 = 1

3
, sin2 θ23 = 1

2
, sin2 θ13 = 0.0246.

The δCP gets stabilized to the value −π/2. The neutrino masses 
giving correct �m2

sol and �m2
atm are determined by the above val-

ues of parameters as

mν1 = 0.0097 eV, mν2 = 0.0131 eV, mν3 = 0.0522 eV.

The maximality of θ23 can be changed by introducing small imagi-
nary parts in parameters but the tri-maximal value of θ12 remains 
unchanged. Small deviations can be introduced by perturbing other 
component of the VEVs or by perturbing the charge lepton mass 
matrix. Since general perturbations are already studied in [25], we 
shall not pursue them further.

5. Summary

The generalized μ–τ symmetry of the leptonic mixing matrix is 
known to predict maximal atmospheric mixing angle and maximal 
Dirac CP violation in case of nonzero θ13. Both these predictions 
are consistent with the current experimental observations within 
3σ and their future precision measurements will reveal whether
such a symmetry is indeed realized in nature in its exact form. It 
is therefore interesting to explore the symmetries of the leptons 
which lead to generalized μ–τ symmetry in the lepton mixing 
predicting such special values of θ23 and δCP.

Assuming the Majorana neutrinos, we have shown in this paper 
that generalized μ–τ symmetry naturally follows if the symmetry 
group G f of leptons, is a discrete subgroup of O (3). It is required 
that the G f is broken into Zm with m ≥ 3 as the residual symme-
try of the charged lepton mass matrix. The residual symmetry of 
the Majorana neutrino mass matrix can be either (a) Z2 × Z2 ∈ G f
or (b) Zn ∈ G f with n ≥ 3. The possibility (a) leads to three non-
degenerate neutrinos while one obtains two of the three neutrinos 
degenerate in the case (b). The possible candidates of G f are only 
A4, S4 and A5 which can predict all the three mixing angles at 
the leading order. Among these, only A5 predicts θ13 very close 
to its experimentally observed value in the case of two degenerate 
neutrinos which are identified with the solar pair. The corrections 
to the leading order neutrino mass matrix are needed to generate 
viable θ13, θ12 and the solar mass difference. We have discussed 
in detail the group A5 in the context of generalized μ–τ sym-
metry and provided an explicit model in which the leading order 
predictions are realized. We have also discussed the perturbations 
which lead to the realistic neutrino masses and mixing angles 
while maintaining the predictions θ23 = π/4 and δCP = ±π/2.
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Table 1
List of all the non-trivial elements of A5. The last column gives the list of diag-
onalizing matrices for the corresponding elements which are used as the residual 
symmetries of neutrino and/or charged lepton mass matrices. The T p collectively 
denotes a list of four elements T p = (T , T 2, T 3, T 4) while a = 1, 2, 3.

(Set, order) Set of elements Diagonalizing matrix

(O 2, 2) fa I

H U H

fa H fa faU H

E H E−1 EU H

E−1 H E E−1U H

E fa H fa E−1 E faU H

E−1 fa H fa E E−1 faU H

(O 3, 3) E, E2 = E−1 Uω

fa E fa, fa E−1 fa faUω

A, A2 = A−1 U A

E AE−1, E A2 E−1 EU A

E−1 AE, E−1 A2 E E−1U A

AE A−1, AE−1 A−1 AUω

A f2,3 E f2,3 A−1, A f2,3 E−1 f2,3 A−1 A f2,3Uω

(O 5, 5) T p U T

f2 T p f2 f2U T

ET p E−1 EU T

E−1 T p E E−1U T

E f2 T p f2 E−1 E f2U T

E−1 f2 T p f2 E E−1 f2U T

Some example ansatz and symmetries of neutrino mass matrix 
leading to the generalized μ–τ symmetry have already been dis-
cussed in the literature. Our findings of an emergence of general-
ized μ–τ symmetry from the discrete subgroups of O (3) are more 
general and they accommodate some of the symmetries and mod-
els proposed in literature to obtain θ23 = π/4 and δCP = ±π/2. 
In particular, we have shown that the generalized μ–τ symmetry 
in the lepton mixing can follow without imposing μ–τ symmetry 
and/or CP on the neutrino mass matrix. The μ–τ symmetry with 
CP conjugation is realized in our approach only accidentally when 
an additional assumption is made on the free parameters.
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Appendix A

We list all the sixty elements belonging to A5 in terms of their 
presentation matrices E , F and H defined in Eq. (18). For brevity, 
we have defined the following matrices which are used to charac-
terize various elements.

f1 = F , f2 = E f1 E−1, f3 = E f2 E−1,

T = f1 E H, A = H f1.

The elements are listed in Table 1. Here Uω diagonalizes E, E2 and 
is defined in Eq. (16). The unitary matrices U A , U T and U H respec-
tively diagonalize (A, A2), T p and H and are given by
U A =

⎛
⎜⎜⎝

i√
2

− i√
2

0
μ−√

6
μ−√

6
−μ+√

3
μ+√

6
μ+√

6
μ−√

3

⎞
⎟⎟⎠ ,

U T = 1√
2

⎛
⎜⎜⎝

1 1 0

xμ− x∗μ− −
√

2μ−
(1+μ2−)1/2

−x(μ− − 1) −x∗(μ− − 1) −
√

2
(1+μ2−)1/2

⎞
⎟⎟⎠

U H =

⎛
⎜⎜⎝

0 −
√

3
2

1
2

μ+√
3

μ−
2
√

3
μ−

2

−μ−√
3

μ+
2
√

3
μ+

2

⎞
⎟⎟⎠ U12. (38)

Here U12 denotes an arbitrary unitary rotation in the 12 plane 
arising due to degeneracy in two of the eigenvalues of H and 
x = λ+1

λ−1 with λ = 1
2 (μ− + i

√
4 − μ2−). All the non-trivial elements 

of A5 given in the table are expressed in the form Q P Q −1 with 
P = E, E2, A, T p, H and Q = I, E, E2, fa, E fa, E2 fa, A fa . This sim-
plifies diagonalization of all the elements since U Q P Q −1 = Q U P . 
This allows one in principal to calculate all possible UPMNS in A5
analytically in terms the diagonalizing matrices of E, A, T , H . In 
particular, matrices diagonalizing A, T , E and therefore all ele-
ments in O 5, O 3 are seen to have μ–τ symmetric form given in 
Eq. (10).
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