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Abstract

We generalize the notions of dual pair and polarity introduced by S. Lie (1890) and A. Weinstein (1983) in
order to accommodate very relevant situations where the application of these ideas is desirable. The new notion ¢
polarity is designed to deal with the loss of smoothness caused by the presence of singularities that are encountere
in many problems in Poisson and symplectic geometry. We study in detail the relation between the newly introduced
dual pairs, the quantum notion of Howe pair, and the symplectic leaf correspondence of Poisson manifolds in
duality. The dual pairs arising in the context of symmetric Poisson manifolds are treated with special attention.
We show that in this case and under very reasonable hypotheses we obtain a particularly well behaved kind o
dual pairs that we calfon Neumann pairsSome of the ideas that we present in this paper shed some light on
the optimal momentum mapstroduced in [J.-P. Ortega, T.S. Ratiu, The optimal momentum map, in: P. Holmes,

P. Newton, A. Weinstein (Eds.), Geometry, Dynamics and Mechanics: 60th Birthday Volume for J.E. Marsden,
Springer-Verlag, New York, 2002, pp. 319-362].
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1. Introduction

The notion of dual pair, introduced by A. Weinstein in [43], is of central importance in the context of
Poisson geometry. L&V, w) be a symplectic manifoldPs, {-, -} p,) and(Py, {-, -} p,) be two Poisson
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manifolds, andr,: M — P; andm,: M — P, be two Poisson surjective submersions. The diagram
(M, w)

(P1,{-,-}p) (P2, {-,-}p,)

is called adual pair if the Poisson subalgebras'C*(P1) andx;C*(P,) centralize each other with
respect to the Poisson structureMhassociated to the symplectic foren This notion has its origins in
the study of group representations arising in quantum mechanics. In this direction, we have the works of
Howe [9], Kashiwara and Vergne [13], Sternberg and Wolf [40], and Jakobsen and Vergne [10], which
justify why we will refer to the previously defined dual pairskewe pairs

Already in 1890, S. Lie (see [19] and Section 7 in [43]) devised a method to construct Howe pairs
using the notion opolarity, that we briefly describe: leb be an integrable regular distribution on the
symplectic manifold(M, w) that is everywhere the span of locally Hamiltonian vector fields. Under
these circumstances the space of lea¥esD is a Poisson manifold and the canonical projection
np.M — M/D is a Poisson surjective submersion [23]. Let nB# be thepolar distribution toD,
defined by

D®(m) :={veT,M|w@m)v,w)=0forallwe D(m)}.

A simple verification shows thaD® is smooth and integrable. If we assume that the corresponding
space of leaved//D® is a regular quotient manifold and denote #by. : M — M/D® the canonical

projection, then the diagram(/D < M w M /D is a Howe pair. Moreover, kd@trp and kerT wpo

are symplectically orthogonal distributions. This remark motivates the following definition: the diagram
(P {-.}p) & (M, ) 3 (P, {-, }p, is called aLie-Weinstein dual paiwhen kerT'7r; and kefT 7,

are symplectically orthogonal distributions. Every Lie—Weinstein dual pair where the submetgions
andr, have connected fibers is a Howe pair (see Corollary 5.4).

The geometries underlying two Poisson manifolds forming a Lie—Weinstein pair are very closely
related. For instance, if the fibers of the submersiongnd , are connected, the symplectic leaves
of P, and P, are in bijection [2,14,43] and, for any € M, the transverse Poisson structuresfarand
P, atmy(m) andm,(m), respectively, are anti-isomorphic [43].

Apart from the already mentioned studies on representation theory, dual pairs occur profusely in finite
and infinite dimensional classical mechanics (see for instance [24,25], and references therein). Anothe
intimately related concept that we will not treat in our study is that ofNtogita equivalenceof two
Poisson manifolds [27,44]. Nice presentations of the classical theory of dual pairs can be found in [3]
and in [17].

In this paper we will pay special attention to the dual pairs that appear in the reduction of Poisson
symmetric systems. We introduce this situation with a very simple examplg¥lab) be a symplectic
manifold andG be a Lie group acting freely, canonically, and properlyMn Suppose that this action
has a momentum majx M — g* associated. If we denote Iy the image of\f by J, it is easy to check
that the diagram

N

M/G )
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is a Lie—Weinstein dual pair, and consequently, if the group is connected hasl connected fibers, a
Howe pair. However, in most cases of practical interest, the freeness assumption@adtien is not
satisfied hence it is worth studying the impact of dropping this condition in the duality bet¥¢éh
andgj. When the action is not fre¢//G andgj still form a Lie—Weinstein dual pair in a generalized
sense since, even thoughi/ G is not a smooth manifold anymore, the tangent space taGtoebits

(fibers ofr) and kerT'J are symplectically orthogonal. The question now is: do they still form a Howe
pair in the presence of the connectedness hypotheses? or, in other words:Gntlagiant functions
C>®(M)¢ in M and thecollective functions*C>(g*) centralize each other? This question has deserved
much attention due in part to physical motivations [6]. Guillemin and Sternberg conjectured in [7] that
the answer to our question was affirmative for any compact Hamiltonian group action, and they proved
it for toral actions. However, Lerman gave in [18] a counterexample to this conjecture that showed the
first indications of the great complexity underlying the relation between Lie—\Weinstein and Howe pairs
in the case of non free actions. This relation, that may eventually become very sophisticated, has bee
the subject of studies of great interest. See for instance [11,12,15,16], and references therein.

Another notion that breaks down in the absence of regularity hypotheses is that of polarity. In the
previous paragraphs we mentioned that the polar distribution to an integrable regular distribution that is
everywhere the span of locally Hamiltonian vector fields is automatically integrable, which we can use
to define a Lie—Weinstein dual pair. The integrability of the polar distribution is a direct consequence of
the regularity of the distribution that it is coming from. If the dimension of the leaves of the (generalized)
integrable distribution that we start with changes from point to point—as it occurs very frequently in the
Poisson symmetric case—the associated polar distribution is in general not integrable, making it useles
to define a dual pair.

In this paper we will provide a new notion of polarity and dual pair that is well defined in the absence
of the regularity hypotheses needed in the classical statements. These new concepts will prove useft
in recovering some of the classical results in singular situations. We will also use them to identify
pseudogroups of local Poisson transformations that behave particularly well and that we witircall
Neumann pseudogroup¥he notation has been chosen according to the resemblance of the defining
properties of these pseudogroups with the von Neumann or double commutant relationxfafgbbras
of bounded operators on a Hilbert space.

