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Abstract

In this Letter we propose two path integral approaches to describe the classical mechanics of spinning particles. We show
how these formulations can be derived from the associated quantum ones via a sort of geometrical dequantization procedure
proposed in a previous paper.

0 2004 Elsevier B.VOpen access under CCBY license.

1. Introduction

Feynman’s path integral is one of the most fruitful methods to study quantum mechanics. Neverthele¢3n Ref.
R.P. Feynman himself said thatéth integrals suffer most grievously from a serious defect. They do not permit a
discussion of spin operators’. The reason for this difficulty is that the path integral formulation needs as an ingre-
dient the Lagrangian of the system, which is a classical concept, and nothing like that existed for the spin in the
Forties and the Fifties. Since then this problem has been overcome. Variouf2id@gs formulate quantum path
integrals for spinning particles have been put forward. These ideas can be divided in two main lines of thought.
The first one goes as follows: since spinning particles are described by Pauli matrices, which are anticommut-
ing operators, the underlying classical mechanics must be formulated via anticommuting or Grassmann numbers.
Casalbuoni and independently Berezin and Marinov went into this directi®,4h and their path integral for
spinning particles involves a functional integration o@assmann variables. Another quantum path integral for-
mulation for particles with spin, described in Reffs,6], involves instead a functional integration over a set of
bosonic phase space variables whose choice is dictated by the symplectic form associated with the coadjoint orbits
of the SO(3) groug7]. The weight appearing in these two quantum path integrals is given by two Lagrangians
which describe the spin degrees of freedom. By miningzhe action associated to these Lagrangians one gets
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two “classical” descriptions of the spin. This may sound quiteagge because most people think that spin is an
intrinsically quantum concept. This is actually wrong. It is known in fact that the concept of spin appears not only
in the quantumunitary representations of SO(3), but also in the canonical realizations of this [@lowhich are
intrinsically classical constructions.

In this Letter we will explore a third way to get a “classical” description of spin. This third way is based on the
fact that not onlyguantum mechanicg1], but alsoclassical mechanics can have a path integral formulaf@jn
We will indicate this last one with the acronym CPI, for classical path integral, while the quantum path integral
will be indicated with QPI. Recentljd0] a dequantization procedure to pass from the QPI to the CPI has been put
forward. This dequantization procedure will be our way of gettimbpasical description of spin starting from the
quantum one.

The Letter is organized as follows: in Sectidmwe will give a brief summary of the geometrical dequantization
procedure proposed [&0] for particles without spin; in Sectiadwe shall review the path integral over Grassmann
variables that can be used to describe the quantum motion of a particle with spin. In Seetowill build the
associated CPI, showing that it can be derivedthie dequantization procedure. In Sectbwe prove that the
same “dequantization” procedure can be applied also to the path integral over bosonic variables devidiied in

2. Geometrical dequantization for particleswithout spin

First of all, let us briefly review the basic steps of the dequantization procedure mentioned above, which starts
from a reformulation of classical mechanics based on the functional techniques ¢9Réflso at the classical
level we can tal{11] of probability amplitudek (¢“; t|¢g; to) of finding a particle in the poinp“ of the phase
space at time if it was atgg at timezo. This probability amplitude is given by:

K (¢ 1168 10) = / D" 5[4 — ¢ (1: do. 10)]. )

wheregy, is the solution of the classical equations of motitth= w9, H and the symbolD”¢ indicates that
the integration is over paths with fixed end poigtsand¢. The functional Dirac delta ifl) can be rewritten as
follows [9]:

8[¢" — ¢4 (t; do, 10)] = 8[¢* — w8, H] det(s88, — w*“ .0, H ). )

We can then exponentiate the functional Dirac delta of the equations of motion via the bosonic vagiades
the functional determinant via the Grassmann variatfleendc,. Consequently the probability amplitud) can
be rewritten as the following path integral:

t
K (¢“; 119§ 10) = / D"p DL Dc J()Eexp|:i/dt i}, (3)
fo
where is the following Lagrangian:
L=210% +i¢a¢" — hqo™OpH — icqw™ g0, HP. (4)

From(3) and the form of the kinetic terms in the Lagrang{djiwe can derive that the only graded commutators
different from zero ard¢“, Ap] = i6; and[c“, cp] = 8;,. So the operatorg and¢ commute and they can be
diagonalized simultaneously:

