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SUMMARY
Exosomes are secreted by all cell types and contain proteins and nucleic acids. Here, we report that breast
cancer associated exosomes contain microRNAs (miRNAs) associated with the RISC-Loading Complex
(RLC) and display cell-independent capacity to process precursor microRNAs (pre-miRNAs) into mature
miRNAs. Pre-miRNAs, alongwith Dicer, AGO2, and TRBP, are present in exosomes of cancer cells. CD43me-
diates the accumulation of Dicer specifically in cancer exosomes. Cancer exosomesmediate an efficient and
rapid silencing ofmRNAs to reprogram the target cell transcriptome. Exosomes derived from cells and sera of
patients with breast cancer instigate nontumorigenic epithelial cells to form tumors in a Dicer-dependent
manner. Thesefindingsoffer opportunities for thedevelopmentof exosomesbasedbiomarkers and therapies.
INTRODUCTION

Exosomes are nano-vesicles of 50–140 nm in size that contain

proteins, mRNA, and microRNAs (miRNAs) protected by a lipid

bilayer (Kahlert and Kalluri, 2013; Cocucci et al., 2009; Simons

and Raposo, 2009; Simpson et al., 2008; Théry et al., 2002).

Several recent studies demonstrated that exosomes are

secreted by multiple cell types, including cancer cells, stem

cells, immune cells, and neurons (Théry, 2011). Exosomes levels

in the serum of breast cancer patients are generally higher when

compared to normal subjects (Logozzi et al., 2009; Taylor and

Gercel-Taylor, 2008; O’Brien et al., 2013).
Significance
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Can
miRNAs are small noncoding RNAs of 18–24 nucleotides (nt) in

length that control gene expression posttranscriptionally. They

are synthesized via sequential actions of Drosha andDicer endo-

nucleases, and incorporate with the RNA induced silencing com-

plex (RISC) to target mRNAs (Bartel, 2009; Maniataki and Mour-

elatos, 2005). RISC-loaded miRNAs bind in a sequence-specific

manner to target mRNAs, initiating their repression through a

combination of translational inhibition, RNA destabilization, or

through direct RISC-mediated mRNA cleavage (Ambros, 2004;

Bartel, 2009; Filipowicz, 2005). For a miRNA to be functional

and achieve efficient gene silencing, it must form a complex

with the RISC-loading complex (RLC) proteins Dicer, TRBP,
for cell-independent miRNA biogenesis, while normal cell-
cer cells and serum from patients with breast cancer contain
hich process pre-miRNAs into mature miRNAs. Cancer exo-
ent manner, which stimulate nontumorigenic epithelial cells
cer cells impart an oncogenic field effect bymanipulating the
es may serve as biomarker for detection of cancer.
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and AGO2. Within the RLC, Dicer and TRBP process precursor

miRNAs (pre-miRNAs) after they emerge from the nucleus via ex-

portin-5, to generate miRNAs and associate with AGO2. AGO2

bound to the mature miRNA constitutes the minimal RISC and

may subsequently dissociate from Dicer and TRBP (Chendri-

mada et al., 2005; Gregory et al., 2005; Haase et al., 2005; Ma-

cRae et al., 2008; Maniataki and Mourelatos, 2005; Melo et al.,

2009). Single-stranded miRNAs by themselves incorporate into

RISC very poorly and therefore cannot be efficiently directed to

target mRNAs for posttranscriptional regulation (Tang, 2005;

Thomson et al., 2013). Nonetheless, several reports suggest

that miRNAs contained in exosomes can influence gene expres-

sion in target cells (Ismail et al., 2013; Kogure et al., 2011; Kosaka

et al., 2013; Narayanan et al., 2013; Pegtel et al., 2010; Valadi

et al., 2007; Zhang et al., 2010). Drosha and Dicer are present

in exosomes from cell culture supernatants from HIV-1 infected

cells and HIV patient sera (Narayanan et al., 2013). Cofractiona-

tion of Dicer, TRBP, and AGO2 in late endosome/ multivesicular

bodies (MVBs) is also observed (Shen et al., 2013). These studies

reflect the need to evaluate the functional contribution of miRNA

machinery proteins in exosomes and their role in tumor

progression.

RESULTS

Isolation and Identification of Exosomes
Exosomes from cancer cells (MDA-MB-231 triple negative hu-

man metastatic breast carcinoma, MCF7 human breast adeno-

carcinoma, 67NR mouse nonmetastatic mammary carcinoma,

and 4T1 mouse metastatic mammary carcinoma) and control

cells (MCF10A nontumorigenic human mammary epithelial cells

and NMuMG nontumorigenic mouse mammary epithelial cells)

were isolated using established ultracentrifugation methods

(Figure S1A available online; see Supplemental Experimental

Procedures) (Luga et al., 2012; Théry et al., 2006). The harvested

exosomes were analyzed by transmission electron microscopy

(TEM) and atomic force microscopy (AFM). Particles between

50–140 nm were identified (Figures 1A and 1B) (Théry et al.,

2002). The average size observed in 112 captured images by
Figure 1. Cancer Exosomes Become Enriched in MicroRNAs

(A) Transmission electron micrograph of MDA-MB-231 exosomes. Lower right im

Gold particles are depicted as black dots. Graph represents the average size of

(B) AFM image of MDA-MB-231 exosomes. Middle graph represents dispersion o

average size of exosomes analyzed from 26 AFM pictures.

(C) Scattterplots of miRNAs expression assessed by miRNA array, in MCF-7,

coefficient, r, is used as a measure of the strength of the linear relationship betw

(D) HeatMaps of miRNAs expression array of cancer exosomes cultured for 24 an

for 72 hr; MDA-MB-231 exosomes cultured for 24 hr versus MDA-MB-231 exo

exosomes culture for 72 hr) (see Supplemental Experimental Procedures).

(E) Scattterplots of miRNAs expression assessed bymiRNA array, in exosomes cu

cells. Pearson correlation coefficient, r, is used as a measure of the strength of th

miR-21, miR-27b, miR-155, and miR-373 are color-coded and identified in the s

(F) MCF10A, NMuMG, MCF7, MDA-MB-231, and 4T1 exosomes were resuspend

maintained in cell-free culture for 24 and 72 hr. After 24 and 72 hr, exosomes were

miRNA in exosomes after 72 hr cell-free culture was quantified relative to the sam

change for the miRNAs in exosomes harvested after 72 hr compared to those ha

(G) Northern blots of miR-10b andmiR-21 from normosomes after 24 and 72 hr of c

of cell-free culture. The tRNAMet was used as a loading control. Quantification w

qPCR data represented are the result of three independent experiments each wit

using t tests (*p < 0.05). See also Figure S1 and Tables S1, S2, S3, S4, S5, and S

Can
TEM was 108 ± 6 nm and by AFM was 112 ± 5 nm (Figures 1A

and 1B, graphs). The identity of the exosomes was confirmed

through detection of TSG101, CD9, and CD63, three exosomes

markers (Figure S1B) (Théry et al., 2006). The isolated exosomes

were also positive for the CD9 marker by immunogold TEM (Fig-

ure 1A, lower right panel). Exosomes coupled to latex beads

were analyzed by flow cytometry, showing expression of CD9,

flotillin1, CD63, and TSG101, the commonly used exosomes

markers (Figure S1C). Light scattering spectroscopy (LSS)

(Fang et al., 2007; Itzkan et al., 2007) was used to show that

the isolated samples reveal a tight size distribution with a

mode value peaking at 104 nm (Figure S1D). LSS also excluded

potential microvesicles and bacterial or cellular debris contami-

nation (Figure S1D). In agreement with LSS data, the NanoSight

nanoparticle tracking analysis for MCF10A, MCF7, MDA-MB-

231, 67NR, 4T1, and NMuMG exosomes revealed an average

of the mode value of 103 ± 5 nm (Figure S1E). Based on LSS

and NanoSight analysis, the most prevalent population of parti-

cles in solution ranged in size from 89 to 118 nm in diameter (Fig-

ures S1D and S1E). Colorimetric cell viability assay (Thiazolyl

blue tetrazolium bromide [MTT]), terminal deoxynucleotidyl

transferase dUTP nick end labeling (TUNEL) assay, flow cytom-

etry analysis for Anexin V using propidium iodide, and cyto-

chrome C immunoblots (Figures S1F–S1I) were used to demon-

strate the viability of cells prior to exosomes extraction to

exclude apoptotic bodies or random cell debris. Exosomes iso-

lated from cancer cells are collectively termed as cancer

exosomes, whereas exosomes isolated from control cells are

collectively termed normosomes.