We will pay special attention to the transformation groups associated to the canonical actions of Lie
groups on Poisson manifolds. More specifically, we will find various Poisson actions that are guaranteed
to produce von Neumann pairs. The von Neumann character of a canonical group action has proved t
be very important [29] at the time of using the associated transformation group to implement symplectic
reduction in the framework of the so callegtimal momentum map

The reader will notice that in our work we will deal with various quotients that from the topological
point of view may be very complex and unmanageable. Nevertheless, the use of the properties of the
algebras okmoothfunctions that can be associated to these quotients allows us to extract information
about this otherwise poorly behaved sets. This author is aware that the approach taken in this paper doe
not follow the so calleshoncommutative geometry progrd#j that in these situations proposes the study
of aC*-algebra that can be associated to the equivalence relation that generates the quotient, rather the
the quotient itself. This extremely suggestive approach to the problem, as well as its links to groupoid
theory, will be pursued in a future work. In the same fashion in which the classical notions of polarity
and Morita equivalence have been generalized to the context-afgebras by Rieffel [17,34,35] under
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the name of strong Morita equivalence, we are sure that the same can be achieved for the ideas that w
present in the following pages.

The paper is structured as follows: Section 2 introduces some mathematical prerequisites that will
be needed later on in the paper but, most importantly, introduces some non-standard terminology tha
will be strongly used in the exposition. The reader should pay special attention to Definition 2.6 and
the conventions in Section 2.3. The main concepts of the paper are presented in Section 3. More
specifically, Definitions 3.1 and 3.3 introduce the notions of polarity and dual pair, and Definition 3.9
that of von Neumann pseudogroup and von Neumann pair. Section 4 studies the correspondence betwe:
the symplectic leaves of two Poisson varieties in duality and Section 5 the relation between the duality
introduced in Definition 3.3 and Howe’s condition. In Section 6 we show that Hamiltonian subgroups (in
the sense of Definition 2.6) are very useful at the time of constructing dual and Howe pairs. Section 7
studies the von Neumann pairs constructed using canonical Lie group actions. The main results in this
section are Theorems 7.2 and 7.6 that show that proper canonical Hamiltonian Lie group actions on
a Poisson manifold and compact connected Lie group symplectic actions subjected to a coisotropy
condition induce von Neumann pairs. In Theorem 7.9 we obtain more von Neumann pairs out of tubewise
Hamiltonian symplectic Lie group actions. Finally, Appendix A provides a quick summary of the normal
form results in [31] that are needed in some of the proofs in the paper.

2. Technical preliminaries and notation

In the following paragraphs we briefly introduce the notation and technical results that we will be
using throughout the paper. The expert should be aware that some of the terminology that we use is no
standard. We encourage the reader to pay special attention to Definition 2.6 and to the conventions ir
Section 2.3.

Let M be a smooth manifold. A transformation grotlipof M is a subgroup of the diffeomorphisms
group Diff(M) of M. Theorbit T - m underT of any elemenin € M is defined as the sét - m :=
{F(m) | F € T}. The relatiorbeing in the sam& -orbit is an equivalence relation and induces a partition
of M into T-orbits. The space df-orbits will be denoted by the quotieM /T .

Let Diff, (M) be the monoid (set with an associative operation which contains a two-sided identity
element) ofocal diffeomorphismsf M. More explicitly, the elements of Dif M) are diffeomorphisms
F:Dom(F) c M — F(Dom(F)) of an open subset Do) ¢ M onto its imageF (Dom(F)) C M.

We will denote the elements of DjftM) as pairs(F, Dom(F)). These local diffeomorphisms can be
composed using the binary operation defined as

(G,Dom(G)) - (F,Dom(F)) := (G o F, F*(Dom(G)) N Dom(F)), (2.1)

for all (G, Dom(G)), (F, Dom(F)) € Diff . (M). It is easy to see that this operation is associative and
has(l, M), the identity map ofV/, as (unique) two sided identity element, which makes;D¥) into a
monoid. Notice that only the elements sitting in Q¥) c Diff ; (M) have an inverse since, in general,
for any (F, Dom(F)) e Diff ; (M), we have that

(F~1, F(Dom(F))) - (F, Dom(F)) = (Ilpom(r), DOM(F)), (2.2)
(F,Dom(F)) - (F~*, F(Dom(F))) = (Il rpomr)), F (DOM(F))). (2.3)
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Consequently, the only way to obtain the identity elem@nd/) out of the composition of with its
inverse is having DottF) = M. It follows from this argument that Diff\/) is the biggest subgroup
contained in the monoid Diffi M), with respect to the composition law (2.1). In the sequel we will
frequently encounter submonoids of Diff ; (M) that contain the global identity eleme(iit M) and that
satisfy the following property: for any : Dom(F) — F(Dom(F)) in T, there exists another element
F~1: F(Dom(F)) — Dom(F) also inT; that satisfies the identities (2.2) and (2.3). Such submonoids
will be referred to apseudogroupsf Diff ; (M). The importance of these pseudogroups is that they have
an orbit space associated. IndeedTjfis a pseudogroup we define the orbjt - m under7; of any
elementn € M as the sell, -m :={F@m) | F € T,, m € Dom(F)}. T, being a pseudogroup implies
that the relatiorbeing in the samé& -orbit is an equivalence relation and induces a partitionointo

T, -orbits. The space df; -orbits will be denoted b/ T; .

Definition 2.1. Let M be a smooth manifold ang; be one of its transformation pseudogroups. In the
sequel we will use the following terminology:

e T, is integrablewhen its orbits are initial submanifolds af, that is, if N is an orbit of 7, and
i: N — M is the canonical injection then, for any manifald a mappingf : Z — N is smooth iff
iof:Z— M issmooth.

e A smooth functionf € C*(M) is T,-invariant when for any(F, Dom(F)) € T, we have that
f o F = flpomr) and we denote bg'> (M)’ the set off, -invariant functions on\/.

e An open subsel/ ¢ M is said to berl; -invariant or T, -saturatedwhen for any(F, Dom(F)) € T,
and anyz; € Dom(F) N U we have thatF(z) € U.

e The pseudogrouf; has theextension propertyvhen any7;-invariant function f € C>(U)™
defined on anyl; -invariant open subsdf has the following feature: for anye U, there is aT} -
invariant open neighborhood C U of z and aTy-invariant smooth function” € C>(M)™ such
that fly = Flv.

e Finally, we say thatC>*(M)": separateshe T; -orbits when the following condition is satisfied: if
two orbits Ty - x, T; - y € M/ T; are such thatf (T, - x) = f(T, - y) for all f € C>®(M)™:, then
T, -x =T - y necessarily.

If (M,{-,-})is aPoisson manifold, we will denote (M) the group ofPoisson automorphisncf
M and byP, (M) the pseudogroup dbcal Poisson diffeomorphisntg M. One of the main ingredients
of our work in this paper will be the (finite or infinite-dimensional) subgroups and pseudosubgroups
of P(M) and P, (M), respectively, many of which will be obtained out of integrable generalized
distributions onM. The following paragraphs review their construction.

2.1. Generalized distributions

We quickly review some well known facts about generalized distributions defined by families of vector
fields. The standard references for this topic are [38,39], and [41]. We will follow the notation of [20].
Let M be a manifold and be an everywhere defined family of vector fields. &xerywhere defined
we mean that for eveny: € M there existsX € D such thatn € Dom(X). The domains DorX) C M,
X € D, will be taken open inM. Let D be the generalized distribution @ constructed by association,
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to any pointz € M, the subspac® (z) of T, M given by
D(z) =span{X(z) e .M | X € D andz € Dom(X)}.

