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ABSTRACT

This note shows that a certain identity for the spectral function of one-particle states, known as the sum
rule in Quantum Statistical Mechanics, holds true for a rather wide class of non-negative functions on
the real line.

1. INTRODUCTION AND MAIN RESULT

For certain non-negative functions u on the real line corresponding to lifetime decay
of one-particle states in Quantum Statistical Mechanics (QSM) one has on physical
grounds the “spectral” identity

1

π

∞∫

−∞

u(x)

u(x)2 + (x − ũ(x))2
dx = 1.(1.1)

This so-called “sum rule” appears for example in the book of Kadanoff–Baym [3]
in the form 1

2π

∫ ∞
−∞ A(p,ω)dω = 1 ([3], p. 8/29). The integrand of (1.1) is called

the spectral function in QSM. The function ũ appearing in it denotes the Hilbert
transform of u. It is defined by the Cauchy principal value integral

ũ(x) := 1

π
PV

∞∫

−∞

u(t)

x − t
dt.(1.2)
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In order for the right-hand side of (1.2) to make sense it must be assumed (for u � 0)
that

∞∫

−∞

u(t)

|t | + 1
dt < ∞.(1.3)

Under this condition the singular integral in (1.2) is known to exist finitely for
almost every (a.e.) x.

In view of its importance for QSM it is natural to investigate for which
non-negative functions u subject to (1.3) the identity (1.1) holds. In [4] Koehler
conjectured that (1.1) would hold for “all” functions u. Koehler’s conjecture was
noticed by Kondratyev and henceforth answered in the negative in [1]. In a later
paper [6] it was shown that each (strictly positive) function u, whose reciprocal u−1

is locally bounded and which belongs to some space Lp with 1 < p < ∞,
satisfies (1.1). In fact, in [6] it was shown that (1.1) under the given conditions could
be obtained as a limiting case of Cauchy’s theorem when the bounding contour is
moved to infinity. The boundedness condition u ∈ Lp in that paper allowed to apply
a classical theorem of Marcel Riesz stating that the Hilbert transform u �→ ũ is
bounded on Lp (1 < p < ∞). This fact was then used to carry out the delicate
limiting process in the application of Cauchy’s theorem.

In the present paper the condition u ∈ Lp is removed altogether. Our new proof
avoids the use of Cauchy’s theorem. It requires only (1.3), or the even weaker
condition (for an analogue of (1.1))

∞∫

−∞

u(t)

t2 + 1
dt < ∞.(1.4)

We also substantially weaken the condition that u locally have a positive lower
bound, replacing it by the more natural condition u−1 ∈ L1

loc. (As a matter of fact,
QSM does not forbid the lifetime decay function u to be zero at an isolated value of
the argument.) The condition is sharp as an explicit counterexample in [6] with u

a C∞-function with a single zero shows. Our main result is the following theorem.

Theorem 1. Let u be a non-negative locally integrable function satisfying (1.3)
and let ũ be its Hilbert transform given by (1.2). Let furthermore a, b be arbitrary
real numbers, a > 0. Then we have the inequality

∞∫

−∞

u(x)

u(x)2 + (ũ(x) − ax − b)2
dx � π

a
.(1.5)

If moreover, 1/u(x) be locally integrable then equality holds in (1.5):

∞∫

−∞

u(x)

u(x)2 + (ũ(x) − ax − b)2
dx = π

a
.(1.6)
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In the QSM-interpretation of this theorem the variable of integration x corresponds
to energy. (Under the normalizations a = 1, h/2π = 1, where h is Planck’s con-
stant.) The function u characterizes lifetime while its Hilbert transform ũ represents
the correlation part of interacting energy; the constant b represents the energy of a
particle in the Hartree–Fock approximation (cf. [3]).

In one sense Theorem 1 can still not be considered as being optimal. For
example (1.3) still requires u(t) to tend to 0 at ±∞, at least on average. In particular,
while all spaces Lp , 1 � p < ∞, are included, simple bounded functions like
the (positive) constants are not! In section 3 we shall consider an extension of
Theorem 1 with (1.3) replaced by the weaker condition (1.4).