Cancer Exosomes Are Specifically Enriched in
MicroRNAs
The global miRNA content of cancer exosomes and normo-

somes was investigated. A low correlation between the levels

of expression of miRNAs in normosomes and cancer exosomes

was observed (MCF10A versus MCF-7:r = 0.56; MCF10A versus

MDA-MB-231:r = 0.39; and NMuMG versus 4T1:r = 0.40) (Fig-

ure 1C), while correlation levels among normosomes and among

cancer exosomes was generally higher despite their species
age produced by immunogold of CD9 and TEM of MDA-MB-231 exosomes.

exosomes analyzed from 112 TEM pictures.

f particles in the coverslip with size range of exosomes. Right graph represents

MCF10A, MDA-MB-231, 4T1, and NMuMG exosomes. Pearson correlation

een two exosomes samples.

d 72 hr (MCF-7 exosomes cultured for 24 hr versus MCF-7 exosomes cultured

somes cultured for 72 hr; and 4T1 exosomes cultured for 24 hr versus 4T1

ltured for 24 versus 72 hr of MCF10A,MCF-7,MDA-MB-231, NMuMG, and 4T1

e linear relationship between the two exosomes samples. miR-10a, miR-10b,

catterplots.

ed in Dulbecco’s modified Eagle’s medium (DMEM) media FBS-depleted and

recovered and six miRNAs were quantified by qPCR. The fold-change of each

e miRNA in exosomes after 24 hr cell-free culture. The plots represent the fold-

rvested after 24 hr.

ell-free culture and cancer exosomeswithout culture andwith 24, 72, and 96 hr

as done using Image J software.

h three replicates and are represented as ±SEM. Significance was determined

6.
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differences (MCF10A versus NMuMG [normal exosomes]:r =

0.83; MDA-MB-231 versus 4T1:r = 0.64; MDA-MB-231 versus

MCF7:r = 0.52; and MFC7 versus 4T1:r = 0.55). We observed

an overall enrichment of miRNAs in cancer exosomes (MCF7,

MDA-MB-231, and 4T1) when compared with normosomes

(MCF10A and NMuMG) (Figure 1C; Tables S1, S2, and S3). Inter-

estingly, breast cancer exosomes derived from metastatic

breast cancer cells, MDA-MB-231 and 4T1, show higher enrich-

ment in miRNAs when compared to breast cancer exosomes

derived from nonmetastatic breast cancer cells, MCF7 (Fig-

ure 1C; Tables S1, S2, and S3). Enrichment of miRNAs in

MDA-MB-231, MCF7, and 4T1 exosomes was not a mere reflec-

tion of an increase in total miRNAs in cancer cells, since these

cancer cells actually exhibited a lower amount of total small

RNAs when compared to nontumorigenic cells (Figure S2A).

MCF7-, MDA-MB-231-, and 4T1-derived exosomes exhibit an

enrichment of miRNAs when compared to cells of origin (MCF7

exos versus MCF7 cells r = 0.566; MDA-MB-231 exos versus

MDA-MB-231 cells r = 0.574; and 4T1 exos versus 4T1 cells 4 =

0.644). While MCF10A- and NMuMG-derived exosomes reveal

lower amounts of miRNAs when compared to the cells

(MCF10A exos versus MCF10A cells r = 0.425 and NMuMG

exos versus NMuMG cells r = 0.4283) (Figure S2B).

We used a cell-free culture system to determine the expres-

sion of miRNAs in exosomes at different time points of culture.

Purified exosomes were placed in fetal bovine serum (FBS)-

depleted culture media and incubated for 24 and 72 hr at 37�C
(see Supplemental Experimental Procedures for details). After

the incubation period, exosomes were profiled by miRNA

expression arrays (Figures 1D and 1E). Cancer exosomes

cultured for 72 hr showed an enrichment of miRNAs when

compared to cancer exosomes cultured for 24 hr (Figure 1D; Ta-

bles S4, S5, and S6). On the contrary, normosomes did not show

significant differences in miRNAs expression after 72 hr of cul-

ture (MCF10A:r = 0.9145; NMuMG:r = 0.9327; MCF7:r =

0.5782; MDA-MB-231:r = 0.5087; and 4T1:r = 0.4833; Figure 1E).

As proof of concept, a set of miRNAs (miR-10a, miR-10b, miR-

21, miR-27a, miR-155, andmiR-373) that were increased in can-

cer exosomes after 72h of culture were used for further analysis

(Figure 1E). This set was selected because they were signifi-

cantly upregulated after 72 hr of culture, and each has been

extensively implicated in cancer progression (Figure S2C; see

color-coded miRNAs in scatterplots; Tables S4, S5, and S6). A

striking upregulation of the six analyzed miRNAs was observed

exclusively in cancer exosomes cultured for 72 hr when

compared to cancer exosomes cultured for 24 hr, with an

average fold-change of 17.6 for MDA-MB-231-derived exo-

somes, 4.5 for MCF-7-exosomes, and 13.2 for 4T1-derived can-

cer exosomes. (Figure 1F). In contrast, the miRNA content of

normosomes was not significantly affected over time (Figure 1F).

When the miRNA content of MDA-MB-231, MCF-7, and 4T1

cancer exosomes was compared to that of normosomes from

MCF10A and NMuMG cells, an enrichment was observed in all

six miRNAs in cancer exosomes cultured for 24 hr with an

average fold-change of 2.7, 1.7, and 2.0, respectively (Fig-

ure S2D). At the 72 hr time point, an average fold-change of

30, 4.5, and 18.2 was detected in the six miRNAs in MDA-

MB231, MCF-7, and 4T1 derived cancer exosomes, respec-

tively, when compared to MCF10A and NMuMG derived normo-
710 Cancer Cell 26, 707–721, November 10, 2014 ª2014 Elsevier Inc
somes (Figure S2D). Northern blots confirmed the upregulation

of miR-10b and miR-21 exclusively in cancer exosomes, lending

additional support to the miRNA array expression data and the

quantitative PCR (qPCR) analyses (Figure 1G).

Cancer Exosomes Contain Pre-MicroRNAs, and the
Core RNA Induced Silencing Complex-Loading Complex
Proteins
The data suggested active miRNA biogenesis in exosomes.

Therefore, the potential presence of pre-miRNAs in normosomes

and cancer exosomes was explored. Cell-free culture of exo-

somes 24 or 72 hr after their isolation was performed, and the

exosomes subjected to RNase treatment for the depletion of

any possible extra-exosomal RNA. This was followed by the

detection of the six pre-miRNAs in the exosomes corresponding

to the mature miRNAs previously evaluated (Figure S2E).

All six pre-miRNAs analyzed were present in exosomes (nor-

mosomes and cancer exosomes) (Figures 2A and S2E). A signif-

icant downregulation of pre-miRNAs was observed in cancer

exosomescultured for 72hrwhencompared tocancer exosomes

cultured for 24 hr. No variation of pre-miRNAs was observed in

normosomes (Figure 2B). Downregulation of pre-miRNAs in can-

cer exosomes was further confirmed by northern blot for pre-

miR10b and pre-miR21 (Figure 2C). Next, a time-course analysis

of pre-miRNAs and miRNAs in exosomes was performed. We

cultured isolated cancer exosomes for 6, 12, 24, 36, 48, 72, and

96 hr and observed that the levels of the six pre-miRNAs were

inversely proportional to their respective miRNAs (Figure 2D).