{<$|¢,c> =9l¢.c), 5)
&g c) =cl.c).
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Therefore the kernet (¢, ¢*; t|¢g, cg: to) can be written agp, c; t|¢o, co; o) and it has the following expression:

t

(@, c; t|go, co; to) = / D¢ DA J)”c!DEGXp|iifdr £~:| (6)

fo

This path integral is the functional counterpart of theoliman—von Neumann operatorial approach to classical
mechanicg12]. It basically reproduces the kernel of evolution associated with a generalization of the Liouville
equation for classical statistical mechanics,[8¢éor further details. From a geometrical point of view, the weight
appearing in the path integré8) is related to the Lie derivative of the Hamiltonian fl¢g9;14]. At first sight the

path integral6) seems to be completely different from the QPI:

t

(q: tlq0; to>=/c‘D”q«Dp6Xp[%/er(q,p)}, (7)

fo

whereL(q, p) = pg — H(q, p). We will show that it is not so. If we actually introduce, besides the tintevo

Grassmann partners otalled¢, ¢ then we can assemble all the Bariables(¢®, A4, ¢, ¢,) of the path integral

(6) into the following functions of, & andg, which are known in the literature on supersymmetry as superfields:
0(t,0,0)=q(t) +0ci(t) +0¢,(t) +i00r,(1), ®)
P(t,0,0) = p(t) +0cP (1) — 00, (t) — i0014(1).

These superfields are crucial in order to understand the interplay bef@jesamd (7). For example, if we replace
the fieldsg andp with the superfield® and P in the Lagrangiarl. appearing in the QRI7) and we integrate over
6 and6 then we obtain, modulo some surface terms, jusidfappearing in the CRB):

i[d@déL[Q,P]:E—%(A,,pﬂé,,cf’). 9)

The surface terms i{9) can be removed using, from the beginning, the eigenstates of a complete set of com-
muting operators different fror(b). For example, the operatos, ip, ¢, 2,,), which appear in the same mul-
tiplet Q(z,6,60) of Eq. (8), make up a complete set of commuting operators. Their simultaneous eigenstates
lg, Ap,c?,¢p) satisfy the following eigenvalue equatio@:|q,kp, c?,¢p) = Qlg, rp,c?,cp). Therefore we can
identify |Q) = |q, 1p, ¢, ¢,). The kernel of propagation between these stafgs | Qo; o) can be obtained from

(6) via a Fourier transform on the initial and final variables labelegb¥his operation cancel exactly the surface
terms in(9) and changes the path integ(8) into:

t
(0:t100; to>=/ﬂ)”Qﬂ)Pexp|:i/idtd0d0_L(Q,P):|, (10)
10

where the functional integration over a superfield ngeariunctional integration over all the components of the
superfield. Now the CR[L0) has the same form of the QP1) and it can be obtained frof) by:

e replacing the fieldg, p with the superfield®, P and )
e extending the integration overto an integration over the “supertimét, 6, 0) multiplied by 7, e, [dt —
ih [dtd6do. For a detailed analysis of this dequaation procedure we refer the reader to R&0].
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3. Spin and Grassmann variables

The spin one half degrees of freedom of a particle are usually described via a two-dimensional Hilbert space
‘Hs spanned, for example, by the two eigenstate$s,and|—), of the third component of the spin operasor

A h A h
Sel+) =31+, Sel=)=—3I-).

The most general element of the Hilbert spd¢g can then be written as a linear combination with complex
coefficients of the eigenstates above:

[¥) =Yol+) + ¥1l—), Yo, ¥1€C. (11)
In the basig|+), |—)} we can represents) as a two-component vect()ﬁ(l’) and the operatoi’Z as the following

diagonal matrixS; = (7/2)(5 °,)-
Now we want to prove that there exista aomorphism between the Hilbert spakg of a particle with
spin and the Hilbert spack that describes a particle with one Grassmannian odd degree of freedom. This

Iast Hilbert space is @racterized by two mlpotent Grassmann operagoasuds that satisfy the anticommutator
[g §]+ =1 and the Hermiticity conditiof —g Combiningé andg it is possible to build the Hermitian operator

