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Abstract

In this Letter we propose two path integral approaches to describe the classical mechanics of spinning particles.
how these formulations can be derived from the associated quantum ones via a sort of geometrical dequantization
proposed in a previous paper.
 2004 Elsevier B.V.

1. Introduction

Feynman’s path integral is one of the most fruitful methods to study quantum mechanics. Nevertheless in[1]
R.P. Feynman himself said that “path integrals suffer most grievously from a serious defect. They do not permit a
discussion of spin operators”. The reason for this difficulty is that the path integral formulation needs as an i
dient the Lagrangian of the system, which is a classical concept, and nothing like that existed for the sp
Forties and the Fifties. Since then this problem has been overcome. Various ideas[2–6] to formulate quantum pat
integrals for spinning particles have been put forward. These ideas can be divided in two main lines of t
The first one goes as follows: since spinning particles are described by Pauli matrices, which are antic
ing operators, the underlying classical mechanics must be formulated via anticommuting or Grassmann n
Casalbuoni and independently Berezin and Marinov went into this direction in[3,4] and their path integral fo
spinning particles involves a functional integration over Grassmann variables. Another quantum path integral
mulation for particles with spin, described in Refs.[5,6], involves instead a functional integration over a se
bosonic phase space variables whose choice is dictated by the symplectic form associated with the coadjo
of the SO(3) group[7]. The weight appearing in these two quantum path integrals is given by two Lagran
which describe the spin degrees of freedom. By minimizing the action associated to these Lagrangians one
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two “classical” descriptions of the spin. This may sound quite strange because most people think that spin is
intrinsically quantum concept. This is actually wrong. It is known in fact that the concept of spin appears no
in thequantum unitary representations of SO(3), but also in the canonical realizations of this group[8], which are
intrinsically classical constructions.

In this Letter we will explore a third way to get a “classical” description of spin. This third way is based o
fact that not onlyquantum mechanics[1], but alsoclassical mechanics can have a path integral formulation[9].
We will indicate this last one with the acronym CPI, for classical path integral, while the quantum path in
will be indicated with QPI. Recently[10] a dequantization procedure to pass from the QPI to the CPI has be
forward. This dequantization procedure will be our way of getting aclassical description of spin starting from th
quantum one.

The Letter is organized as follows: in Section2 we will give a brief summary of the geometrical dequantizat
procedure proposed in[10] for particles without spin; in Section3 we shall review the path integral over Grassma
variables that can be used to describe the quantum motion of a particle with spin. In Section4 we will build the
associated CPI, showing that it can be derived via the dequantization procedure. In Section5 we prove that the
same “dequantization” procedure can be applied also to the path integral over bosonic variables develope[5,6].

2. Geometrical dequantization for particles without spin

First of all, let us briefly review the basic steps of the dequantization procedure mentioned above, whic
from a reformulation of classical mechanics based on the functional techniques of Ref.[9]. Also at the classica
level we can talk[11] of probability amplitudeK(φa; t|φa

0; t0) of finding a particle in the pointφa of the phase
space at timet if it was atφa

0 at timet0. This probability amplitude is given by:

(1)K
(
φa; t|φa

0; t0
) =

∫
D ′′φ δ̃

[
φa − φa

cl(t;φ0, t0)
]
,

whereφa
cl is the solution of the classical equations of motionφ̇a = ωab∂bH and the symbolD ′′φ indicates that

the integration is over paths with fixed end pointsφ0 andφ. The functional Dirac delta in(1) can be rewritten a
follows [9]:

(2)δ̃
[
φa − φa

cl(t;φ0, t0)
] = δ̃

[
φ̇a − ωab∂bH

]
det

(
δa
b∂t − ωac∂c∂bH

)
.

We can then exponentiate the functional Dirac delta of the equations of motion via the bosonic variablesλa and
the functional determinant via the Grassmann variablesca andc̄a . Consequently the probability amplitude(1) can
be rewritten as the following path integral:

(3)K
(
φa; t|φa

0; t0
) =

∫
D ′′φ DλDcD c̄ exp

[
i

t∫
t0

dτ L̃
]
,

whereL̃ is the following Lagrangian:

(4)L̃= λaφ̇
a + ic̄aċ

a − λaω
ab∂bH − ic̄aω

ad∂d∂bHcb.