MaturemiRNAs increased inquantitybetween24and72hr of cul-

ture, after which they reached a plateau (Figure 2D).

To understand why the processing of pre-miRNAs in cultured

exosomes is delayed by 24 hr, we monitored miR-21 and miR-

155 in MDA-MB-231 cells that were silenced for exportin-5

(XPO5) (Figure S2F). XPO5 is responsible for the transport of

pre-miRNAs from the nucleus to the cytoplasm (Yi et al., 2003;

Melo et al., 2010). Silencing XPO5 prevents the flow of pre-

miRNAs from the nucleus to the cytoplasm, allowing for an eval-

uation of cytoplasmic pre-miRNA processing (Figures S2F and

S2G). miRNA-21 and -155 were monitored in MDA-MB-

231siXPO5 cells before and after centrifugation (Figure S2G),

which occurred at 4�C for 3 hr to mimic the conditions of exo-

somes isolation (see Supplemental Experimental Procedures).

Both miR-21 and miR-155 present a lag phase of processing in

centrifuged cells (Figure S2G). For the cells to accomplish a 2-

fold increase of miR-21, 8 hr are enough, while centrifuged cells

take about 24 hr for the same fold increase (Figure S2G). The

same holds true for mir-155 that takes about 10 hr to reach

2-fold increase, while centrifuged cells take 27 hr for the same

fold increase (Figure S2G). Therefore, exosomes require a

certain period of acclimatization that is already expected for re-

covery of enzymatic activities in cultured cells after tissue culture

passage.

miRNA biogenesis requires key protein components of the

RLC, Dicer, TRBP, and AGO2 (Chendrimada et al., 2005). Dicer

and TRBP form a complex that stabilizes Dicer, while AGO2 is re-

cruited later in the biogenesis pathway for strand selection and

the RNA unwinding process (Chendrimada et al., 2005). Dicer

was detected in exosomes derived from MCF7, MDA-MB231,

67NR, and 4T1 cells (Figures 3A, 3B, and S3A). All exosomes
.
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Figure 2. Cancer Exosomes get Depleted of

Pre-MicroRNAs

(A) Six pre-miRNAs were quantified by qPCR of

MCF10A andMDA-MB231 exosomes. The inverse

of the DCt value for each pre-miRNA was plotted.

(B) Cancer exosomes and normosomes were re-

suspended in DMEM media depleted of FBS and

maintained for 24 and 72 hr in cell-free culture

conditions. After 24 and 72 hr exosomes were

extracted and six pre-miRNAs were quantified by

qPCR. Graphs show fold-change of each pre-

miRNA in MCF10A and MDA-MB231 exosomes

after 72 hr of cell-free culture relative to 24 hr cell-

free culture.

(C) Northern blots of pre-miR-10b and pre-miR-21

using MCF10A normosomes after 24 and 72 hr of

cell-free culture, and MDA-MB231 cancer exo-

somes with 0, 24, 72, and 96 hr of cell-free culture.

The tRNAMet was used as a loading control.

Quantification was done using Image J software.

(D) Pre-miRNAs (left graph) and mature miRNAs

(right graph) of cancer exosomes (MDA-MB231)

were quantified after 6, 12, 24, 36, 48, 72, and 96 hr

of cell-free culture conditions. The inverse of the

DCt value for each pre-miRNA (left graph) and

miRNA (right graph) at different time points was

plotted.

The data presented are the result of three inde-

pendent experiments each with three replicates

and are represented as ±SEM; significance was

determined using t tests (*p < 0.05). Northern blots

were performed once to validate qPCR and

miRNAs array data. See also Figure S2.

Cancer Cell

Exosomes and MicroRNA Biogenesis
preparations were treated with proteinase K before exosomal

protein extraction, as previously described (Montecalvo et al.,

2012) (Figures 3A, 3B, and S3A). Dicer was not detected in nor-

mosomes produced by MCF10A and NMuMG cells (Figures 3A

and S3A). Immunogold labeling of exosomes using TEM

confirmed that Dicer was present in cancer exosomes, but not

in normosomes (Figures 3B and S3B). The use of an anti-GFP

antibody as negative control failed to detect any gold particles

by immunogold TEM (Figure S3C).

Dicer was overexpressed with an N-terminal FLAG tag in

MCF10A and MDA-MB-231 cells (Figure S3D). Immunoblot

and confocal microscopy localized the FLAG-Dicer protein spe-

cifically to cancer exosomes (Figures 3C, S3D, and S3E). In addi-

tion, Dicer expression was decreased via stable expression of

two short-hairpin constructs in MCF10A and MDA-MB-231 cells

(Figures S3F and S3G). Exosomes derived from MDA-MB-

231shDicer cells contained significantly less Dicer compared
Cancer Cell 26, 707–721, N
to shScramble or parental MDA-MB-231

cells, as determined by immunoblot and

immunogold TEM (Figures 3D and 3E).

Dicer was not detected in normosomes

derived from MCF10AshDicer cells

(Figure 3D).

RLC proteins, AGO2, and TRBP, were

also present in cancer exosomes, but

not in normosomes (Figures 3F and 3G).

Exosomes were extracted from MCF10A
and MDA-MB-231 cells transfected with a GFP-tagged AGO2

(Figure 3H). The presence of GFP-AGO2 was detected in exo-

somes extracted from MDA-MB-231-GFP-AGO2 cells (Fig-

ure 3I). Dicer immunoprecipitation revealed that AGO2 binds to

Dicer in cancer exosomes, while both are undetectable in nor-

mosomes (Figure 3J). TRBP functions as a key partner of Dicer

protein and aids in its stability and in its pre-miRNA cleavage ac-

tivity (Chendrimada et al., 2005; Melo et al., 2009). Dicer immu-

noprecipitation revealed the presence of Dicer/TRBP complex

in cancer exosomes, but not in normosomes (Figure 3K).

MVBs are cellular organelles that contain endosomes that are

released as exosomes upon fusion with the plasma membrane

(Pant et al., 2012). We compared the cellular distribution of Dicer

together with markers of MVBs. Hrs and BiG2 are early endo-

some markers, and TSG101 is a marker for MVBs (Razi and

Futter, 2006; Shin et al., 2004). Dicer colocalized with Hrs,

BiG2, and TSG101 in MDA-MB231 and 4T1 cells (Figure S3H).
ovember 10, 2014 ª2014 Elsevier Inc. 711
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Figure 3. Cancer Exosomes Contain RNA

Induced Silencing Complex-Loading Com-

plex Proteins

(A) Immunoblot of Dicer in exosomes harvested

from, NMuMG, MCF10A, MCF7, MDA-MB-231,

67NR, and 4T1 cells. Controls used were; exo-

somes treated with TritonX followed by proteinase

K (PK) treatment (Triton + PK), and exosomes

treated with proteinase K (PK). Immunoblots for

TSG101 (second row) and CD9 (third row) are

shown. Quantification is the ratio of Dicer and CD9

intensity bands as quantified by Image J software.

(B) TEM of immunogold of Dicer in MDA-MB-231

exosomes. Right image contains zoomed inset to

show labeling in one exosome with diameter of

103 nm. Left bottom image is digitally zoomed

from a new independent image of the extraction.

Negative control (NC) refers to secondary anti-

body. Gold particles are depicted as black dots.

Right lower graph represents the average number

of gold dots in ten different fields of each of the two

samples on the top.

(C) Immunoblot for FLAG (upper panel) in MCF10A

and MDA-MB231 exosomes harvested from cells

transfected with empty vector (pCMV-Tag4B; first

and third lanes, respectively) and FLAG-Dicer

vector (second and fourth lanes). CD9 immunoblot

was used as a loading control (lower panel).

(D) Immunoblot for Dicer in exosomes extracted

from MCF10A, MDA-MB231 parental cells, and

cells transfected with shScramble and shDicer

plasmids (upper blot). CD9 immunoblot was used

as a loading control (lower blot). Immunoblot

quantification was done using Image J software.