2. PROOF OF THEOREM 1

We shall modify the proof of [6]. In the following all integrals will be over the
whole real axis. First let us recall a few well-known facts. (See e.g. Koosis [5].) Let
U = Pu denote the Poisson integral of u in the upper half-plane z = x + iy, y > 0:

U(z) = y

π

∫
u(t)

(x − t)2 + y2
dt.(2.1)

Then U(z) is a positive harmonic function, U(x + iy) → u(x) a.e. (Fatou’s theorem)
and in L1

loc(R) as y ↓ 0. Also U = ReH , where

H(z) = i
π

∫
u(t)

z − t
dt(2.2)

is holomorphic in the half-plane y > 0. Putting Ũ = ImH we have

Ũ(z) = 1

π

∫
(x − t)u(t)

(x − t)2 + y2
dt(2.3)

and Ũ (x + iy) → ũ(x) a.e.
After these preliminaries we begin with the actual proof. We may assume that

a = 1, by a change of scale. We further note that the reciprocal function H(z)−1 also
has positive real part in the upper half-plane. Replacing H(z) by H(z) − i(z + b)

– which increases its real part – and putting T (z) := (H(z) − i(z + b))−1, S(z) :=
ReT (z), we then have

S(z) = U(z) + y

(U(z) + y)2 + (Ũ(z) − x − b)2
, y > 0.(2.4)

We conclude that S(x + iy) → s(x) a.e., where s is the spectral function, i.e. the
integrand of (1.6) (with a = 1).

We now note that according to the classical Riesz–Herglotz Theorem (cf. [5]) we
can write each positive harmonic function V in the upper half-plane in a unique way
in the form V = Pμ + ky, where Pμ denotes the Poisson integral of a non-negative
Borel measure μ satisfying

∫
dμ(t)

t2 + 1
< ∞(2.5)
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and k a non-negative constant. Moreover, V (x + iy) → μ weak* as y ↓ 0 (that
is,

∫
f (x)V (x + iy)dx → ∫

f (x)dμ(x) for all continuous f of compact support)
and V (x + iy) → v(x) a.e. (Fatou), where v is the Radon–Nikodym derivative of
the absolutely continuous part μa in the Lebesgue decomposition μ = μa + μs .
Moreover, V (x + iy) → v(x) in L1

loc if and only if the singular part μs vanishes, i.e.
if μ is absolutely continuous with density v. Applying this with V = S, v = s we
obtain

S(z) = y

π

∫
dμ(t)

(x − t)2 + y2
+ ky, y > 0,(2.6)

where dμa(x) = s(x) dx. In particular,
∫

s(x) dx � μ(R),(2.7)

with equality if and only if μ is absolutely continuous.
Now a simple application of Lebesgue’s dominated convergence theorem using

the convergence condition (2.5) shows that Pμ(iy)/y → 0 as y → ∞. Thus
the constant k in (2.6) is determined by k = limS(iy)/y. Another application
of Lebesgue’s theorem using condition (1.3) shows that H(iy)/y → 0, i.e. both
U(iy)/y → 0 and Ũ (iy)/y → 0 as y → ∞.

From this and (2.4) we conclude that yS(iy) → 1. In particular, the constant k

must be 0. We can now apply Lebesgue’s monotone convergence theorem to the
integral in (2.6) to obtain yS(iy) → μ(R)/π . It follows that μ is a finite measure,
μ(R) = π . With (2.7) this proves (1.5). And (1.6) will follow if we can show that μ

must be absolutely continuous if, in addition, u−1 be locally integrable. By the
above remarks on the Riesz–Herglotz theorem we therefore have to show that S(x +
iy) → s(x) in L1

loc. We need the following lemma.