We will say thatD is the generalized distributiospannedby D. Note that the dimension ad may
not be constant; the dimension f(z) is called therank of the distributionD at z. Any distribution
defined in this way ismoothin the sense that for arnye M and anyv € D(z) there is a smooth vector
field X tangent toD defined in a neighborhood efand such thaX (z) = v. An immersed connected
submanifoldN of M is said to be arintegral submanifoldof the distributionD if, for every z € N,
T,i(T,N) C D(z), wherei : N — M is the canonical injection. The integral submanifélds said to be
of maximal dimensio@t a pointz € N if T,i(T,N) = D(z). A maximal integral submanifol& of D is
an integral manifold everywhere of maximal dimension such that any other integral submanifald of
which is everywhere of maximal dimension and containss equal toN. The generalized distribution
D is said to bentegrableif, for every pointz € M, there exists a maximal integral submanifold f
which containg. This submanifold is usually referred to as thaf throughz of the distributionD. The
leaves of an integrable distribution are initial submanifold3/f26].

When the distributionD generated by the family of vector field is integrable, a very useful
characterization of its integral manifolds can be given. In order to describe it we introduce some
terminology following [20].

Let X be a vector field defined on an open subset DXmMof M and F; be its flow. For any fixed
t € R the domain DonF;) of F, is an open subset of DaiX) such thatF, : Dom(F;) — Dom(F_;) is
a diffeomorphism. IfY is a second vector field defined on the open set Oonwith flow G, we can
consider, for two fixed values, 7, € R, the composition of the two diffeomorphisn# o G,, as defined
on the open set Dotw,,) N (G,,)"1(Dom(F,,)) (which may be empty).

The previous prescription allows us to inductively define the composition of an arbitrary number of
locally defined flows. We will obviously be interested in the flows associated to the vector fiells in
that define the distributio®. The following sentences describe some important conventions that we will
use all over the paper. Léte N, k£ > 0, be an integerX’ be an ordered familyt’ = (X1,..., X;) of k
elements o, andT be ak-tuple T = (14, .. ., #) € R* such thatF’ denotes the (locally defined) flow of
X;,i €{1,..., k}, ;. We will denote byF; the locally defined diffeomorphistft; = F;lo FZo---0 Fj
constructed using the above given prescription. Any local diffeomorphism from an open suldget of
onto another open subset &f of the form 77 is said to begeneratedoy the familyD. It can be proven
that the composition of local diffeomorphisms generate®and the inverses of local diffeomorphisms
generated byD are themselves local diffeomorphisms generatedid0, Proposition 3.3, Appendix
3]. In other words, the local diffeomorphisms generatedbiprm a pseudogroupf Diff ; (M) that we
will denote byGp. For any pointc € M, the symbolGp - x will denote theG p-orbit going through the
pointx € M and M /Gp the space otip-orbits. In some occasions and in order to emphasize the local
nature of the elements @fp C Diff ; (M) we will write them as pairs of the forri77, Dom(F7)).

Theorem 2.2. Let D be a differentiable generalized distribution on the smooth maniféldpanned by
an everywhere defined family of vector fieldsThe following properties are equivalent

(i) The distributionD is invariant under the local diffeomorphisms generatedIhythat is, for each
Fr € Gp generated byD and for eachy € M in the domain ofF;,

T, Fr(D,) = D]:T(Z)'
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(i) The distributionD is integrable and its integral manifolds are th@p-orbits. Consequently, the
spaceM /D of leaves oD equalsM /G p.

Proof. See [38,39,41]. For a compact presentation combine Theorems 3.9 and 3.10 in the Appendix 3
of [20]. O

Notation. In the sequel, we will use a notation consistent with the symbols just introduced: the
calligraphic typeD will denote a family of vector fields, the romdn will be the associated distribution,
andGp will be the pseudogroup of local diffeomorphismsaat

Remark 2.3. A family D of locally defined vector fields on a manifoltf uniquely determines a
pseudogroupGp of local diffeomorphisms off and a generalized distributio® but not the other
way around, that is, a variety of families of locally defined vector fields\bican be chosen in order

to define the same distributioR. Nevertheless, iD is integrable and>; and D, are two generating
families of vector fields foiD, the uniqueness of the maximal integral leaves of such distributions (see
Theorem 2.3, p. 385 of [20]) and the fact that by Theorem 2.2 these are given by the pseudogroup
orbits, we have that for anye M, Gp, - z= Gp, - z. ConsequenthW/ /D = M/Gp, = M/Gp, even
though the pseudogroupgsp, and Gp, themselves may be different. Under some circumstances the
freedom in the choice of the generating family Bfcan be used in order to pick a family of vector
fields D whose associated pseudogrodp is actually a subgroup of the diffeomorphism group of the
manifold and hence the maximal integral manifoldso&ppear as group orbits. This remark motivates
the introduction of the following definition.

Definition 2.4. Let D be an integrable generalized distribution on the smooth maniioldVe will say
that D is completevhen we can choose a generating farye X (M) of D made out of complete vector
fields. Note that in such case the associated set of diffeomorpliispferms a subgroup of Ditf\). If
D is a generating family oD that contains a subfamily that still genera®sand is made of complete
vector fields then we say th@t is completableany such subfamily will be called@mpletionof D.

As we said, when we have an integrable distributidrspanned by an everywhere defined family of
vector fieldsD on the manifoldM, its maximal integrable manifolds can be characterized as the orbits of
the associated pseudogroGp C Diff , (M). This facts allows us to phrase Definition 2.1 in the context
of distributions.

Definition 2.5. Let D be an integrable generalized distribution on the smooth manMo&banned by an
everywhere defined family of vector fields

e A smooth functionf € C*(M) is D-invariant if it belongs toC>(M)¢?. We will denote the set of
D-invariant functions byC>®(M)?.

e Anopen subselV ¢ M is called D-invariant or D-saturatedif it is Gp-invariant.

e The distributionD has theextension propertyhen the pseudogrou@p has it.

e Finally, we say thatC>(M)” separateshe integral leaves oD when C*(M)“? separates the
Gp-orbits.
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2.2. Subgroups and pseudosubgroups of the Poisson automorphisms group

Definition 2.6. Let A be a subgroup of the Poisson automorphisms gfduy) of the Poisson manifold
(M, {-,-}). We will denote byC> (M) the set ofA-invariant smooth functions ol and by(C>(M)*)¢
the centralizer o> (M)# with respect to the Poisson algebra induced by the brgekgton C*(M).

(i) The subgroupA is strongly Hamiltonianwhen every elemeng € A can be written ag =
FloFZo---oF, with F the flow of a Hamiltonian vector field;, associated to a function
h; in the centralizekC> (M)*)e.

(i) The subgroupA is weakly Hamiltoniarwhen for every element € A and anym € M we can write
g-m=F!oFZo---oF}m), with F] the flow of a Hamiltonian vector field,, associated to a
functionh; € (C®(M)*)C.