= [€E — gg]/z SinceN? = 1/4 the only eigenvalues af are+1/2 and the associated elgenstates make up
a baS|s for the Hilbert spadé. If we represent as the operator of multiplication b;yandg as the derivative

operatof = 3/0&, then the eigenstate of with eigenvaluer1/2 is simply given by the real number 1, while the
eigenstate ofV with eigenvalue-1/2 is the anticommuting numbér For details see, for example, Reffs3,15]
Since{l, £} is a basis for the Hilbert spad&g, every wave functions can be expressed as a linear combination
of 1 andé with complex coefficients:

V() =vo+y1§, Yo, ¥1€C. (12)

Eq.(12)is nothing else than the Taylor expansion of the most general fungtiohof the Grassmann variabte

At this point it should be clear that there is an isomorphism between/t§e in (12) and the wave functions
(11)that usually describe a particle with spin. This isomorphism among states implies also an isomorphism among
operators. In fact if we represemt(£) as a two-component vecttﬁr’”o) then we have thav = (1/2)(1 0 1)-
ThereforeN acts, modulo the factok, just as the third component of the spin operator and we can identify
S7 =hN. Using the isomorphism betweg¢hl)and(12), we can associate the following Grassmann operators with

the other two components &f

A 0 1 A h (0 —i i » 2

So every operator depending &can be expressed as a Grassmann operator acting on the wave functions
¥ (§). For example, the Hamiltonian describing the interaction of a spinning particle with a constant magnetic
field, H = —(e/(mc))B - S, can be rewritten in terms of Grassmann operators as:

. hoeoo. tr 2t
Hz_i[gx_(g+g)+31 E -6 +B; (%‘%‘—%‘S)}
mc 2

= —up[B. + (By +iBy)E + (By — i By)E — 2B.£E), (14)

where we have indicated witlag = efi/(2mc) the Bohr magneton.
The action of the operatg¢t4)on a generic wave functiog (&) can be written in the following two ways:

(&) = / d' H(E EVp(E) = / de' dE [ (5, E)EE Dy &), (15)
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where the explicit expressions of théegral kernel H (¢, £’) and of theordered symbol H (¢, £) are the following
ones[13]:

H(E, &) = —pp(By —iBy) — upB — upB.E + pup(By +iBy)EE

H(£, &)= —upB; — up(By +iBy)E — jp(By —iB))E + 2up B&E. (16)
Let us remember that the evolution operali(r) = e~itH/h satisfies the property:

Ut —to)=U(t — U —tg), (17)

so the ordered symbol associated with the LH$1%) must be given by the ordered symbol of the product of the
two operators appearing on the RHS, i.e.,

U (. 1: Eo. to) = / dg' dE' e€ -G 1 & T E 1 & to). (18)

Let us considpr the time intervédy, r) and divide it intoN + 1 steps of lengtlk. Thenr — 1o = (N + 1)e and
Ut —to) = [U(e)]VtL. Applying Eq.(18)it is possible to derive, in the limiv — oo ande — 0, the following
expressiorl3]:

) N .
0. 1: 8. 10) = Nliﬂ”loo{e&)@’v“_g(’) f H[dskdék]exp[l Z( ng = 5’“ e Fl<s/+1,§/))”,
k=1

1=0

where has to be identified witlfy1. From the expression di and Eq.(15) we can derive the following
expression for the integral kerngl:

N .
0. 1:60.10) = lim_ / dko / ]"[[dskdék]exp{l Z(hs 5”16 EI—I:I(51+1»§I)):|-
k=1

=0
The kernel of evolution can be written in the following path integral form:

U(E.t; &0, t0) = f D"t DE exp[’g f dr [ingé — H(&é)]}- (19)
fo

The U above propagates the wave functign&) = o + ¥1& according to the equation:

w(s,t)=fdsoms,r;so,to)wso,to),

which is completely equivalent to the Pauli equation for the spin part of a quantum wave fuiéjon
.0 (o ~ (Yo A B B, —iB,
h— =H s Hp =— <, * Y.
ot <1/f1) P(l/fl i e B; +iB, —B;

4. Grassmannian classical path integral for spinning particles

In this section we want to build the CPI that lies behind the Grassmannian QPI for spin degrees of freedom
given by Eq.(19). First of all let us align the magnetic field with theaxis. In this case the Hamiltoniaki (¢, &)
of Eq.(16) becomes a Grassmannian even object and the path in(@g)aéduces to:

t

(&; t1&0; o) = U (&, 1; &0, t0) = / D"t DE exp{i / dr L(&, é)} (20)

fo
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with the LagrangiarL (¢, &) given by:

_ _. eB _
L(E,$)=i<§<§+2—(1—2§$)- (21)
mc
From this Lagrangian we can derive the following Euler—-Lagrange equation of motion:
. ieB = jeB .
E——£=0, E+—¢&=0. (22)
mc mc

Starting from these Grassmannian odd equations of motion and following steps similar to the ones analyzed in
Section2, we can derive the associated CPI:

(€. &; 1180, &0; 10) = / D" D"ES[E — &ai(1: €0, 10)]6[€ — Ea(1; o, 10) -

We can then pass from the delta of the solutions to the delta of the equations of motion, as follows:
= = I nezfe 1eB \z(z K ieB: 1 O — % 0
(£.&:tlg0. Eoito) = | D"ED"ES( 6 — —¢)5( &+ —& ) del s |- (23)
mc mc 0 9 + LeB

Since the phase space variabfgs= (£, £) are Grassmannian odd, in E3) there appears the inverse of a
determinant instead of the determinant of E2). We can then exponentiate the functional Dirac delta of the
Grassmannian odd equations of motiya) via the Grassmannian odd variables= (i, 2g) and the inverse

of the functional determinanb via the Grassmannian even auxiliary variabtés= (cf, cé) andc, = (ce, Cg)
according to the following equations:

S(A):fi)kexp[ifdr AA}, det‘lD=/i)c~ﬂ)5exp|:ifdri5aDgc~b}. (24)

Using the expressiof24)into (23), the classical kernel of propagation becomes:
t
(¢; 1|0 10) =/;D”¢ D JDcJDEeXp|:i/dr E},
fo
where is the following Lagrangian:
~ . - z ~ ~ e B _ z
L=neb+azE+iced +icecf —H, H="(rek —rzE +icect —izct). 25
g6 + gk +itec® +iczc mc( g§ — Ag€ +icec® —iczc®) (25)
From the kinetic terms of the Lagrangié2b) we can deduce that the only graded commutators different from zero
are:

Eagl=i,  [Eagl=i  [f.a]=1  [f&]=1 (26)
Since the operators® = (£, é) commute with the operatof$ = (¢4, 85), it is appropriate to consider the kernel
of propagation in thég, ¢)-space:

t
(¢, ¢ tlgo, co: t0) = / D'p DLD"c DE exp[i / dt f} . (27)
fo
The graded commutato¢26) can be realized by consideriégg, ¢ andéf as operators of multiplication ariq,
Az, ¢z andc; as derivative operators:
a a N a

i ='—, 5\,-2'—_’ = ——, L=
§= 1% T T T ET T
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Basically the kernel of propagati¢@7) generates the evolution of the wave functignaccording to the equation
of motion

0 2
l&W(‘PaC):Hl//(‘P’C), (28)

where™ is the operator associated to the Hamiltonian of 2§):

We know[9] that the CPK6) reproduces the kernel of evolution associated with a generalized Liouville equation
for classical statistical mechanics. Analogously 8), which lies behind the path integi@7), can be considered
as a sort of classical Liouville equation for a spinning particle.

Is it possible to connect the QF20) and the CP([27)via the superfield procedure described in Secg@ihe
answer is: yes, provided we give the following definition of the superfields:

E=&+6c5 —i0c; —00%;,  E=E+6c —ifc; — G0 (29)

With this definition we can easily pass from the Lagrandiaof Eq.(21)to the Lagrgngiauf: of Eq.(25), replacing
the fields¢ andé with the superfields€' and& of Eq.(29) and integrating i® ando:
_ - - d . - :
ifd@d@L(E,E)zc—E(/\ésﬂaécé‘). (30)

The surface terms appearing(80) involve the variableg, A, ct andéé, and they can be reabsorbed, as in the

bosonic case analyzed in Sect@rvia a partial Fourier transform with respect to the variab&esé) and(cé, Cg)s
respectively. This means that if we change the representation and we consider the kernel of propagation between
the eigenstates of the superfigld which are| &) = |&, Ag, ct, cg), we get the following path integral:

t
(Z: 1] Eo; ;o)zfgo”s J()Eexp[i/idrd@déL(E, :)} (31)
fo

where the functional measure is given by:
D'E=D"ED"N; D'F D', DE = DE Die D Dé:.