(E) TEM of immunogold of Dicer in cancer exo-

somes derived from MDA-MB231shDicer cells.

Gold particles are depicted as black dots. Right

graph represents the average number of gold dots

in ten different fields of the same sample.

(F) Immunoblot of AGO2 in exosomes harvested

from MCF7, MDA-MB231, and MCF10A cells.

Controls used were, exosomes treated with Triton

X followed by proteinase K (Triton X + PK); exo-

somes treated with proteinase k (PK); and super-

natant after ultracentrifugation to harvest exo-

somes (Supernatant). Immunoblots of TSG101

(second row) and CD9 (third row) are shown.

(G) Immunoblot of TRBP in exosomes harvested fromMCF7, MDA-MB231, and MCF10A cells. The controls used were, exosomes treated with Triton X followed

by proteinase K (Triton X + PK); exosomes treated with proteinase K (PK); and supernatant after ultracentrifugation to harvest exosomes (Supernatant). TSG101

(second row) and CD9 (third row) immunoblots were used as exosomes markers.

(H) Immunoblot of GFP in MCF10A and MDA-MB231 cells transfected with GFP-AGO2 plasmid (upper panel). Beta actin was used as loading control (lower

panel).

(I) Immunoblot of GFP antibody in exosomes extracted fromMCF10A andMDA-MB231 cells transfected with GFP-AGO2 plasmid (upper panel). TSG101 (middle

panel) and CD9 (lower panel) were used as loading controls.

(J) Immunoblot of AGO2 in exosomal proteins extracted from MCF10A and MDA-MB231 cells immunoprecipitated with Dicer antibody or IgG (upper panel).

5% of the lysate input of MDA-MB-231 exosomes was used as control. Immunoblot of Dicer was used as control for immunoprecipitation (lower panel).

(K) Immunoblot of TRBP antibody in exosomal proteins extracted from MCF10A and MDA-MB231 cells immunoprecipitated with Dicer antibody or IgG (upper

panel). Lysate input of MDA-MB-231 exosomes (5%) was used as control. Immunoblot of Dicer was used as control for immunoprecipitation (lower panel).

Data in (B) and (E) are represented as ±SEM. See also Figure S3.

Cancer Cell

Exosomes and MicroRNA Biogenesis
Exogenously delivered N-rhodamine-labeled phosphotidyletha-

nolamine (NRhPE) is taken up by cells and retained within MVBs

(Sherer et al., 2003). Dicer labeling inMDA-MB-231 cells colocal-

ized with NRhPE in MVBs (Figure S3H). This data is in agreement

with previous observations that showed Dicer, TRBP, and AGO2

in late endosomes/MVB fractions using cofractionation analysis
712 Cancer Cell 26, 707–721, November 10, 2014 ª2014 Elsevier Inc
(Shen et al., 2013). In contrast, there was no colocalization of

Dicer with Hrs, BiG2, TSG101, or NRhPE in MCF10A cells (Fig-

ure S3H). Further, HRS, TSG101, and BIG2 genes were silenced

using two different siRNAs and shRNAs in MDA-MB-231 and

MCF10A cells, and Dicer protein expression was evaluated (Fig-

ure S3I). Silencing HRS, BIG2, and TSG101 impaired MVBs
.
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formation and led to significant downregulation of exosomes

production (Figure S3J). Increased Dicer protein was observed

in the nucleus and cytoplasm, including MVBs, of MDA-MB-

231 cells with siHRS, shBIG2, or siTSG101 (Figure S3K).

Silencing of HRS, BIG2, or TSG101 genes in MCF10A cells did

not alter Dicer protein expression or cellular localization

(Figure S3K).

Recently, a variety of plasmamembrane anchor proteins, such

as CD43, were speculated as likely mediators of protein trans-

port into MVBs and exosomes (Shen et al., 2011). CD43 is pre-

dominantly a leukocyte transmembrane sialoglycoprotein, which

is aberrantly expressed highly in the cytoplasm of breast cancer

cells, but not in normal epithelial cells (Tuccillo et al., 2014). CD43

is also detected in many solid tumors including breast cancer

and correlates with cancer progression and metastasis (Tuccillo

et al., 2014). We demonstrate that Dicer immunoprecipitates

with CD43 in MDA-MB231 cells (Figure 4A). When CD43 is

silenced using siRNA in MCF10A and MDA-MB231 cells, Dicer

levels significantly decrease in cancer exosomes and reveal an

increased nuclear and cytoplasmic accumulation of Dicer

protein (Figures 4B and 4C). When CD43 is overexpressed in

MCF10A cells (MCF10A-CD43 cells), Dicer is detected in normo-

somes (Figure 4D).

Cancer Exosomes Process Pre-MicroRNAs to Generate
Mature MicroRNAs
Next, we examined the ability of RLC proteins in cancer exo-

somes to generate mature miRNA. Exosomes with suppressed

Dicer levels were extracted from the MCF10AshDicer, MDA-

MB-231shDicer, and 4T1shDicer cells (Figure S4A). The capacity

to generate exosomes was not altered upon Dicer downregula-

tion in cells (Figure S4B). Dicer-suppressed exosomes did not

show any significant changes in pre-miRNAs and miRNAs con-

tent at 24 and 72 hr of culture (Figures S4C and S4D). Next,

anti-Dicer and anti-TRBP antibodies were delivered into cancer

exosomes by electroporation and compared to cancer exo-

somes and normosomes electroporated with an anti-actin con-

trol antibody. The exosomes were treated with proteinase K after

electroporation to eliminate the possibility of antibodies associ-

ated with outer surface of exosomes (Figure 4E). Cancer exo-

somes electroporated with the control anti-actin antibody

showed the same variations in pre-miRNA and miRNA levels

as previouslymentioned (Figures 4F and 4G). However, in cancer

exosomes with anti-Dicer and anti-TRBP antibody, insignificant

changes in the levels of pre-miRNA and miRNA were observed

with time, suggesting an inhibition of pre-miRNA processing

(Figures 4F and 4G). Total miRNA content was also assessed

by miRNA expression array analysis of MDA-MB-231 exosomes

(MDA231 Exos), anti-Dicer antibody electroporated MDA-MB-

231 exosomes (MDA231 Exos Dicer antibody [AB]), MDA231

shDicer Exos, MCF10AshDicer Exos, and MCF10A Exos after

72 hr of cell-free culture (Figure 4H). The total miRNA content

of cancer exosomes with anti-Dicer antibody more closely

resembled MCF10A normosomes (r = 0.94) when compared to

cancer exosomes (r = 0.67) (Figure 4H). When comparing cancer

exosomes with cancer exosomes containing anti-Dicer anti-

body, 198 differentially expressed miRNAs were observed,

48% of which were significantly downregulated (Table S7).

Further data mining showed that 19% of miRNAs were onco-
Can
genic, while only 1% possessed tumor-suppressive properties

(Figure S4E; Table S7).

To further confirm the specific pre-miRNA processing capa-

bility of cancer exosomes, synthetic pre-miRNAs-10b and -21,

as well as the C. elegans precursor pre-cel-1 pre-miRNA, were

electroporated into exosomes (Figure S5A). We observed signif-

icant downregulation of the pre-miRNAs and upregulation of

their respective miRNAs in cancer exosomes after 72 hr culture

(Figures 5A and 5B). Cancer exosomes derived from shDicer

cells did not reveal a difference in pre-miRNA content after

72 hr culture (Figure 5A). Additionally, pre-miR-10b, -21,

and -cel-1 were internally labeled with biotin-deoxythymidine

(dT). The dT-modified pre-miRNAs were processed into mature

miRNAs when transfected into MCF10A cells (Figures S5B and

S5C). The modified pre-miRNAs were used in ‘‘dicing’’ assays

to show that Dicer-containing cancer exosomes were specif-

ically capable of processing pre-miRNA and generate miRNAs

(Figures 5C–5E).