(iii) The subgroupA is tubewise stronglyresp. weakly Hamiltonian when for every elemeng € A
and anym € M there is anA-invariant neighborhood/ of m such that we can writg =
FloFZo---oF} (resp.g-m=FloFZo---oF\(m)), with F/ the flow of a Hamiltonian vector
field X, associated to a functidy € (C®(U)%)°.

Example 2.7 (Connected Lie group actions with a momentum map are strongly Hamilforia

G be a connected Lie group acting canonically on the Poisson maniigld-, -}) via the map
®:G x M — M. The termcanonical means that for any € G and any f,h € C*°(M) we have
that @;{ f, h} = {®; f, P;h}. Suppose that th&-action has a momentum mdp M — g* associated.
Let A C P(M) be the subgroup oP(M) defined byAg := {®,:M — M | g € G}. Then,Ag is a
Hamiltonian subgroup oP(M). Indeed, by the connectednessAgfevery elemeng € G can be written
asg = expé; - - - expg,, with & € g in the Lie algebray of G. Consequently®, = F;' o Fi’ o --- o F.",

with 7 the flow of X5 ). But, by Noether's Theorertd, &) € (C(M)€)".

Example 2.8 (A weakly and tubewise Hamiltonian group that is not Hamiltohiaet M = S* x §* = T?
be the two torus with the symplectic form = d6; A d6, given by its area form. LeG = S* acting
canonically onM by €¢ . (€%, g%) .= (&@+%) &%) andAq be the associated subgroupRfT?). It is
easy to see that in this case, evStyinvariant smooth functiorf can be written ag (€%, &%) = g(&%),
with g € C*(81). Its associated Hamiltonian vector field is given ¥y = ;’—523191 With these remarks
at hand it is easy to see thag: is weakly Hamiltonian, tubewise strongly Hamiltonian, bot strongly
Hamiltonian.

Remark 2.9. In Sections 7 and A.3 we will study in detail some conditions under which the subgroups of
the Poisson automorphism group of a manifold induced by a Lie group action are weakly and tubewise
Hamiltonian. For instance, the weakly Hamiltonian character of the previous example is a corollary of
one of the results that we will present (Theorem 7.6).

As we already said, in many cases we will deal with pseudogroup®;0M) obtained out of
integrable distributions. The following result, whose proof is a straightforward corollary of Proposition
10.3in p. 121 of [20], characterizes the integrable distributions whose associated pseudogroup of loca
diffeomorphisms lies iP, (M).
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Proposition 2.10. Let D be an integrable distribution on the Poisson manifaid, {-, -}) spanned by the
family of vector fieldD. Then, the associated pseudogradip of local diffeomorphisms a7/ lies in
PL(M) iff one of the following equivalent conditions are satisfied

(i) ForanyX e D and anyf, g € C®(M), we have thak [{ f, g}1= (X[ /], g} + (/. X[g]}.
(i) If B e A%(T*M) is the Poisson tensor oM, {-, -}) then, for anyX € D we have that’y A = 0. The
symbolL denotes Lie derivation.

The integrable distributions that fall in the category described in the previous proposition will be called
Poisson distributionsThis denomination is sometimes used [23,30] to refer to distributions that satisfy
that for anyf, g € C>°(M) such that f|p = dg|p =0, thend{ f, g}|p = 0. Poisson distributions always
have this property but the converse is in general not true.

2.3. Smooth functions and Poisson structures in quotient spaces

Definition 2.11. A pair (X, C*(X)), where X is a topological space and>~(X) c C°(X) is a
subalgebra of the algebra of continuous functionX jis called avarietywith smooth function€ > (X).
If Y C X is a subset ofX, the pair(Y, C*®(Y)) is said to be asubvarietyof (X, C*(X)), if Y is a
topological space endowed with the relative topology defined by th&tarid

C®(Y)={feC’Y)| f=Fly for someF e C*(X)}.

SometimegC*>(Y) is called the set o#Whitney smooth functioren Y with respect taX and is denoted
by W*(Y). Amap¢:X — Z between two varieties is said to be smooth when it is continuous and
P*C>®(Z) C C*(X).

In our discussion we will be interested in the varieties obtained as the space of orbits of the action of
a pseudogroup of the local diffeomorphisms group DjftM) of a smooth manifoldV; this space
will be denoted byM/A and we will consider it as a topological space endowed with the quotient
topology. The paifM/A, C*(M/A)) is a variety whose algebra of smooth functiofi® (M/A) is
defined by the requirement that the canonical projecttqn M — M /A is a smooth map, that is,
C®(M/A) :={f e COM/A) | f oy € C*(M)}. Notice that by the definition of the topology on
M/ A, the projectionr 4 is continuous and, moreover, it is an open map. Indedd i an open set i,
mA(U) is open if and only ifr ' (w4 (U)) is open. Sincer ; (w4 (U)) = A- U = U4 ¢ (U N Dom(g)),
n;l(nA(U)) is a union of open sets and therefore open.

In our discussion we will often work with opea-invariant subsetd/ ¢ M and their projections
onto the orbit spacer,(U) = U/A. In principle, there are two ways to endow such an open subset
of M/A with a variety structure that in general do not coincide. Firstly, we can think of the variety
(U/A, C*®(U/A)) with

C®WU/A):={f eCO(U/A)| fomaly € C(U)"}. (2.4)

However, we can also think of//A as a subvariety of\f/A. In that case we will denote it as
(UJ/A, W>*(U/A)), with

WeU/A):={feC’(U/A)| f = Flya for someF € C*(M/A)}
= {f e C’U/A) | f omaly = G|y for someG € C*(M)*}.
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We have the inclusio>*°(U/A) Cc C*°(U/A) that in general is strict.

Notational convention. In all that follows and unless it is indicated otherwise we will consider the
quotients of the forn// A as varietieSU/A, C*(U/A)), with C*(U/A) as in (2.4).

If M happens to be a Poisson manifold with bracket}, and A Cc P, (M) is a pseudogroup of
PrL(M) then, the pailC>(M/A), {-, -}m/a) is awell-defined Poisson algebra (also referred fémsson
variety), with bracket{-, -},;,4 given by

{fs &Yamya(ma(m)) ={f oma, g o ma}(m), (2.5)

for everym € M and anyf, g € C*(M/A). Analogously, ifU is a A-invariant open subset d#/, the
variety (U/A, C*(U/A)) can be endowed with a Poisson variety structure by defining a Poisson bracket
on C*°(U/A) by restriction of that inC> (M), namely,{ f, g}u/a(ma(m)) ={f oma, g o}y (m), for
everym € U and anyf, g € C*(U/A). The symbol{-, -}, denotes the restriction of the bracket &h
to the open subséf .

The term Poisson variety is also encountered in the context of the algebraic geometric treatment of
integrable systems. See for instance [42]. This concept does not in general coincide with ours.

3. Dual pairs
3.1. Polarity and dual pairs

We now introduce the notion gdolarity, which we will use to give our definition adual pair. All
along this section we will be working on a smooth Poisson manifédd{-, -}).