This means that the same dequantization procedure analyzed in S2etarks also in the case of particles
with spin analyzed above: to go from the quantum path inte@@) to the classical on€31) we must replace
everywhere the fields and& with the superfieldsg and = of Eq. (29) and extend the integration from time to
supertime[ dt — i [dr d6 dé. Before concluding this section, we should point out that a generalization of the
CPI including Grassmann variables was proposed first in [Réf.

5. Bosonic classical path integral for spinning particles

Another possibility to implement a path integral for the spinning particle in quantum mechanics is based on
the coadjoint orbit methoflL8]. There is a theorem which says thatery orbit of the coadjoint action of a Lie
group possesses a symplectic structure, see the last of Ref8]. In the case of the group SO(3) the coadjoint
orbits can be identified with the spher&% and they are parameterized by their raditis If we use as coordi-
natest!, x2 andx3 satisfying}"; (x)? = A2, then the symplectic form on the two-sphéreof radiusa is given by



D. Mauro / Physics Letters B 597 (2004) 94-104 101

2 = (1/(2x2))e*Pr x* dxP dx? , wheree®P? are the structure constants of the group itsgift, x#} p = €*f7 x7.
The Darboux variables are given by the spherical coordifj@tes

xl=2xsindcosp,  x?=xrsinfsing,  x>=icos (32)

and the symplectic form can be written &s= A d¢ d sind. The one-formw = —d 12 entering the definition of
the action can be identified with

w=(y+xrcosh)dop, (33)

while the associated action becontes: [ . This is just the form of the action considered%} and[6].

More precisely, taking into account also the interaction with an external magnetidsfipwinting along the
z-axis, an appropriate Lagrangian to describe a classical action that fheesdgnitude of the spin, leaving its
direction free” [5] is given by:

L(p,0) = (y + »c0s9)@ + LB cosh. (34)
Since the constant term in (34) does not play any dynamical role and does not enter the classical equations of
motion, from now on we will disregard it in the implementation of the CPI. The classical equations of motion that
can be derived from the Lagrangié3vl) are equivalent to the following ones:

d .

- [»coso(1)] =0, (¢(t) + wB)sind(t) =0 (35)
whose solutions are given by:

6(ty=60p=const  ¢(t) =go— uB(t — 10). (36)

Sinced is constant ang varies linearly with time, the particle describes a circumference that is the contour of
the basis of a cone. The classical motion of the particle turns out to be a precession in the magnetic field. Such a
motion is periodic with period given by = 27 /(1 B).

Let us now write down the equations of motion in a Hamiltonian form. First of all, from the Lagra(@dan
and the definition itself of conjugate momenta, we can derive the following primary constraints:

@1 pp =0, Do p(p—)LCOSQZO.
Implementing the Dirac procedure we have that the total Hamiltonian is given by:
Hr = peb + py@ — 1 CO0 ¢ — A B COS + v1@1 + vP2.

If we impose that the constraints are conserved in time we can then determine the Lagrangian multiplers
v2. Doing so the total Hamiltonian turns out to be:

H = —\uBcosh. (37)

The Poisson brackets among the constraints of the theorjdareb,} p = —A sind, so the matrix entering the
definition of the Dirac brackets is:

0 —1
Cab={¢a»¢b};1=< L Asm9>.
~ Asing 0
The only non-zero Dirac brackets are the ones betweand) cost:
{p.1co80}p = {@, 1 c080} p — {9, Py} pCup{Pp, ACOSH}p = 1. (38)

It is in this sense that we can considerandn = A cosf as canonically conjugated variables. It should be clear
thaty andn are canonical coordinates just as a consequence of the particular form of the action and, consequently,
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of the symplectic structuré83) associated with the coadjoint orbits of the group SO(3). If we introduce a unique
variableg® = (¢, n), with a = 1, 2, then we can write the equations of motion in terms of the total Hamiltonian
(37)and of the Dirac bracke(88)as¢® = {¢“, H}p or, introducing the matrix® = ( °, o) as¢? = w9, H.