Lemma 1. Let u and U be as before, u−1 ∈ L1
loc. Let R > 0 be arbitrary and let

V = VR be the Poisson integral of the function v = vR given as the restriction of u−1

to the interval [−R,R] (and equal to zero otherwise). Then the following estimate
holds:

(
1

π
arctan

R

y

)2

� U(z)V (z), |x| � R,y > 0.(2.8)

In particular,

16U(z)V (z) � 1, |x| � R,0 < y � R.(2.9)

Proof. Given any non-negative functions f,g on R the Schwarz inequality gives
(P(fg))2 � Pf 2 · Pg2. We apply this with f = √

u,g = √
v. (The choice g = 1/

√
u

does not work since in general Pu−1 ≡ ∞.) Thus fg is the indicator function of the
interval [−R,R]. For x = Re z restricted to the interval [−R,R] one easily obtains
(cf. (2.1), u replaced by fg), the estimate P(fg) � 1/π · arctanR/y. The lemma
follows. �
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Combining now identity (2.4) and estimate (2.9) we obtain

S(z) � U(z)−1 � 16V (z), |x| � R,0 < y < R.(2.10)

Since V = Pv, we have V (x+ iy) → v(x) = u−1(x) in L1 on [−R,R]. In connection
with (2.10) this would imply locally uniform integrability of the family S(x + iy)

and allow the conclusion that S(x + iy) → s(x) in L1 on [−R,R] from Vitali’s
extension of Lebesgue’s dominated convergence theorem. However, it is possible
to use instead a much simpler extension of Lebesgue’s theorem, contained in the
following lemma.

Lemma 2 (cf. Elstrodt [2]). Let ν be a measure on a measure space X. Let fn be
a sequence in L1(ν) which converges pointwise to a function f on X. Suppose there
exist functions gn, g in L1(ν) satisfying |fn| � gn, gn → g pointwise,

∫
X

gn dν →∫
X

g dν. Then f ∈ L1(ν) and fn → f in L1(ν).

Proof. Fatou’s lemma applied to the non-negative (!) sequence hn(z) := gn + g −
|fn − f |. �

We apply Lemma 2 (with continuous parameter y) with ν equal to Lebesgue
measure on X = [−R,R], with S(x + iy), s(x) in the role of fn,f , and finally with
V (x + iy), v(x) = u(x)−1 in the role of gn, g. This gives S(x + iy) → s(x) for y ↓ 0
in L1([−R,R]). Since R > 0 is arbitrary, we conclude that the measure μ in (2.6)
is absolutely continuous. Consequently identity (1.6) holds.

3. EXTENSION OF THE RESULT

From the point of view of QSM it is desirable that the class of admissible input
functions u contain also certain slowly growing functions like u(x) = |x|α , 0 �
α < 1. For such special even functions the Hilbert transform ũ can still be defined
by (1.2) if we interpret the integral appearing in it as a Cauchy principal value not
only at t = x, but also for t at infinity. Similarly for (2.2) and (2.3). For example, if
u ≡ 1 we would get ũ ≡ 0 and the identity (1.6) would simply become the statement
that the standard Poisson kernel has total integral 1. Likewise, direct calculation
would show validity of (1.6) for u(x) = |x|α , 0 < α < 1. (Cf. [1] for the case α =
1/2.)

In this section we briefly describe how to extend Theorem 1 to the whole class
of functions u satisfying (1.4). This is the class of (non-negative) functions u for
which the Poisson integral U can be defined by (2.1). The definitions (1.2) and (2.2)
in general no longer make sense, but we can modify them as follows: given any
α > 0 we define

ũα(x) = 1

π
PV

∫
u(t)

(
1

x − t
+ t

t2 + α2

)
dt.
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The modified kernel in brackets on the right is O(t−2), so there is no longer a
convergence problem at ±∞. Likewise we define

Hα(x) = i
π

∫
u(t)

(
1

z − t
+ t

t2 + α2

)
dt

(so that still U = ReHα), and we put Ũα := ImHα . (This modified harmonic conju-
gate of U vanishes at iα, cf. (2.3). Our original harmonic conjugate corresponds to
α = ∞.) Naturally, Ũα(x + iy) → ũα(x) a.e. and the proof in Section 2 goes through
as before. (In particular we have Hα(iy)/y → 0 as y → ∞, just as before for H .)
So Theorem 1 remains true when ũ is replaced by any ũα .

The case of even functions u mentioned at the beginning of this section deserves
special interest. Here all ũα coincide – as do all Ũα,Hα ; indeed, because of oddness
of the kernel they vanish identically on the positive imaginary axis. The resulting
quasi-canonical ũ coincides with the “double” principal value integral mentioned
before.
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