Definition 3.1. Let (M, {-,-}) be a Poisson manifoldd c P, (M) be a pseudosubgroup of its local
Poisson diffeomorphism pseudogroup, aaid°(M/A), {-, -}u/a) be the associated quotient Poisson
variety. LetA’ be the set of Hamiltonian vector fields associated to all the elemeii& ¢f/)*, for all
the opend-invariant subset#/ of M, that is,

A ={X,| feC®W)*, with U C M open andA-invariant. (3.1)

The distributionA’ associated to the familyl’ will be called thepolar distribution defined byA (or
equivalently thepolar of A). Any generating family of vector fields fot’ will be called apolar family
of A. The family A’ will be called thestandard polar familyof A. A pseudogroup of local Poisson
diffeomorphisms associated to any polar family4ofvill be referred to as polar pseudogroupinduced
by A. The polar pseudogrou@ 4 C P, (M) induced by the standard polar fami/ will be called the
standard polar pseudogroup

Remark 3.2. If the pseudosubgroug has the extension property, there is a simpler polar family, we will
call it AL, that can be used to generate namely A, = {X, | f € C®(M)*}.
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Definition 3.3. Let (M, {-, -}) be a Poisson manifold amtl, B C P, (M) be two pseudosubgroups of its
local Poisson diffeomorphism pseudogroup. We say that the diagram

(Ma {" })

TA B
(M/Av{’}M/A) (M/B’{v}M/B)
is adual pairon (M, {-, -}) when the polar distributiond’ and B” are integrable and they satisfy that
M/A'=M/B and M/B'=M/A. (3.2)

The Poisson manifoldM, {-, -}) is called theequivalence bimodulef the dual pair.

Remark 3.4. When in (3.2) we state that//A’ = M /B we mean that the partition a/ on B-orbits
coincides with that o on A’-leaves. In general, this condition can hold with@ubeing equal taG 4

as pseudogroups; only the orbit spaces are required to be equal. Notice also that two pseudognolps
B in duality are necessarily integrable.

The following examples justify the choice of words in the previous definition.

Example 3.5 (The polar of a regular distribution and the relation with Lie’s polajityn this example

we compare the notion of polarity of Definition 3.1 with the polarity introduced by Lie [19] that we
described in the introduction. Ld? be an integrable regular distribution on the symplectic manifold
(M, w) that is the span of an everywhere defined faniilyof local Hamiltonian vector fields. As we
recalled in the introduction, the space of leaysD is a Poisson manifold and the canonical projection
np.M — M/D is a Poisson surjective submersion. Lie’s polar distribufishis defined by

D®(m) :={v e T,M | w(m)(v,w)=0forallw e D(m)}.

Since the vector fields if» are Hamiltonian, the associated pseudosubg@gyof transformations lies

in P, (M) and due to the integrability ob we have thatM/D = M/Gp. We will show that in this
situation the polaiG’, of Gp coincides withD®. We start the argument with the statement of a lemma
whose proof can be found in Appendix A.4.

Lemma 3.6. Let D be a smooth integrable regular distribution on the manifafd Then,D has the
extension property.

Now, sinceD has the extension property, the polar distributi@f, is generated by the family of
globally defined vector fields (see Remark 312),:= {X; | f € C>*(M)”}. At the same time, since
the projectionnp is a surjective submersion we have tliker7,,7p)° = spaffd(f o rp)(m) | f €
C*(M/D)} and consequently

D®(m) = D(m)” = (KerT,,7p)* = { X for,, (m) | f € C¥(M/D)}
={X,(m)| g € C*(M)"} = Gp(m),

as required. We emphasize that, as we will see in Example 7.8, the regulabitda#s not imply that of
its polar D = G’.
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Example 3.7 (Lie—-Weinstein dual pairs with connected fierdet (P, {-,-}p,) L M) B

(P, {-,-}p,) be a Lie—Weinstein dual pair, that is; andx;, are surjective Poisson submersions such that
the distributions keF ; and kerT r, are symplectically orthogonal. We will show that if we assume that
1 andm, have connected fibers then, we can realize the diagrand- , -} p,) Vil (M, w) il (P2, {-."}p,)

as a dual pair in the sense of Definition 3.3. Indeed, notice that sinaedr, are surjective submersions
then:

(kerT,,r1)° = spar{d(f o 1) (m) | f € C*(Py}, (3.3)
(kerT,,r)° = spar{d(f o o) (m) | f € C*(P)}, (3.4)

where the symbolkerT,,1)° denotes the annihilator of k&, in 7,)M. These equalities are easy to
prove just by taking the local projection coordinates associated to the submetsiandr,. Now, if B

is the (non-degenerate) Poisson tensor associatéd t) and B*: T*M — T M is the vector bundle
map associated to it, we can write:

kerT,, 1 = (kerT,,2)® = B*(m)((kerT,,m2)°) = spar{ X yor,(m) | f € C*(Py)} (3.5)

kerT,, 7o = (kerT,,m1)® = B*(m)((kerT,,w1)°) = spar{ X so,(m) | f € C*(PD)}. (3.6)
Let.A and B be the families of vector fields oW given by

A=spanXfor, | f € C¥(P2)} and B=spanX o, | f € C¥(P1},

and A and B be the associated distributions that, as a consequence of the relations (3.5) and (3.6), are
guaranteed to be integrable since the level setg @indx, integrate them. Moreover, the connectedness
hypotheses on the fibers of andn, allow us to make the natural identifications:

Pi>M/kerTmy=M/A=M/G, and P,>~M/kerTn,=M/B=M/Gp.
Using these identifications we can rewrite the Lie-Weinstein dual @&ir{-,-}p) < (M,w) 5

(P2, {-,}p,) aS(M/G A, {-, Ym/G,) A (M, w) s (M/Gp,{-, }usc,;) Which, as a corollary of the
previous example, is a dual pair in our sense. Indeed, siee kerTm; is a regular integrable
distribution, Example 3.5 guarantees tiief = A“ = (kerT'n1) = kerT'n, = B, which implies that
M/G'y=M/B = M/Gg. Analogously, it can be shown that/ Gz = M /G 4.

As we show in the next proposition the notion of polarity is particularly well behaved when it is
associated to a subgroupof P(M) of the Poisson diffeomorphism group.

Proposition 3.8. Let (M, {-,-}) be a Poisson manifoldA ¢ P(M) be a subgroup of its Poisson
diffeomorphism groupA’ be the associated polar distribution, ad#ly C P, (M) be the standard polar
pseudogroup. Then

(i) The groupA commutes with the pola6 4, that is, for any(Fr, Dom(Fr)) € G o the domain
Dom(Fr) is an openA-invariant set and, for any¢, M) € A we have thatFr o ¢, Dom(Fr)) =
(¢ o Fr, Dom(Fr)) _

(i) Any elementFr, Dom(Fr)) € G 4 induces a local Poisson diffeomorphigifir, w4 (Dom(Fr)))
of (M/A,{-, -}mya), uniquely determined by the relatigh; o 74 = 4 o Fr, that is, the standard
polar pseudogroug; 4 acts canonically oM /A, {-, -}p4).
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(i) The polar distributionA’ is Poisson and integrable. Therefore, the leaf spateA’ has a natural
Poisson varietC>*(M/A’), {-, -}u,4’) associated.