From(3) and the form of the kinetic terms in the Lagrangian(4) we can derive that the only graded commutat
different from zero are[φ̂a, λ̂b] = iδa

b and [ĉa, ˆ̄cb] = δa
b . So the operatorŝφ and ĉ commute and they can b

diagonalized simultaneously:

(5)

{
φ̂|φ, c〉 = φ|φ, c〉,
ĉ|φ, c〉 = c|φ, c〉.
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0, ca

0; t0) can be written as〈φ, c; t|φ0, c0; t0〉 and it has the following expressio

(6)〈φ, c; t|φ0, c0; t0〉 =
∫

D ′′φ DλD ′′cD c̄ exp

[
i

t∫
t0

dτ L̃
]
.

This path integral is the functional counterpart of the Koopman–von Neumann operatorial approach to clas
mechanics[12]. It basically reproduces the kernel of evolution associated with a generalization of the Lio
equation for classical statistical mechanics, see[9] for further details. From a geometrical point of view, the wei
appearing in the path integral(6) is related to the Lie derivative of the Hamiltonian flow[9,14]. At first sight the
path integral(6) seems to be completely different from the QPI:

(7)〈q; t|q0; t0〉 =
∫

D ′′q Dp exp

[
i

h̄

t∫
t0

dτ L(q,p)

]
,

whereL(q,p) = pq̇ − H(q,p). We will show that it is not so. If we actually introduce, besides the timet , two
Grassmann partners oft calledθ, θ̄ then we can assemble all the 8n variables(φa,λa, c

a, c̄a) of the path integra
(6) into the following functions oft , θ andθ̄ , which are known in the literature on supersymmetry as superfie

(8)

{
Q(t, θ, θ̄) = q(t) + θcq(t) + θ̄ c̄p(t) + iθ̄θλp(t),

P (t, θ, θ̄ ) = p(t) + θcp(t) − θ̄ c̄q (t) − iθ̄θλq(t).

These superfields are crucial in order to understand the interplay between(6) and(7). For example, if we replac
the fieldsq andp with the superfieldsQ andP in the LagrangianL appearing in the QPI(7) and we integrate ove
θ andθ̄ then we obtain, modulo some surface terms, just theL̃ appearing in the CPI(6):

(9)i

∫
dθ dθ̄ L[Q,P ] = L̃− d

dt

(
λpp + ic̄pcp

)
.

The surface terms in(9) can be removed using, from the beginning, the eigenstates of a complete set o
muting operators different from(5). For example, the operators(q̂, λ̂p, ĉq , ˆ̄cp), which appear in the same mu
tiplet Q(t, θ, θ̄ ) of Eq. (8), make up a complete set of commuting operators. Their simultaneous eigen
|q,λp, cq, c̄p〉 satisfy the following eigenvalue equation:Q̂ |q,λp, cq, c̄p〉 = Q|q,λp, cq, c̄p〉. Therefore we can
identify |Q〉 ≡ |q,λp, cq, c̄p〉. The kernel of propagation between these states〈Q; t|Q0; t0〉 can be obtained from
(6) via a Fourier transform on the initial and final variables labeled byp. This operation cancel exactly the surfa
terms in(9) and changes the path integral(6) into:

(10)〈Q; t|Q0; t0〉 =
∫

D ′′QDP exp

[
i

t∫
t0

i dτ dθ dθ̄ L(Q,P)

]
,

where the functional integration over a superfield means a functional integration over all the components of
superfield. Now the CPI(10)has the same form of the QPI(7) and it can be obtained from(7) by:

• replacing the fieldsq , p with the superfieldsQ, P and
• extending the integration overτ to an integration over the “supertime”(τ, θ, θ̄ ) multiplied by h̄, i.e.,

∫
dτ →

ih̄
∫

dτ dθ dθ̄ . For a detailed analysis of this dequantization procedure we refer the reader to Ref.[10].
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3. Spin and Grassmann variables

The spin one half degrees of freedom of a particle are usually described via a two-dimensional Hilbe
HS spanned, for example, by the two eigenstates,|+〉 and|−〉, of the third component of the spin operatorŜz:

Ŝz|+〉 = h̄

2
|+〉, Ŝz|−〉 = − h̄

2
|−〉.