The CPI can be easily realized followinige same steps reviewed in Sect@rFrom (36) we derive that the
functional Dirac delta of the solutions of the equations of motion becomes:

K (¢, 1; tlgo, no; to) = / Do D"né(n—n0)d(¢ — go+ uB(t — 10)). (39)

In terms of the Dirac delta of the equations of motion the kernel of propag@®man be rewritten as:

K(¢“;r|¢g;ro)=/@”¢§(¢“ — w3 H) de{83d, — 3.0, H |,

which, repeating the same steps analyzed in Se@tiproduces the following standard expression for the classical
kernel of propagation:

t

(@, c; tldo, co; to) = / D'¢* DAy D' Dé, expi / dt L, (40)

fo

where we have used instead of\ to avoid confusion with the radius of th# sphere, whilef is the following
Lagrangian:

L=Aud% +icac® —H, H=Ag™pH +icaw™®d,oaHC. (41)

Because of the particular form of the Hamiltoniahof Eq. (37), the  in (41) lacks the term with the double
derivative and reduces to the following Liouvillian:

H= A0 H = Ay 3, H = — 1B A,.

The fundamental commutator g, A,] =i, SO we can represent, as a derivative operator, = —id/dgp.

Therefore the operatdt simply generates a rotation i like it should be clear from Eq36). Let us notice that

the variation of the Lagrangig@d1) with respect toA, gives the equations of motion we started from, ije= 0

and¢ + uB = 0. The variation with respect i, gives instead the following equationd: = 0 and¢? = 0, which

imply that the length of the Jacobi fields does not increase with time (for the interpretation of the variables

Jacobi fields, the reader can consult REFsL9]). This is consistent with the fatttat, varying the initial conditions

in 6 (or n) andg, the classical trajectories are given by a seriegreimferences with center on the axis of a cone.
The quantum kernel of propagation can instead be written as an integra evel; of the Lagrangiartf34):

t

(5 tlpo; to)=fi>”<pi>nexp[%/dﬂ(w,n)}, L(p,n) = (y +m¢ + uBn. (42)
fo

We refer the reader to the original papgss] to appreciate the subtleties hidden behind the functional measure
[ D"¢ Dn and the role of the termr. Now the question we want to answer is: how can we connect the classical
path integra(40) and the quantum oné2)?

Since the formal structure of the theory is the usual one, we expect that also the definition of the superfields will
be the one of E((8), which in this particular case becomes:

{¢=¢+xc¢+x5,,+i;zXA,,, (43)

n=n+xc"—xcp —ixxAgp.
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We have preferred to change the notation for the superpartners of timegdt@mnto (x, x), to avoid confusion
with the angular variablé. Now, let us disregard for the moment the constaint (42), like we have done in the
implementation of the CPI. With the definitiqd3) of the superfields it is possible to reconstruct the Liouvillian
H = —uBA,, starting from the Hamiltoniail = —u B, by simply replacing the fields with the superfields and
integrating the result ovey and . In fact:

i/dx dx H(p, ) = —i,uB/dX diii=—uBAy,="H.
Applying the same procedure to the Lagrangian of @4), but withy = 0, we get the relation:
_ - - s d .
i/dxdx L|y—ol@, nl=L— E[Ann—i—lc,,c”]. (44)

As in the cases analyzed in the previous sections, the surfacedeértys + ic,c)/dt in (44) can be reabsorbed
via the partial Fourier tranformg <> A, andc” < ¢, on the initial and final variables. These Fourier trans-
forms turn EqQ.(40) into the kernel of propagation between the statgs o) and |@; ¢), where|g) stands for
lo, c?, ¢y, Ay). This kernel can be written in terms of the superfigii3) as:

t
(¢; tlgo; to)=fi>”¢i>ﬁe><p[i/drdx dxLly=o(¢, ﬁ)}-
fo

If we take into account also the terpp in (42) and we apply on it the dequantization procedure, then what we
get is the derivative term-y A, = —d(y A,))/dt. This term does not play any dynamical role at the classical level,
in the sense that it does not modify the classical equations of motion, so it can be disregarded, just like it has been
disregarded in the implementation of the CPI by putting 0 from the beginning.

We can summarize this Letter by saying that here we have somehow obtained two further classical descriptions
of spin. We have used the word “somehow” because therifgi®ns we got are strictly related to the previously
existing oneq3-5,13} what we have built here is a sort of classical Lie derivaf¥d 4] associated with the
old descriptions of spin mentioned above. What instead is completely new in this Letter is the proof that the
dequantization procedure proposedli] for non-spinning particles works also in the spinning case.
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