(iv) A acts canonically on(M/A’, {-,-}m/4). More specifically, for anyp € A, there is a Poisson
diffeomorphismp of M/ A’ uniquely determined by the relatigho 74 = 74 o .

Proof. (i) Let (¢, M) € A, and (Fr, Dom(F7)) € G 4. For the sake of simplicity in the presentation
we will take (F7, Dom(F7)) to be the flow(F,, Dom(F,)) of X,,, with h € C>*(U)* andU and open
A-invariant subset oM. Using theA-invariance of: and the Poisson character¢ft is easy to see that

X,=T¢poX,op L (3.7)

LetnowG, : ¢ (Dom(F,)) — ¢ (F,(Dom(F,))) be the local diffeomorphism defined Igy := ¢o F, 09~ 2.
The chain rule and expression (3.7) show that for amyDom(F;)

d
EG,(qs(z)) =(T¢oXy)(F (o7 (2)))=(TpoXro¢p ) (Gi(¢() =Xi(G:(¢(2). (3.8)

The uniqueness of the flow of a vector field implies tggDom(F;)) ¢ Dom(F;). Since¢ € A is
arbitrary, we also have that—(Dom(F,)) ¢ Dom(F,) and, consequently(Dom(F,)) = Dom(F,).
Expression (3.8) also implies th&t = G, = ¢ o F, o ¢~* which guarantees the commutation relation
in the statement.

_(ii) Given (Fr,Dom(Fr)) € G u, the existence of the well defined mag;, w4 (Dom(Fr))) =
(Fr,Dom(Fr)/A) that satisfiesFr o w4 = 74 o Fr is guaranteed by (i). Sincegr is a local
diffeomorphism ofM and the projectionr 4 is open and continuouss; is necessarily continuous. We
also have thaF*COO(fT(Dom(]-“T))/A) C C>*(Dom(Fr)/A) since for anyf € C*(Fr(Dom(Fr))/A)
the map f o Fr o Talpomz) = f o Ta © Frlpoms) € C°°(Dom(]-'T))A and hencef o F; €
C>*(Dom(Fr)/A). Since we could do the same with>1, we conclude that the mag; is a
local diffeomorphism. A straightforward verification shows ti#t is also a Poisson map between
(Dom(F7)/ A, {-, -}pomFr)/4) and (Fr(Dom(Fr)) /A, {-, -} Fr DomFr))/a)-

(i) First of all notice that the elements ofi 4 are finite compositions of Hamiltonian flows
and therefore are local Poisson diffeomorphisms. This make4 af Poisson distribution. As to its
integrability, according to Theorem 2.2 we have to show that for @y, Dom(Fr)) € G4 and any
m € Dom(F7) we have thatT,,Fr(A'(m)) = A'(Fr(m)). In order to establish this equality we take
h € C®(U)* with U an openA-invariant subset oM. Let V := U N Dom(F7) be such that: € V and
define 7y := Fr|y:V — Fr(V) andh := h|y. Given thatV is an A-invariant open subset dff and
that 7} is a Poisson map we can write

T Fr (Xn(m)) = T F7 (Xpw m)) = Ty (Xpv o rty-107y (M) = Xpv vy (F7 (m)

which belongs taA’(Fr(m)) since by point (i),z" o (F))~* belongs toC>(Fr(V))A. Consequently,
T Fr(A'(m)) C A'(Fr(m)).

Conversely, letf € C®°(W)% be such thatF;(m) € W. Define S := Fr(Dom(Fr) N W, f5:=
fls: Fp = Frlrs), then X (Fr(m)) = Xps(Fp(m)) =T, fS(stofs(m)) which belongs to
T,.Fr(A'(m)), as required.

(iv) It is a straightforward consequence of the fact, proved in (i), habhdG 4, commute. O
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3.2. Von Neumann dual pairs

Definition 3.9. Let (M, {-, -}) be a smooth Poisson manifold adc P, (M) be a pseudosubgroup
of its local Poisson diffeomorphism pseudogrofip(M). We say thatA is von Neumanrwhen the
diagram(M /A, {-, -}p/a) Fil M, {-,-D T (M/A', {-, -}m/a) is adual pair or, equivalently, when the
distributionsA’ and(A’)’ are integrable and

M/(AY =M/A. (3.9)
In the presence of this condition we also talk of tleen Neumann paiassociated ta\ C P, (M).

Remark 3.10. When in the previous definitiod is actually a subgroup oP(M), Proposition 3.8
automatically guarantees the integrability At

Remark 3.11. Von Neumann groups have connected and path connected orbits since the relation (3.9)
implies that for any poiniz € M, the orbitA - m coincides withG 4 - m which is a connected and path
connected set.

Remark 3.12. The terminology in the previous definition has been chosen according to the similarity of
condition (3.9) with the von Neumann or double commutant relatiorfalgebras of bounded operators
on a Hilbert space.

Example 3.13 (Lie group canonical actions and the optimal momentum nkagt G be a connected

Lie group acting on the symplectic manifold/, w) in a free, proper, and canonical fashion via the
map ®:G x M — M. The termcanonical means that for ang € G we have thatb;w = w. We

will for the time being also assume that it has an associated equivariant momentum map that we
will denote by J: M — g* whose level sets are connected. The symblgl c P(M) will denote

the subgroup ofP(M) defined byAs := {®,:M — M | g € G} andn:M — M/G the surjective
submersion obtained by projecting onto the orbit spacédf/G = M/Ag. A calculation that is left

to the reader as an exercise (see [32]) shows that in the presence of our hypotheses (free and prop
canonical action with a momentum map) the polar distributibp of A is given by A, (m) =

ker T,,J for all m € M. Consequently, in this particular example, the diag@y Ag, {-, -}m/a.) e

TT 41

(M, @) =5 (M/Al;, {-, }uya,) can be identified WithM/ G, {-, Ju/c) <— (M, ®) > (@}, (-, }g3),
wheregj =: J(M) and{-, -}, is the restriction tq] of the Lie—Poisson structure gf. Given that for
anym € M we have thatker7,,J)* = g - m, this diagram is a Lie—Weinstein pair with connected fibers
and, by Example 3.7, a dual pair in our sense. We have thereby shown that the subgrasgpciated to
a free canonical connected Lie group action that has a momentum map associated with connected fibel
is von Neumann.

One of the main goals of Section 7 will be the studyAf in more realistic situations, namely
when the G-action is not free anymore, as well as the search for situations in which the diagram

(M/AG, {, Ymyag) il M, {-,-D g (M/AL,{-, Ymyar) is still a dual pair despite the singularities
in the problem. Recall that no matter how singular theaction is, the right hand side leg of the
previous diagram is always well defined since by Proposition 3.8 the distribdatida always integrable.

The projectionr, : M — M/Aj; will be referred to as theptimal momentum magssociated to the
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canonicalG-action onM and will be denoted by: M — M/A(;. The reader is encouraged to check
with [32] for a detailed study of this object.