The most general element of the Hilbert spaceHS can then be written as a linear combination with comp
coefficients of the eigenstates above:

(11)|ψ〉 = ψ0|+〉 + ψ1|−〉, ψ0,ψ1 ∈ C.

In the basis{|+〉, |−〉} we can represent|ψ〉 as a two-component vector
( ψ0

ψ1

)
and the operator̂Sz as the following

diagonal matrixŜz = (h̄/2)
( 1 0

0 −1

)
.

Now we want to prove that there exists an isomorphism between the Hilbert spaceHS of a particle with
spin and the Hilbert spaceHG that describes a particle with one Grassmannian odd degree of freedom

last Hilbert space is characterized by two nilpotent Grassmann operatorsξ̂ and ˆ̄ξ that satisfy the anticommutato

[ξ̂ , ˆ̄ξ ]+ = 1 and the Hermiticity condition̂ξ† = ˆ̄ξ . Combiningξ̂ and ˆ̄ξ it is possible to build the Hermitian operat

N̂ = [ ˆ̄ξ ξ̂ − ξ̂ ˆ̄ξ ]/2. SinceN̂2 = 1/4 the only eigenvalues of̂N are±1/2 and the associated eigenstates make

a basis for the Hilbert spaceHG. If we represent̂ξ as the operator of multiplication byξ and ˆ̄ξ as the derivative

operatorˆ̄ξ = ∂/∂ξ , then the eigenstate of̂N with eigenvalue+1/2 is simply given by the real number 1, while th
eigenstate ofN̂ with eigenvalue−1/2 is the anticommuting numberξ . For details see, for example, Refs.[13,15].
Since{1, ξ} is a basis for the Hilbert spaceHG, every wave functionψ can be expressed as a linear combina
of 1 andξ with complex coefficients:

(12)ψ(ξ) = ψ0 + ψ1ξ, ψ0,ψ1 ∈ C.

Eq.(12) is nothing else than the Taylor expansion of the most general functionψ(ξ) of the Grassmann variableξ .
At this point it should be clear that there is an isomorphism between theψ(ξ) in (12) and the wave function
(11) that usually describe a particle with spin. This isomorphism among states implies also an isomorphism
operators. In fact if we representψ(ξ) as a two-component vector

(ψ0
ψ1

)
then we have that̂N = (1/2)

( 1 0
0 −1

)
.

ThereforeN̂ acts, modulo the factor̄h, just as the third component of the spin operator and we can ide
Ŝz = h̄N̂ . Using the isomorphism between(11)and(12), we can associate the following Grassmann operators
the other two components ofŜ:

(13)Ŝx = h̄

2

(
0 1
1 0

)
= h̄

2
( ˆ̄ξ + ξ̂ ), Ŝy = h̄

2

(
0 −i

i 0

)
= ih̄

2
(ξ̂ − ˆ̄ξ).

So every operator depending onŜ can be expressed as a Grassmann operator acting on the wave fun
ψ(ξ). For example, the Hamiltonian describing the interaction of a spinning particle with a constant ma
field, Ĥ = −(e/(mc))B · Ŝ, can be rewritten in terms of Grassmann operators as:

Ĥ = − e

mc

[
Bx

h̄

2
( ˆ̄ξ + ξ̂ ) + Byi

h̄

2
(ξ̂ − ˆ̄ξ) + Bz

h̄

2
( ˆ̄ξ ξ̂ − ξ̂ ˆ̄ξ)

]

(14)= −µB

[
Bz + (Bx + iBy)ξ̂ + (Bx − iBy) ˆ̄ξ − 2Bzξ̂

ˆ̄ξ]
,

where we have indicated withµB = eh̄/(2mc) the Bohr magneton.
The action of the operator(14)on a generic wave functionψ(ξ) can be written in the following two ways:

(15)Ĥψ(ξ) =
∫

dξ ′ H̃ (ξ, ξ ′)ψ(ξ ′) =
∫

dξ ′ dξ̄ H̄ (ξ, ξ̄ )eξ̄ (ξ ′−ξ)ψ(ξ ′),



98 D. Mauro / Physics Letters B 597 (2004) 94–104

the

reedom
where the explicit expressions of theintegral kernel H̃ (ξ, ξ ′) and of theordered symbol H̄ (ξ, ξ̄ ) are the following
ones[13]:

H̃ (ξ, ξ ′) = −µB(Bx − iBy) − µBBzξ − µBBzξ
′ + µB(Bx + iBy)ξξ ′,

(16)H̄ (ξ, ξ̄ ) = −µBBz − µB(Bx + iBy)ξ − µB(Bx − iBy)ξ̄ + 2µBBzξ ξ̄ .

Let us remember that the evolution operatorÛ(t) = e−it Ĥ/h̄ satisfies the property:

(17)Û(t − t0) = Û(t − t ′)Û(t ′ − t0),

so the ordered symbol associated with the LHS of(17)must be given by the ordered symbol of the product of
two operators appearing on the RHS, i.e.,

(18)Ū(ξ, t; ξ̄0, t0) =
∫

dξ ′ dξ̄ ′ e(ξ̄ ′−ξ̄0)(ξ
′−ξ)Ū (ξ, t; ξ̄ ′, t ′)Ū (ξ ′, t ′; ξ̄0, t0).

Let us consider the time interval(t0, t) and divide it intoN + 1 steps of lengthε. Thent − t0 = (N + 1)ε and
Û(t − t0) = [Û(ε)]N+1. Applying Eq.(18) it is possible to derive, in the limitN → ∞ andε → 0, the following
expression[13]:

Ū(ξ, t; ξ̄0, t0) = lim
N→∞

{
eξ̄0(ξN+1−ξ0)

∫ N∏
k=1

[dξk dξ̄k]exp

[
iε

h̄

N∑
l=0

(
ih̄ξ̄l

ξl+1 − ξl

ε
− H̄ (ξl+1, ξ̄l)

)]}
,

whereξ has to be identified withξN+1. From the expression of̄U and Eq.(15) we can derive the following
expression for the integral kernelŨ :

Ũ(ξ, t; ξ0, t0) = lim
N→∞

∫
dξ̄0

∫ N∏
k=1

[dξk dξ̄k]exp

[
iε

h̄

N∑
l=0

(
ih̄ξ̄l

ξl+1 − ξl

ε
− H̄ (ξl+1, ξ̄l)

)]
.

The kernel of evolution can be written in the following path integral form:

(19)Ũ(ξ, t; ξ0, t0) =
∫

D ′′ξ D ξ̄ exp

[
i

h̄

t∫
t0

dτ
[
ih̄ξ̄ ξ̇ − H̄ (ξ, ξ̄ )

]]
.

TheŨ above propagates the wave functionsψ(ξ) = ψ0 + ψ1ξ according to the equation:

ψ(ξ, t) =
∫

dξ0 Ũ(ξ, t; ξ0, t0)ψ(ξ0, t0),

which is completely equivalent to the Pauli equation for the spin part of a quantum wave function[16]:

ih̄
∂

∂t

(
ψ0
ψ1

)
= ĤP

(
ψ0
ψ1

)
, ĤP = −µB

(
Bz Bx − iBy

Bx + iBy −Bz

)
.

4. Grassmannian classical path integral for spinning particles

In this section we want to build the CPI that lies behind the Grassmannian QPI for spin degrees of f
given by Eq.(19). First of all let us align the magnetic field with thez axis. In this case the Hamiltonian̄H(ξ, ξ̄ )

of Eq.(16)becomes a Grassmannian even object and the path integral(19) reduces to:

(20)〈ξ; t|ξ0; t0〉 ≡ Ũ(ξ, t; ξ0, t0) =
∫

D ′′ξ D ξ̄ exp

[
i

t∫
t

dτ L(ξ, ξ̄ )

]

0
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(21)L(ξ, ξ̄ ) = iξ̄ ξ̇ + eB

2mc
(1− 2ξ ξ̄ ).