Cancer Exosomes Induce Tumor Formation
in a Dicer-Dependent Manner
MDA-MB-231 cells were transfected with CD63-GFP, an exo-

somes marker (Escola et al., 1998). MDA-MB-231 cells with

CD63-GFP were used to isolate GFP+ cancer exosomes, which

were subsequently incubated with MCF10A cells. Fluorescence

NanoSight detected green exosomes from MDA-MB231-CD63-

GFP cells (Figure S6A). The green CD63-GFP+ cancer exosomes

entered MCF10A cells and localized in the cytoplasm (Fig-

ure S6B). Using miRNA expression arrays, we show that

MCF10A cells coincubated with MDA-MB-231-derived cancer

exosomes acquire a distinct miRNA expression profile (Fig-

ure 6A). mRNA expression profiling reveals pronounced global

transcriptome changes in MCF10A cells treated with cancer

exosomes compared to MCF10A cells treated with cancer exo-

somes with Dicer antibody (MCF10A cells + MDA-MB-231 Exos

Dicer AB; Figure 6B).

A cross-comparison analysis of themiRNA andmRNA expres-

sion profiles of MCF10A cells exposed to MDA-MB-231 cancer

exosomes and parental MCF10A cells revealed a correlation be-

tween 108 of the upregulated miRNAs and a downregulation of

their mRNA targets (Figures 6A and 6B). For example, miRNA-

21 and -10b were upregulated (4.6- and 2.3-fold, respectively)

in cancer exosomes-treated MCF10A cells. miRNA-21

and -10b have been implicated in breast cancer progression

and metastasis (Ma et al., 2007; Yan et al., 2011). As shown

earlier, miR-21 and -10b are synthesized in cancer exosomes

from their pre-miRNAs (Figures 1F, 1G, 2C, and 2D). PTEN and

HOXD10 are known targets for miR-21 and miR-10b, respec-

tively, and both genes were suppressed in the expression array

analysis of MCF10A cells treated with cancer exosomes when

compared to control MCF10A cells (Figure 6B). Immunoblots

of PTEN and HOXD10 showed they were suppressed in

MCF10A cells exposed to cancer exosomes (Figures 6C and

6D). MCF10A cells were transiently transfected with luciferase

reporters containing the wild-type (WT) 30UTR of PTEN or

HOXD10 genes that are capable of binding miR-21 and miR-

10b. Mutant 30UTR of PTEN or HOXD10 vectors were used as

controls. A decrease in luciferase reporter activity was seen in

MCF10A cells incubated with cancer exosomes, confirming
cer Cell 26, 707–721, November 10, 2014 ª2014 Elsevier Inc. 713
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Figure 4. Cancer Exosomes Process Pre-MicroRNAs to Generate Mature MicroRNAs

(A) Immunoblot for CD43 and Dicer in MDA-MB-231 cell lysates immunoprecipitated with Dicer antibody and IgG.

(B) Immunoblot of Dicer in MDA-MB-231siCD43 exosomes. CD9 was used as a loading control and quantification achieved by Image J software.

(C) Dicer expression in MCF10A and MDA-MB-231 cells (first and third panels) compared to MCF10A and MDA-MB231siCD43 cells (second and fourth panels).

Scale bars, 20 mm (two left images) and 10 mm (two right images).

(D) Immunoblot of Dicer in MCF10A exosomes (2), exosomes derived from MCF10A cells overexpressing CD43 (3), and MCF10A cells (1). CD9 was used as a

loading control.

(E) Immunoblot using anti-rabbit and anti-mouse secondary antibody to detect heavy chain (HC) and light chain (LC) primary Dicer, actin, or TRBP antibodies

electroporated in exosomes of MDA-MB231 cells. Electroporated exosomes without antibody derived from MDA-MB231 cells were used as negative control.

Proteinase K treatments were performed after electroporation.

(legend continued on next page)
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functional delivery ofmiRNAs from cancer exosomes to recipient

cells (Figure 6E). PTEN and HOXD10 protein levels were evalu-

ated in MCF10A cells incubated with cancer exosomes at

different time points. A significant decrease was detected in

PTEN and HOXD10 protein immediately after treating the cells

with 72 hr cultured cancer exosomes (Figures 6C and 6D).

PTEN and HOXD10 protein levels changed minimally in

MCF10A cells treated with freshly isolated cancer exosomes,

suggesting that sufficient concentration of the mature miRNAs

is not present at this time point (Figures S6C and S6D).

MCF10A cells treated with 72 hr-cultured cancer exosomes

with Dicer antibody revealed an insignificant downregulation of

PTEN and HOXD10 (Figure 6F). Additionally, processing of

miR-15 in cells, a miRNA not detected in MDA-MB231-derived

cancer exosomes, was not altered due to treatment of

MCF10A cells with MDA-MB-231 exosomes containing Dicer

antibody (Figure S6E). Some reports show downregulation of

miRNA targets in cells incubated with exosomes without a

need for culture (Kosaka et al., 2013;Narayanan et al., 2013; Peg-

tel et al., 2010). MiR-182-5p is one of the miRNAs upregulated in

MCF10A cells upon cancer exosomes incubation. SMAD4, a

miR-182-5p target (Hirata et al., 2012), is one of the genes down-

regulated upon cancer exosomes treatment of MCF10A cells

(Figure S6F). Upregulation of miR-182-5p in cancer exosomes

during the culture period was not observed and pre-miR182-5p

was not detected in cancer exosomes (Figure S6G). Therefore,

cancer exosomes also pack mature miRNAs without the need

for processing pre-miRs. If such mature miRs are present in stoi-

chiometric amounts, they may be able to regulate gene expres-

sion of recipient cells, as shown previously (Ismail et al., 2013;

Kogure et al., 2011; Kosaka et al., 2013; Narayanan et al.,

2013; Pegtel et al., 2010; Valadi et al., 2007; Zhang et al., 2010).

Cell viability and proliferation of MCF10A cells treated with

72 hr cultured cancer exosomes was increased, which was not

observed when freshly isolated cancer exosomes were used

(Figure 6G). No changes were seen after incubation of MCF10A

cells with cancer exosomes containing Dicer antibodies (Fig-

ure 6G). The same held true for the colony formation capacity

of MCF10A cells treated with cancer exosomes (Figure 6H).

To address the functional ‘‘oncogenic potential’’ of MCF10A

and MCF10A cells with prior exposure to cancer exosomes

(MCF10A cells + MDA231 exos culture), we implanted the cells

into the mammary fat pads of female nu/nu mice. Similar to re-

sults previously published, MCF10A cells did not form tumors

in nude mice (Mavel et al., 2002; Théry et al., 2002) (Figure 6I).

MCF10A cells coinjected with cancer exosomes formed tumors,

whereas MCF10A cells coinjected with cancer exosomes con-
(F) MDA-MB-231 exosomes were harvested in quadruplicate. Samples were e

samples plus control were left in cell-free culture conditions (FBS-depleted) for 24

were quantified by qPCR. The fold-change of each pre-miRNA in exosomes a

exosomes after 24 hr cell-free culture in each sample. The graphical plots repres

(G) MDA-MB-231 exosomes were harvested in quadruplicate. Samples were

samples plus control were left in cell-free culture conditions (FBS-depleted) for 24

miRNAs were quantified by qPCR. The fold-change of each miRNA in exosom

exosomes after 24 hr cell-free culture in each sample. The graphical plots are a

(H) HeatMap of miRNAs array MDA-MB-231 exos, exosomes electroporated wit

shDicer Exosomes, and MCF10AshDicer Exosomes. An average of duplicates is

The qPCR data are the result of three independent experiments each with three

t tests (*p < 0.05). See also Figure S4 and Table S7.

Can
taining Dicer antibody (but not control anti-actin antibodies)

showed a significant reduction in tumor growth (Figures 6I and

S6H). These results suggest that Dicer in cancer exosomes con-

tributes tooncogenicconversionofMCF10Acells (Figures6G–6I).