Remark 3.14. The previous example describes a situation where it is very easy to compare the notion of
polarity used by Lie and Weinstein [19,43] with ours. Suppose that the marifolsl symplectic with
form w and, for the sake of simplicity, the Lie group is connected, acts properly @d, and has Lie
algebrag. Let D¢ be the family of vector fields defined by the infinitesimal generators ofttaetion on
M, D¢ be the associated distribution, ang c P (M) the corresponding Poisson diffeomorphism group.
By definition, for anym € M we have thaDg (m) = spariéy(m) | € e g} = T,,(G - m) =: g - m, and, by
the connectedness 6f one hasthaM/G = M/Ds = M/ Ag. If we use the classical definition [19,43],
the polar ofA¢, we will call it Az, is the distributionAg (m) := (g - m)® = B*(m)((g - m)°), which in
general is not integrable.

We now compute the polaty; of Ag according to our definition, using the fact, whose proof can be
found in [28,32], that for any poink € M with isotropy subgrouH := G,, we have that:

(T(G -m)*)" =spar{df(m) | f € C*(M)°}.

The symbol((7,,(G - m))°)" denotes the set of fixed points by the actiontfin the vector space
(T,,(G - m))° or, more explicitly: ((7,,(G - m))°) ={v € (T,,(G -m))° |h-v=v forall h € H}. By
definition Ay is the distribution associated to the family of vector fields

Ag(m) :=={X,m) | f € (CO"(U))G, with U C M open G-invariant m € U}.

As theG-action is proper, a standard result (see [1]) guarantees tha¥-amyariant function defined on
a G-invariant open subset @ff admits an extension to@-invariant function onM. This circumstance
allows to simplify the definition ofA}; as follows

Aly(m) :=spar{X ;(m) | f € (C=(M))°}
=B (m)({df(m) | f € C(M)®}) = B*m)(((g-m)°)").

This distribution is always integrable. Notice that in the presence of symmetric points (Hatig})

the distributionsA; and A, are in general different, making the two notions of polarity not to be the
same. We emphasize that even though when the situation is regular (meaning thaadtien is free)

both notions coincide, in the singular case, the notion of polarity given in Definition 3.1 is preferable
since it produces integrable distributions that can be used to define dual pairs.

4. Dual pairsand symplectic leaf correspondence

It is a well known fact that the symplectic leaves of the two Poisson manifolds in the legs of a Lie—
Weinstein dual pair with connected fibers are in bijection. This result was introduced in [43]. See also
the Appendix E of [2] for a fully detailed proof.

In this section we will see that the situation is analogous for the two Poisson varieties in the legs of
the dual pairs introduced in Definition 3.3. Nevertheless, since in this context there is no Symplectic
Foliation Theorem we need to start by defining what we mean by the symplectic leaves of a quotient
Poisson variety.
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Let(M, {-,-}) be a smooth Poisson manifold,c (M) be a subgroup of its Poisson diffeomorphism
group, andM/A, {-, -}u/a) be the associated quotient Poisson variety.WLet M /A be an open subset
of M/ A andh € C*(V) be a smooth function defined on it. If we céll:= n;l(V) then, the vector field
Xnon,ly elONgs toA” and, by part (ii) of Proposition 3.8, its flowF,, Dom(F;)) uniquely determines
a local Poisson diffeomorphisiiF,, 7, (Dom(F,))) of M/A. We will say that(F,, w4 (Dom(F,))) is the
Hamiltonian flowassociated té. The symplectic leaves @if/ A will be defined as the accessible sets in
this quotient by finite compositions of Hamiltonian flows. Since it is not clear how to define these flows
by projection ofA-equivariant flows whem is a pseudogroup of local transformationsip(M), we
will restrict in this section to the caseé C P(M).

Definition 4.1. Let (M, {-, -}) be a smooth Poisson manifold, C P(M) be a subgroup of its Poisson
diffeomorphism group, andM/A, {-, -},,4) be the associated quotient Poisson variety. Given a point
[m]a € M /A, thesymplectic leafl,,;, going through it is defined as the (path connected) set formed
by all the points that can be reached frgm] , by applying to it a finite humber of Hamiltonian flows
associated to functions ii*°(V), with V ¢ M /A any open subset dff// A, that is,

Lim, ={FloFZo-- 0 Ff(Imly) |k €N, F, flow of someX,, h; € C*(V),V C M/A open.

k

The relationbeing in the same symplectic ledktermines an equivalence relation Mi/A whose
corresponding space of equivalence classes will be denoted/ pg)/{-, -} /4.

Remark 4.2. In the paragraph preceding the previous definition the choice of the ftzmmiltonian
flow for (F,, m4(Dom(F,))) is justified by the fact that for any other functioh e C*>°(V) and any
[m]a € m4(DoOoM(F;))) we have that

d — _
Ef(thm]A)) ={/. h}v(Fi(Imla)), (4.1)

where{-, -}y denotes the restriction td of the Poisson brackst, -},,,4. Nevertheless, expression (4.1)
does not fully characterize, in general, the fléwsince there could be other mappings for which such
equality holds. This could be rephrased by saying that in the category in which we are working any
function has a Hamiltonian flow associated but, unlike the smooth Poisson category, its uniqueness is
not guaranteed. One result in this direction that can be easily proven by mimicking the results in p. 389
of [37] says that if the functions iG> (M /A) separate the points @ /A (that s, if f (x) = f(y) for all
C>®(M/A), thenx = y) then any Hamiltonian function has a unique flow satisfying the relation (4.1).

Even though in Definition 4.1 we callef},,;, a symplectic leaf, there is in general no natural way to
define on this set a smooth structure and a symplectic form that would make it a symplectic manifold.
Nevertheless, there is still something we can do to justify our notation. Indeed, if we consider the set
L, as asubvariety a#//A in the sense of Definition 2.11, the corresponding ring of smooth functions
C>(Lymy,) given byC®(Liym,) =1{f € COM/A) | f = Flg,,, F € C>®(M/A)} can be endowed with
a natural Poisson algebra structure via a brafke} Lim, that we will describe later on. It turns out that
if A has the extension property, the Poisson algébfa(L.,), {-, Yim,) is non-degenerate, which is
the closest that we can get to being symplectic in this category; on other words, if we look at a smooth
symplectic manifold M, ) from the point of view of its smooth functions and the Poisson bragke}
defined on them via the symplectic form, the symplecticity is reflected in the non degeneracy of the



J.-P. Ortega / Differential Geometry and its Applications 19 (2003) 61-95 77

algebra(C>(M), {-, -}), which is exactly the property that we will prove fo€>(Lp,1,), -}z
We make these claims more explicit in the statement of the following proposition.

).