From this Lagrangian we can derive the following Euler–Lagrange equation of motion:

(22)ξ̇ − ieB

mc
ξ = 0, ˙̄ξ + ieB

mc
ξ̄ = 0.

Starting from these Grassmannian odd equations of motion and following steps similar to the ones ana
Section2, we can derive the associated CPI:

〈ξ, ξ̄ ; t|ξ0, ξ̄0; t0〉 =
∫

D ′′ξ D ′′ξ̄ δ̃
[
ξ − ξcl(t; ξ0, t0)

]
δ̃
[
ξ̄ − ξ̄cl(t; ξ̄0, t0)

]
.

We can then pass from the delta of the solutions to the delta of the equations of motion, as follows:

(23)〈ξ, ξ̄ ; t|ξ0, ξ̄0; t0〉 =
∫

D ′′ξ D ′′ξ̄ δ̃

(
ξ̇ − ieB

mc
ξ

)
δ̃

(
˙̄ξ + ieB

mc
ξ̄

)
det−1

(
∂t − ieB

mc
0

0 ∂t + ieB
mc

)
.

Since the phase space variablesφa ≡ (ξ, ξ̄ ) are Grassmannian odd, in Eq.(23) there appears the inverse of
determinant instead of the determinant of Eq.(2). We can then exponentiate the functional Dirac delta of
Grassmannian odd equations of motionδ̃(A) via the Grassmannian odd variablesλa ≡ (λξ , λξ̄ ) and the inverse

of the functional determinantD via the Grassmannian even auxiliary variablesca ≡ (cξ , cξ̄ ) and c̄a ≡ (c̄ξ , c̄ξ̄ )

according to the following equations:

(24)δ̃(A) =
∫

Dλexp

[
i

∫
dτ λA

]
, det−1 D =

∫
DcD c̄ exp

[
i

∫
dτ ic̄aD

a
bcb

]
.

Using the expression(24) into (23), the classical kernel of propagation becomes:

〈φ; t|φ0; t0〉 =
∫

D ′′φ DλDcD c̄ exp

[
i

t∫
t0

dτ L̃
]
,

whereL̃ is the following Lagrangian:

(25)L̃= λξ ξ̇ + λξ̄
˙̄ξ + ic̄ξ ċ

ξ + ic̄ξ̄ ċ
ξ̄ − H̃, H̃ = ieB

mc

(
λξ ξ − λξ̄ ξ̄ + ic̄ξ c

ξ − ic̄ξ̄ c
ξ̄
)
.

From the kinetic terms of the Lagrangian(25)we can deduce that the only graded commutators different from
are:

(26)[ξ, λξ ] = i, [ξ̄ , λξ̄ ] = i,
[
cξ , c̄ξ

] = 1,
[
cξ̄ , c̄ξ̄

] = 1.

Since the operatorŝφa = (ξ̂ , ˆ̄ξ) commute with the operatorŝca = (ĉξ , ĉξ̄ ), it is appropriate to consider the kern
of propagation in the(φ, c)-space:

(27)〈φ, c; t|φ0, c0; t0〉 =
∫

D ′′φ DλD ′′cD c̄ exp

[
i

t∫
t0

dτ L̃
]
.

The graded commutators(26)can be realized by consideringξ̂ , ˆ̄ξ , ĉξ andĉξ̄ as operators of multiplication and̂λξ ,
λ̂ξ̄ , ˆ̄cξ and ˆ̄cξ̄ as derivative operators:

λ̂ξ = i
∂

∂ξ
, λ̂ξ̄ = i

∂

¯ , ˆ̄cξ = − ∂

∂cξ
, ˆ̄cξ̄ = − ∂

ξ̄
.

∂ξ ∂c
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Basically the kernel of propagation(27)generates the evolution of the wave functionsψ according to the equatio
of motion

(28)i
∂

∂t
ψ(φ, c) = ˆ̃Hψ(φ, c),

where ˆ̃H is the operator associated to the Hamiltonian of Eq.(25):

ˆ̃H = − eB

mc

(
∂

∂ξ
ξ − ∂

∂ξ̄
ξ̄ − ∂

∂cξ
cξ + ∂

∂cξ̄
cξ̄

)
.