Serum Exosomes from Cancer Patients Contain Dicer
and Process Pre-MicroRNAs to Generate Mature
MicroRNAs
Freshly isolated human primary ovarian, breast, and endometrial

tumor fragments were orthotopically grafted onto the appro-

priate organs of female athymic nu/nu mice (Figures S7A and

S7B), and serum exosomes from these mice were evaluated

by TEM (Figure S7C). Size exclusion immunoblot of the exo-

somes extracts demonstrated the existence of Dicer exclusively

of human origin in the purified exosomes (hsa-Dicer) (Figures 7A

and S7D). Protein extracts from 4T1-derived exosomes were

used as controls to show that Dicer of mouse origin exhibited

a different molecular size (mmu-Dicer) (Figure 7A). Additionally,

serum exosomes from nude mice orthotopically injected with

MDA-MB-231 cells or MCF10A cells show Dicer protein of

human origin in MDA-MB-231-injected mice, while no protein

is detected in serum exosomes of MCF10A-injected mice or

noninjected mice (Figure 7B). This strongly supports the fact

that Dicer in exosomes is exclusively originated from the human

cancer epithelial cells injected into mice.

Next, 100 ml of fresh serum samples were used to isolate exo-

somes from eight healthy individuals (H) and 11 patients with

breast carcinoma (BC) (Figure 7C). Exosomes were 100 nm

(average of the mode for the size distributions), and their lipid

bilayer membranes were identified by TEM (Figures 7C and

7D). Serum of breast cancer patients contained significantly

more exosomes when compared to serum of healthy donors

(Figure 7E). When equal numbers of exosomes were placed in

culture for 24 and 72 hr, the six pre-miRNAs (vide supra) were

found to be downregulated exclusively in breast cancer patients,

and their respectivematuremiRNAswere upregulated after 72 hr

of culture (Figures 7F and 7G). Next, exosomes alone or com-

bined with MCF10A cells were injected orthotopically in the

mammary fat pad of female nu/nu mice. We noted that five out

of 11 serum exosomes induced MCF10A cells to form tumors

(Figure 7H). In contrast, when exosomes from healthy donors

were combined with MCF10A cells or administered alone, tu-

mors were not detected (Figure 7H). Interestingly, exosomes

that formed tumorswere also shown to have the highest increase

in the amount of mature miRNAs after 72 hr culture (Figures 7F

and 7G). Exosomes from serum of breast cancer patients and

healthy donors were analyzed for Dicer expression. Dicer protein
lectroporated with anti-Dicer, antiactin, or anti-TRBP antibodies. The three

and 72 hr. After 24 and 72 hr exosomeswere extracted, and the six pre-miRNAs

fter 72 hr cell-free culture was quantified relative to the same pre-miRNA in

ent the fold change of the six pre-miRNAs.

electroporated with anti-Dicer, antiactin, or anti-TRBP antibodies. The three

and 72 hr. After 24 and 72 hr exosomes were extracted once again, and the six

es after 72 hr cell-free culture was quantified relative to the same miRNA in

representation of the fold change of the six miRNAs.

h Dicer antibody (MDA231 exos Dicer AB), MCF10A exosomes, MDA-MB-231

represented for each sample.

replicates and are represented as ±SEM; significance was determined using
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Figure 5. Cancer Exosomes Process Pre-MicroRNAs to Generate Mature MicroRNAs

(A) Synthetic pre-miRNAs-10b, -21, and -cel-1 were electroporated into exosomes from MCF10A (MCF10A electroporated), MCF10AshDicer (MCF10AshDicer

electroporated), MDA-MB231 (MDA-MB231 electroporated), MDA-MB231shDicer (MDA-MB231shDicer electroporated), MCF-7 (MCF7 electroporated), and

MCF-7shDicer (MCF7 shDicer electroporated) cells. Exosomes were recovered after cell-free culture conditions (FBS-depleted) for 72 hr. Pre-miR-10b, -21, and

-cel-1 were quantified by qPCR before and after 72 hr of electroporation and culture. The plots represent the fold-change of pre-miR-10b, -21, and -cel-1 72 hr

after electroporation relative to 24 hr after electroporation.

(B) Synthetic pre-miRNAs-10b, -21, and -cel-1 were electroporated into exosomes harvested from the same cells as in (A). Exosomes were recovered after cell-

free culture conditions (FBS-depleted) for 72 hr. MiR-10b, -21, and -cel-1 were quantified by qPCR before and after 72 hr of electroporation and culture. Plots

represent the fold-change of miR-10b, -21, and -cel-1 72 hr after electroporation relative to 24 hr after electroporation.

(C) Northern blot without detection probe, using samples from dicing assay. Synthetic pre-miR-10b internally labeled with biotin was used for the dicing assay.

Samples used were MCF10A, MCF10AshDicer, MDA-MB231 exosomes, MDA-MB231shDicer clone1 and clone2 exosomes, MDA-MB231shDicer cells, and

MDA-MB231 exosomes electroporated with Dicer antibody.

(D) Northern blot without detection probe, using samples from dicing assay. Synthetic pre-miR-21 internally labeled with biotin was used for the dicing assay.

Samples used were MCF10A, MCF10AshDicer, MDA-MB231 exosomes, MDA-MB231shDicer clone1 and clone2 exosomes, MDA-MB231shDicer cells, and

MDA-MB231 exosomes electroporated with Dicer antibody.

(E) Northern blot without detection probe using samples from dicing assay. Synthetic pre-cel-miR-1 internally labeled with biotin was used for the dicing assay.

Samples used were the same ones as in (D).

The qPCR data are the result of three independent experiments each with three replicates and are represented as ±SEM. See also Figure S5.
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Figure 6. Cancer Exosomes Induce Tran-

scriptome Alterations in Recipient Cells

and Tumor Formation in a Dicer-Dependent

Manner

(A) HeatMap of miRNA expression array of MDA-

MB231 cells, MCF10A cells, and MCF10A cells

treated with MDA-MB231 exosomes. An intensity

key is given below the HeatMap. Each sample is

represented as an average of the duplicates.

(B) HeatMap of mRNA expression arrays repre-

senting gene abundance. The samples used were

MCF10A cells treated with MDA-MB231 exo-

somes electroporated with Dicer antibody,

MCF10A cells, MDA-MB231 cells, and MCF10A

cells exposed to MDA-MB231 exosomes. An in-

tensity key is given below the HeatMap.

(C) Immunoblot of PTEN in protein extracts of

MCF10A cells treated for 0, 30min, 1, 12, and 24 hr

with MDA-MB231 cancer exosomes after cell-free

culture. Beta actin was used as a loading control.

(D) Immunoblot of HOXD10 antibody in protein

extracts of MCF10A cells treated for 0, 30 min, 1,

12, and 24 hr with MDA-MB231 cancer exosomes

after cell-free culture conditions. Beta actin was

used as a loading control.

(E) Graph showing luciferase reporter activity in

MCF10A cells transiently transfected with 30UTR-
PTEN-WT, 30UTR-PTEN-Mut, 30UTR-HOXD10-

WT, and 30UTR-HOXD10-Mut and treated with

MDA-MB231 exosomes.

(F) Immunoblot of PTEN (upper panel) and

HOXD10 (middle panel) in protein extracts from

MCF10A cells treated for 0, 30min, 1, 12, and 24 hr

with MDA-MB-231 exosomes electroporated with

Dicer antibody after cell-free culture conditions.

Beta actin was used as a loading control.

(G) MTT assay during 5 days of culture of MCF10A

cells, MCF10A cells treated with MDA-MB231

exosomes with no cell-free culture time, MCF10A

cells treated with MDA-MB231 exosomes with

cell-free culture time, and MCF10A cells treated

with MDA-MB231 exosomes electroporated with

Dicer antibody with cell-free culture time; signifi-

cance was determined using one-way ANOVA

with Tukey post hoc analysis (*p = 0.0027).