We know[9] that the CPI(6) reproduces the kernel of evolution associated with a generalized Liouville equ
for classical statistical mechanics. Analogously Eq.(28), which lies behind the path integral(27), can be considere
as a sort of classical Liouville equation for a spinning particle.

Is it possible to connect the QPI(20)and the CPI(27)via the superfield procedure described in Section2? The
answer is: yes, provided we give the following definition of the superfields:

(29)Ξ = ξ + θcξ − iθ̄ c̄ξ̄ − θ̄ θλξ̄ , Ξ̄ = ξ̄ + θcξ̄ − iθ̄ c̄ξ − θ̄ θλξ .

With this definition we can easily pass from the LagrangianL of Eq.(21)to the LagrangiañL of Eq.(25), replacing
the fieldsξ andξ̄ with the superfieldsΞ andΞ̄ of Eq.(29)and integrating inθ andθ̄ :

(30)i

∫
dθ dθ̄ L(Ξ, Ξ̄ ) = L̃− d

dt

(
λξ̄ ξ̄ + ic̄ξ̄ c

ξ̄
)
.

The surface terms appearing in(30) involve the variables̄ξ , λξ̄ , cξ̄ and c̄ξ̄ , and they can be reabsorbed, as in

bosonic case analyzed in Section2, via a partial Fourier transform with respect to the variables(ξ̄ , λξ̄ ) and(cξ̄ , c̄ξ̄ ),
respectively. This means that if we change the representation and we consider the kernel of propagation
the eigenstates of the superfieldΞ̂ , which are|Ξ〉 = |ξ, λξ̄ , c

ξ , c̄ξ̄ 〉, we get the following path integral:

(31)〈Ξ; t|Ξ0; t0〉 =
∫

D ′′Ξ DΞ̄ exp

[
i

t∫
t0

i dτ dθ dθ̄ L(Ξ, Ξ̄)

]
,

where the functional measure is given by:

D ′′Ξ ≡ D ′′ξ D ′′λξ̄ D ′′cξ D ′′c̄ξ̄ , DΞ̄ ≡ D ξ̄ Dλξ Dcξ̄ D c̄ξ .

This means that the same dequantization procedure analyzed in Section2 works also in the case of particle
with spin analyzed above: to go from the quantum path integral(20) to the classical one(31) we must replace
everywhere the fieldsξ and ξ̄ with the superfieldsΞ andΞ̄ of Eq. (29) and extend the integration from time
supertime

∫
dτ → i

∫
dτ dθ dθ̄ . Before concluding this section, we should point out that a generalization o

CPI including Grassmann variables was proposed first in Ref.[17].

5. Bosonic classical path integral for spinning particles

Another possibility to implement a path integral for the spinning particle in quantum mechanics is ba
the coadjoint orbit method[18]. There is a theorem which says thatEvery orbit of the coadjoint action of a Lie
group possesses a symplectic structure, see the last of Ref.[8]. In the case of the group SO(3) the coadjo
orbits can be identified with the spheresS2 and they are parameterized by their radius[7]. If we use as coordi
natesx1, x2 andx3 satisfying

∑
i (x

i)2 = λ2, then the symplectic form on the two-sphereS2 of radiusλ is given by
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Ω = (1/(2λ2))εαβγ xα dxβ dxγ , whereεαβγ are the structure constants of the group itself:{xα, xβ}P = εαβγ xγ .
The Darboux variables are given by the spherical coordinates[7]:

(32)x1 = λsinθ cosϕ, x2 = λsinθ sinϕ, x3 = λcosθ

and the symplectic form can be written asΩ = λdϕ d sinθ . The one-formω = −d−1Ω entering the definition o
the action can be identified with

(33)ω = (γ + λcosθ) dϕ,

while the associated action becomesS = ∫
ω. This is just the form of the action considered in[5] and[6].

More precisely, taking into account also the interaction with an external magnetic fieldB pointing along the
z-axis, an appropriate Lagrangian to describe a classical action that fixes “the magnitude of the spin, leaving its
direction free” [5] is given by:

(34)L(ϕ, θ) = (γ + λcosθ)ϕ̇ + λµB cosθ.