(H) The colony formation assay shows formation of

colonies in culture plate and labeled with MTT re-

agent after 8 days MCF10A cells culture, MCF10A

cells treated with MDA-MB231 exosomes with no

cell-free culture time, MCF10A cells treated with MDA-MB231 exosomes with cell-free culture time, and MCF10A cells treated with MDA-MB231 exosomes

electroporated with Dicer antibody with cell-free culture time. Lower graph shows quantification of colonies (colony forming units [CFUs]). Significance was

determined using one-way ANOVA with Tukey post hoc analysis (*p = 0.0003).

(I) MCF10A cells, MCF10A cells exposed toMDA-MB-231 cancer exosomes,MCF10A cells exposed toMDA-MB231 cancer exosomes electroporatedwith Dicer

antibody, and MCF10A cells exposed to MDA-MB231 cancer exosomes electroporated with actin antibody were orthotopically injected into the mammary pads

of athymic nude mice (n = 8 per group). Graph depicts tumor volume with respect to time; significance was determined using one-way ANOVA with Tukey post

hoc analysis (*p = 0.005).

Data are represented as mean ±SEM. See also Figure S6.
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in exosomes was observed mainly in breast cancer samples that

formed tumors in nude mice when coinjected with MCF10A cells

and not in exosomes from serum of H (Figure 7I).

DISCUSSION

The functional role of miRNAs associated with exosomes in can-

cer progression is largely unknown. Many studies suggest the
Can
presence of miRNAs in exosomes and speculated on their func-

tion (Valadi et al., 2007; Zhang et al., 2010). Given that miRNAs

need to be present in a stoichiometric concentration for appro-

priate silencing of mRNA targets, it seems unlikely that exo-

somes in circulation would provide sufficient concentrations of

mature miRNAs to repress the target transcriptome. The pro-

cessing of the pre-miRNAs originated from exosomes in the

recipient cells is an unlikely event because miRNA biogenesis
cer Cell 26, 707–721, November 10, 2014 ª2014 Elsevier Inc. 717



A

C

 N
or

m
al

iz
ed

 c
on

ce
nt

ra
tio

n 
of

ex
os

om
es

 o
f h

ea
lth

y 
do

no
rs

E
  Serum exosomes of 
breast cancer patients

H

   
 T

um
or

 v
ol

um
e 

(m
m

 )
   

 3

hsa-Dicer

mmu-Dicer

O
VA

1
O

VA
2

O
VA

3
O

VA
4

4T
1 

ex
os

4T
1 

ce
ll

O
VA

5

EN
D

1
EN

D
2

EN
D

3
BR

ST
1

BR
ST

2
4T

1 
ex

os
4T

1 
ce

ll

F

G

*

D

hsa-Dicer

mmu-Dicer

   
 N

or
m

al
iz

ed
 c

on
ce

nt
ra

tio
n 

of
 

ex
os

om
es

 o
f b

re
as

t c
an

ce
r 

pa
tie

nt
s

  100 nm

2
1.5

1
0.5

0

2.5
3

3.5

0 100 200 300 400

2
1
0

3
4
5
6
7
8
9

10
11

0 100 200

1.5

1

0.5

0 E
xo

so
m

es
/m

l (
x1

0 
)9

Healthy 
donors

Breast cancer
    patients

Healthy 
donors

Breast cancer
    patients

1.5

1

0.5

0

pr
e-

m
iR

s 
ex

os
 7

2 
ve

rs
us

 2
4h

   
 (

m
ea

n 
of

 fo
ld

 c
ha

ng
e)

3

2

1

0

4

5

m
iR

s 
ex

os
 7

2 
ve

rs
us

 2
4h

 (
m

ea
n 

of
 fo

ld
 c

ha
ng

e)

Healthy 
donors

Breast cancer
    patients

Days
0 20 40 60

300

BC1
BC2
BC3
BC4
BC5
BC6
BC7
BC8
BC9
BC10
BC11

H1
H2
H3
H4
H5
H6
H7
H8

pre-10a
pre-10b
pre-21
pre-27a
pre-155
pre-373

H1
H2
H3
H4
H5
H6
H7
H8

BC1
BC2
BC3
BC4
BC5
BC6
BC7
BC8
BC9
BC10
BC11

miR-10a
miR-10b
miR-21
miR-27a
miR-155
miR-373

MCF10A cells
MCF10A + BC1 Ex
MCF10A + BC2 Ex
MCF10A + BC3 Ex

MCF10A + BC5 Ex
MCF10A + BC4 Ex

MCF10A + BC6 Ex
MCF10A + BC7 Ex
MCF10A + BC8 Ex
MCF10A + BC9 Ex
MCF10A + BC10 Ex
MCF10A + BC11 Ex
MCF10A + H1 Ex
MCF10A + H2 Ex
MCF10A + H3 Ex
MCF10A + H4 Ex
MCF10A + H5 Ex
MCF10A + H6 Ex
MCF10A + H7 Ex
MCF10A + H8 Ex

200

400

600

800

1000

0

M
DA-2

31
 ce

lls
 

BC7 BC6 BC1 BC3 BC10 

2.6 0 0.2 0.5 0.3 0.3 

Dicer1 

Flotillin1 

I

BC8 BC11 BC9BC4 BC2 BC5 

0.6 0 0 0 0.3 0 0 

H1 H2 H3 H4 H5 H6 H7 H8 

1.2 0 0 0 0 0 0 0 0 

Dicer/Flot1

Δ Δ ΔΔ

M
DA-2

31
 ce

lls
 

Dicer1 

Flotillin1 

Dicer/Flot1

Δ

M
DA-2

31
 ce

lls
 

Dicer1 

Flotillin1 

Dicer/Flot1

Size (nm)Size (nm)

B 1 2 3 4 5

hsa-Dicer

mmu-Dicer

Flotillin1

1 - 4T1 exos

2 - Exos MDA-231 orthotopic mice

3 - Exos MCF10A orthotopic mice

4 - Exos wild-type mice

5 - MCF10A cells

Δ
Δ

Δ
Δ

Δ

B
C

10
B

C
2

B
C

3
B

C
4

B
C

5

B
C

8
B

C
9

B
C

6
B

C
1

B
C

7
B

C
11

B
C

10
B

C
2

B
C

3
B

C
4

B
C

5

B
C

8
B

C
9

B
C

6
B

C
1

B
C

7
B

C
11

(legend on next page)

Cancer Cell

Exosomes and MicroRNA Biogenesis

718 Cancer Cell 26, 707–721, November 10, 2014 ª2014 Elsevier Inc.



Cancer Cell

Exosomes and MicroRNA Biogenesis
in recipient cells is rate-limiting not only due to the total amount

of pre-miRNAs available for processing in the receiving cell, but

also due to rate-limiting amounts of required enzymes. There-

fore, it is more efficient to havematuremiRNAs entering recipient

cells for direct alteration of gene expression posttranscriptionally

without having to go through a processing pathway. We demon-

strated that inhibiting the action of Dicer in cancer exosomes

significantly impairs tumor growth in recipient cells, suggesting

that miRNA biogenesis in exosomes contributes to cancer

progression.

Recent studies show that melanoma-derived exosomes play a

role in metastasis (Peinado et al., 2012). Exosomes derived from

fibroblasts play a role in the migration of breast cancer cells

(Luga et al., 2012). Exosomes derived from cancer cells have a

protumorigenic role associated with the transfer of mRNA and

proangiogenic proteins (Luga et al., 2012; Peinado et al., 2012;

Skog et al., 2008). Exosomes derived from cancer cells can

also contribute to a horizontal transfer of oncogenes, such as

EGFRvIII (Al-Nedawi et al., 2008). Our study demonstrates that

cancer exosomes mediate significant transcriptome alterations

in target cells via RISC-associated miRNAs. A myriad of biolog-

ical processes in the target cells are affected by exosomes that

induce proliferation and have the potential to convert nontumori-

genic cells into tumor-forming cells. Nonetheless, the potential

in vivo effect of cancer exosomes on recipient cells likely de-

pends on several other environmental parameters and accessi-

bility barriers. Collectively, this study unravels the possible role

cancer exosomes play in inducing an oncogenic ‘‘field effect’’

that further subjugates adjacent normal cells to participate in

cancer development and progression. This study does not indi-

cate that such field effect is systemic; therefore additional

studies may be required to address such implications.
Figure 7. Serum Exosomes from Breast Cancer Patients Contain Dice

(A) Immunoblot of Dicer and protein extracts from serum exosomes harvested fro

END1–3 are human endometrial xenografts; and BRST1 and BRST2 are human

Dicer. hsa-Dicer represents human Dicer molecular weight and mmu-Dicer repre

(B) Immunoblot of Dicer, that recognizes human andmouse Dicer, and protein ext

MDA-MB-231 cells or MCF10A cells. 4T1 exosomes and MCF10A cells were use

human Dicer molecular weight and mmu-Dicer represents murine Dicer molecul

(C) NanoSight shows size distribution of exosomes extracted from the serum of

Concentration of samples was standardized to better show size.

(D) TEM of exosomes harvested from the serum of breast cancer patients (100 m

(E) Concentration of exosomes from the serum of eight healthy donors and 11 brea

t test (*p = 0.012).

(F) Exosomes were harvested from fresh serum of eight healthy donors and 11

conditions for 24 and 72 hr. After 24 and 72 hr, exosomes were recovered and six

exosomes after 72 hr cell-free culture was quantified relative to the same pre-miR

plots represent an average fold-change for the pre-miRNAs in 72 hr exosomes r

(G) Exosomes were harvested from fresh serum of eight healthy donors and 11

conditions for 24 and 72 hr. After 24 and 72 hr, exosomeswere recovered and sixm

after 72 hr cell-free culture was quantified relative to the samemiRNA in exosomes

average fold-change for the miRNAs in 72 hr exosomes relative to 24 hr exosom

replicates (100 ml of serum).

(H) MCF10A cells, MCF10A cells mixed with exosomes from healthy donors (H

(BC1–11) were orthotopically injected into the mammary pads of athymic nude m

that have not formed a tumor appear overlapped in the x axis of the graph. Exo

respect to time (n = 2 per sample).

(I) Immunoblots of Dicer using protein extracts of 11 breast cancer patients and

Quantification was done using Image J software. Samples highlighted in the imm

cells in nude mice (H).

Data are represented as mean ±SEM. See also Figure S7.

Can
EXPERIMENTAL PROCEDURES

Exosomes were purified from cells cultured in exosomes-depleted FBS, using

sequential centrifugations to discard dead cells and cellular debris. All exo-

somes samples were subjected to a PBS washing step followed by ultracen-

trifugation. This was followed by filtration of the supernatant with 0.2 mm filters

and ultracentrifugation for 2 hr, as previously described (Li et al., 2012; Luga

et al., 2012). Exosomes used for RNA extraction were treated with Proteinase

K and RNase prior to lysis of exosomes. Exosomes for protein extraction were

treated with Proteinase K and Urea/SDS lysis buffer.

Human Samples

Human serum samples were obtained from the MD Anderson Cancer Center

(MDACC) through appropriate informed consents after approval by the institu-

tional review board (IRB). The IRB protocol numbers are, 04-0657 and 04-

0698. The primary tumor specimens were obtained at the Hospital Universitari

de Bellvitge (L’Hospitalet de Llobregat, Barcelona, Spain). The IRB approved

the study. Written informed consent was collected from patients (see Supple-

mental Experimental Procedures).

Animal Studies

All mice were housed under standard housing conditions at the Beth Israel

Deaconess Medical Center (BIDMC), MDACC, and IDIBELL animal facilities.

All animal procedures were reviewed and approved by the BIDMC, MDACC,

and the Spanish Institutional Animal Care and Use Committees (see Supple-

mental Experimental Procedures).

Statistical Analysis

Error bars indicate ±SEM between biological replicates. Technical as well as

biological triplicates of each experiment were performed. Statistical signifi-

cance was determined using t tests, except for multiple-group comparisons,

for which significance was determined using one-way ANOVA with Tukey

post hoc analysis with GraphPad Prism (GraphPad Software). A p value <

0.05 was considered statistically significant. Pearson correlation coefficient

(r value) was calculated assuming linear relationship between variables.

Detailed descriptions of all the methods used in the manuscript are listed in

the Supplemental Experimental Procedures file.
r and Process Pre-MicroRNAs

mmice xenografted with human tumors. OVA1–5 are human ovary xenografts;

breast xenografts. 4T1 exosomes and cells were used as controls for murine

sents murine Dicer molecular weight. See Figure S7D.

racts from serum exosomes harvested frommice orthotopically implanted with

d as controls for murine and human Dicer, respectively. hsa-Dicer represents

ar weight.

eight healthy donors (left graph) and 11 breast cancer patients (right graph).

l of serum).

st cancer patients assessed by NanoSight. Significance was determined using

breast cancer patients. The extracted samples were left in cell-free culture

pre-miRNAs were quantified by qPCR. The fold-change of each pre-miRNA in

NA in exosomes after 24 hr cell-free culture in each sample. The graphical dot

elative to 24 hr exosomes (100 ml of serum).

breast cancer patients. The extracted samples were left in cell-free culture

iRNAswere quantified by qPCR. The fold-change of eachmiRNA in exosomes

after 24 hr cell-free culture in each sample. The graphical dot plots represent an

es. Both (F) and (G) are the result of three independent qPCRs each with three

1–8), and MCF10A cells mixed with exosomes from breast cancer patients

ice. The number of exosomes used was calculated per body weight. Samples

somes alone were injected in all cases. This graph depicts tumor volume with

eight healthy donor-derived exosomes. Flotillin1 was used as loading control.

unoblot are the ones that showed tumor formation when injected with MCF10A
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Filipowicz,W. (2005). TRBP, a regulator of cellular PKR andHIV-1 virus expres-

sion, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6,

961–967.

Hirata, H., Ueno, K., Shahryari, V., Tanaka, Y., Tabatabai, Z.L., Hinoda, Y., and

Dahiya, R. (2012). Oncogenic miRNA-182-5p targets Smad4 and RECK in hu-

man bladder cancer. PLoS ONE 7, e51056.

Ismail, N., Wang, Y., Dakhlallah, D., Moldovan, L., Agarwal, K., Batte, K., Shah,

P., Wisler, J., Eubank, T.D., Tridandapani, S., et al. (2013). Macrophage micro-

vesicles induce macrophage differentiation and miR-223 transfer. Blood 121,

984–995.

Itzkan, I., Qiu, L., Fang, H., Zaman, M.M., Vitkin, E., Ghiran, I.C., Salahuddin,

S., Modell, M., Andersson, C., Kimerer, L.M., et al. (2007). Confocal light ab-

sorption and scattering spectroscopic microscopy monitors organelles in

live cells with no exogenous labels. Proc. Natl. Acad. Sci. USA 104, 17255–

17260.

Kahlert, C., and Kalluri, R. (2013). Exosomes in tumor microenvironment influ-

ence cancer progression and metastasis. J. Mol. Med. 91, 431–437.

Kogure, T., Lin, W.L., Yan, I.K., Braconi, C., and Patel, T. (2011). Intercellular

nanovesicle-mediated microRNA transfer: a mechanism of environmental

modulation of hepatocellular cancer cell growth. Hepatology 54, 1237–1248.

Kosaka, N., Iguchi, H., Hagiwara, K., Yoshioka, Y., Takeshita, F., and Ochiya,

T. (2013). Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal trans-

fer of angiogenic microRNAs regulate cancer cell metastasis. J. Biol. Chem.

288, 10849–10859.

Li, L., Zhu, D., Huang, L., Zhang, J., Bian, Z., Chen, X., Liu, Y., Zhang, C.Y., and

Zen, K. (2012). Argonaute 2 complexes selectively protect the circulating

microRNAs in cell-secreted microvesicles. PLoS ONE 7, e46957.

Logozzi, M., De Milito, A., Lugini, L., Borghi, M., Calabrò, L., Spada, M.,
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