Since the constant termγ in (34) does not play any dynamical role and does not enter the classical equati
motion, from now on we will disregard it in the implementation of the CPI. The classical equations of motio
can be derived from the Lagrangian(34)are equivalent to the following ones:

(35)
d

dt

[
λcosθ(t)

] = 0,
(
ϕ̇(t) + µB

)
sinθ(t) = 0

whose solutions are given by:

(36)θ(t) = θ0 = const, ϕ(t) = ϕ0 − µB(t − t0).

Sinceθ is constant andϕ varies linearly with time, the particle describes a circumference that is the conto
the basis of a cone. The classical motion of the particle turns out to be a precession in the magnetic field
motion is periodic with period given byT = 2π/(µB).

Let us now write down the equations of motion in a Hamiltonian form. First of all, from the Lagrangian(34)
and the definition itself of conjugate momenta, we can derive the following primary constraints:

Φ1: pθ = 0, Φ2: pϕ − λcosθ = 0.

Implementing the Dirac procedure we have that the total Hamiltonian is given by:

HT = pθ θ̇ + pϕϕ̇ − λcosθ ϕ̇ − λµB cosθ + v1Φ1 + v2Φ2.

If we impose that the constraints are conserved in time we can then determine the Lagrangian multiplierv1 and
v2. Doing so the total Hamiltonian turns out to be:

(37)H = −λµB cosθ.

The Poisson brackets among the constraints of the theory are{Φ1,Φ2}P = −λsinθ , so the matrix entering th
definition of the Dirac brackets is:

Cab = {Φa,Φb}−1
P =

(
0 1

λsinθ

− 1
λsinθ

0

)
.

The only non-zero Dirac brackets are the ones betweenϕ andλcosθ :

(38){ϕ,λcosθ}D = {ϕ,λcosθ}P − {ϕ,Φa}P Cab{Φb,λcosθ}P = 1.

It is in this sense that we can considerϕ andη = λcosθ as canonically conjugated variables. It should be c
thatϕ andη are canonical coordinates just as a consequence of the particular form of the action and, conse
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of the symplectic structure(33) associated with the coadjoint orbits of the group SO(3). If we introduce a un
variableφa = (ϕ, η), with a = 1,2, then we can write the equations of motion in terms of the total Hamilto
(37)and of the Dirac brackets(38)asφ̇a = {φa,H }D or, introducing the matrixωab = ( 0 1

−1 0

)
, asφ̇a = ωab∂bH .

The CPI can be easily realized followingthe same steps reviewed in Section2. From(36) we derive that the
functional Dirac delta of the solutions of the equations of motion becomes:

(39)K(ϕ,η; t|ϕ0, η0; t0) =
∫

D ′′ϕ D ′′η δ̃(η − η0)δ̃
(
ϕ − ϕ0 + µB(t − t0)

)
.

In terms of the Dirac delta of the equations of motion the kernel of propagation(39)can be rewritten as:

K
(
φa; t|φa

0; t0
) =

∫
D ′′φ δ̃

(
φ̇a − ωab∂bH

)
det

[
δa
b∂t − ωac∂c∂bH

]
,

which, repeating the same steps analyzed in Section2, produces the following standard expression for the class
kernel of propagation:

(40)〈φ, c; t|φ0, c0; t0〉 =
∫

D ′′φa DΛa D ′′ca D c̄a expi

t∫
t0

dτ L̃,

where we have usedΛ instead ofλ to avoid confusion with the radius of theS2 sphere, whileL̃ is the following
Lagrangian:

(41)L̃= Λaφ̇
a + ic̄aċ

a − H̃, H̃ = Λaω
ab∂bH + ic̄aω

ab∂b∂dHcd.

Because of the particular form of the HamiltonianH of Eq. (37), the H̃ in (41) lacks the term with the doubl
derivative and reduces to the following Liouvillian:

H̃ = Λaω
ab∂bH = Λϕωϕη∂ηH = −µBΛϕ.

The fundamental commutator is[ϕ,Λϕ] = i, so we can represent̂Λϕ as a derivative operator:̂Λϕ = −i∂/∂ϕ.

Therefore the operator̃̂H simply generates a rotation inϕ, like it should be clear from Eq.(36). Let us notice tha
the variation of the Lagrangian(41) with respect toΛa gives the equations of motion we started from, i.e.,η̇ = 0
andϕ̇ + µB = 0. The variation with respect tōca gives instead the following equations:ċη = 0 andċϕ = 0, which
imply that the length of the Jacobi fields does not increase with time (for the interpretation of the variablc as
Jacobi fields, the reader can consult Refs.[9,19]). This is consistent with the factthat, varying the initial condition
in θ (or η) andϕ, the classical trajectories are given by a series ofcircumferences with center on the axis of a co

The quantum kernel of propagation can instead be written as an integral overϕ andη of the Lagrangian(34):

(42)〈ϕ; t|ϕ0; t0〉 =
∫

D ′′ϕ Dη exp

[
i

h̄

t∫
t0

dτ L(ϕ,η)

]
, L(ϕ,η) = (γ + η)ϕ̇ + µBη.

We refer the reader to the original papers[5,6] to appreciate the subtleties hidden behind the functional mea∫
D ′′ϕ Dη and the role of the termγ . Now the question we want to answer is: how can we connect the cla

path integral(40)and the quantum one(42)?
Since the formal structure of the theory is the usual one, we expect that also the definition of the superfi

be the one of Eq.(8), which in this particular case becomes:

(43)

{
ϕ̃ = ϕ + χcϕ + χ̄ c̄η + iχ̄χΛη,

η̃ = η + χcη − χ̄ c̄ϕ − iχ̄χΛϕ.
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We have preferred to change the notation for the superpartners of time from(θ, θ̄) to (χ, χ̄ ), to avoid confusion
with the angular variableθ . Now, let us disregard for the moment the constantγ in (42), like we have done in the
implementation of the CPI. With the definition(43) of the superfields it is possible to reconstruct the Liouvill
H̃ = −µBΛϕ starting from the HamiltonianH = −µBη, by simply replacing the fields with the superfields a
integrating the result overχ andχ̄ . In fact:

i

∫
dχ dχ̄ H(ϕ̃, η̃) = −iµB

∫
dχ dχ̄ η̃ = −µBΛϕ = H̃.

Applying the same procedure to the Lagrangian of Eq.(42), but withγ = 0, we get the relation:

(44)i

∫
dχ dχ̄ L|γ=0[ϕ̃, η̃] = L̃− d

dt

[
Ληη + ic̄ηc

η
]
.

As in the cases analyzed in the previous sections, the surface termsd(Ληη + ic̄ηc
η)/dt in (44)can be reabsorbe

via the partial Fourier tranformsη ↔ Λη and cη ↔ c̄η on the initial and final variables. These Fourier tra
forms turn Eq.(40) into the kernel of propagation between the states|ϕ̃0; t0〉 and |ϕ̃; t〉, where|ϕ̃ 〉 stands for
|ϕ, cϕ, c̄η,Λη〉. This kernel can be written in terms of the superfields(43)as:

〈ϕ̃; t|ϕ̃0; t0〉 =
∫

D ′′ϕ̃ D η̃ exp

[
i

t∫
t0

dτ dχ dχ̄L|γ=0(ϕ̃, η̃)

]
.

If we take into account also the termγ ϕ̇ in (42)and we apply on it the dequantization procedure, then wha
get is the derivative term−γ Λ̇η = −d(γΛη)/dt . This term does not play any dynamical role at the classical le
in the sense that it does not modify the classical equations of motion, so it can be disregarded, just like it h
disregarded in the implementation of the CPI by puttingγ = 0 from the beginning.

We can summarize this Letter by saying that here we have somehow obtained two further classical des
of spin. We have used the word “somehow” because the descriptions we got are strictly related to the previou
existing ones[3–5,13]: what we have built here is a sort of classical Lie derivative[9,14] associated with the
old descriptions of spin mentioned above. What instead is completely new in this Letter is the proof t
dequantization procedure proposed in[10] for non-spinning particles works also in the spinning case.
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