[m] g

Proposition 4.3. Let (M, {-, -}) be a smooth Poisson manifold,c P(M) be a subgroup of its Poisson
diffeomorphism group, an@ /A, {-, -}s,4) be the associated quotient Poisson variety.[kgly € M/A
and L;,,;, be the symplectic leaf through it. Then, the ri@¢ (L,;,) can be endowed with a natural
Poisson algebra structure@C> (L, ), {- . FLim,) with {-, 3L, the bracket defined by

{f, &b ey, [21a) :={F, Glma(lzla) ={F omwa, G oma}(2), (4.2)

for any [z]la € Lyny,s fr8 € C®(Lyny,), and any F,G € C*(M/A) such thatF|£[m]A = f and
Gley,, =&

Mo?eover, if A has the extension property, then the Poisson alg&bfa (L ,), {-, 3, is non-
degenerate, that is, if € C*(Ly,,) is such that{ f, g}, =0 for all g € C*(Lyyy,), then f is a
constant function.

Proof. Inorder to establish the first part of the Proposition it suffices to show that the bracket (4.2) is well
defined or, more explicitly that its value does not depend on the extenBiaiis C*°(M/A) that come

into its definition. LetG’ € C*°(M/A) be another extension @f € C*(L,,), (F;, Dom(F;)) be the

flow of the Hamiltonian vector fiel& z., and(F,, m,(Dom(F,))) be the local Poisson diffeomorphism

of (M/A,{-, }m,a), uniquely determined by the relatidn o 74 = 74 o F,. Then,

d
(F. Ghwya(lzln) ={F o7, G o4} (1) = =d(G 0 ) (D) Xpomy (D) = ——| G0 m4(F,(2))
t=0

d — d —
—| G'oF([z1a)=——| GoF,([zla) ={F,G}pma((zla),

B dt t=0 dt t=0

whereG’ o F,([z]4) = G o F,([z]4) becauseF; ([z]4) € Ly, - Analogously, if we take another extension
F' of f we have that for anyz] € L, {F', G'}uya([z]a) = {F, G}m/a([z]4), Which proves that
the bracket{-, -}, is well defined. The rest of the defining properties of a Poisson bracket are a
straightforward verification.

We now assume thatt has the extension property and show that the bra¢ket,, is non
degenerate. Lef € C*(Ly,) be such thatf, g}, =0 forallg € C*(L;y),). Before we proceed,
the reader should notice that the definition of symplectic leaf and part (ii) of Proposition 3.8 imply that
Lim, = G - [m]a. Now, since by hypothesid has the extension property, any eleménte G 4
can be written as a finite composition of Hamiltonian flows associated to functior&>iav)*
(see Remark 3.2); for the sake of simplicity we take = F;, with (F;, Dom(F;)) the flow of X,,
g € C®(M)A. Let G € C®(M/A) be the function uniquely determined by the equality= G o w4,
(F,, m4(DOom(F,)) be the unique local Poisson diffeomorphism Mf/A defined by the relatiorF; o
Talpomr,) =mao Fy,andg’ = Gley,,, € C*(Lymy,)- We now takeF € C*°(M/A) such thatF|£[mJA =f.
With all these ingredients we have that

d — d _— d
Ef o Fy([m]a) = EF(Ft([m]A)) = EF o0 Fi(m) =d(F o7a)(F,(m)) - X, (Fi(m))

={Foma, gH(F,(m)) ={F omy, Goma}(F,(m)) ={F, G}yya(F,(Imls))
={/. &}z, (Fi(Imla) =0,
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which implies thatf o F, ([m]4) = f([m]). As F, is arbitrary, we have that(G 4 - [m],) = f( L) =
f([m]a), and thereby, the functioi € C*°(L,,),) iS constant, as required.0

Remark 4.4. If in the previous proposition we drop the hypothesis on the extension property of
then the Poisson algebi@ (L, ), I, is still non-degenerate in the following generalized
sense: iff € C*(Ly,,) is such that for any open subsétc £;,,;, and anyg € C*(U) we have that
{flu, g}u =0, with {-, -}y the restriction taJ of the brackef-, 3Ly then f is constant.

Theorem 4.5 (Symplectic leaves correspondends3t (M, {-, -}) be a smooth Poisson manifold, B C
P(M) be two subgroups of its Poisson diffeomorphism group, @nd Gz € P, (M) be the standard
polar pseudogroups. If we denote by /A)/{-, -}u/a and (M/B)/{-, -}u/s the space of symplectic
leaves of the Poisson varietiedf /A, {-, -}y/4) and(M/B, {-, -} i), respectively, we have that

(i) The symplectic leaves 8f/A and M /B are given by the orbits of th€ 4, and G actions onM /A
and M/ B, respectively, as defined in PropositiBtB. As a consequence of this statement, we can
write that

(M/A)/{-, Ymja=M/A)/Gx and (M/B)/{-, }up=(M/B)/Gp. (4.3)
(i) If the diagram(M /A, {-, -}y/a) <= (M, {-,-}) == (M/B, {-, -}u,s) is a dual pair then the map

M/A) /- Imwga = (M/BY/{-, Ymys

(4.4)
Lim, = Limp

is a bijection. The symbol£,;, and L, denote the symplectic leaves M/A and M/B,
respectively, going through the poipt], and[m]p.

Proof. (i) It is a straightforward consequence of the definition of symplectic leaf and of the actions,
spelled out in Proposition 3.8, of the standard polar pseudogroups on the quotients.

(i) Given that by Proposition 3.8 and G 4 (resp. B and Gp') commute, and using the duality
hypothesis, we can write

M/A/A- Imwa=M/A) )/ Ga = (M/Gu)/A=(M/B)/A, (4.5)
and the same relation for the subgraBpthat is,
M/B)/{-,}up=(M/B)/Gp =~ (M/Gp)/B=(M/A)/B. (4.6)

In the previous expressiord//B)/A and(M/A)/B should be understood as the orbit spaces ofAhe
and B actions onM/B and M/ A, respectively, inherited from considering these quotient3/ds; 4

and M/Gp . More explicitly, for anya € A and any[m]z € M/B we definea - [m]p :=a - [m]g ,, =
la-m]g ,, = [a-m]p. Analogously, for any € B and anyim]4 € M/A, we defineb - [m] 4 := [b - m]4.

With these conventions and in view of (4.5) and (4.6) the bijective character of the map in the statement
will be proved if we show that the map

F: (M/B)JA — (M/A)/B

[([mlgla = [lmlals
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is a well defined bijection. It is indeed so since[fifn]z]la = [[m']15]a, there exist elements € A
andb € B such thata - m = b - m’ and henceF ([[mlgls) = [[mlalg = [[la - mlalg =[[b - Ml =
[b-[m'1als =[[m'1als = F([[m']13]4), which shows that the map is well defined. Analogously one
shows thatF is one to one and onto, as requireda

Remark 4.6. As a consequence of the previous theorem we can conclude that the symplectic leaves of
two Poisson manifolds in the legs of a Lie-Weinstein dual p&it {-, -} p,) < (M, ®) 53 (P2, {-.}p,)

in which the projectionsr; and =, are complete and have connected fibers are in bijection. We say
that a smooth ma@': P — Q between two Poisson manifolds and Q is completef for any function

f € C*(Q) whose Hamiltonian vector field ; associated is complete, the vector fidld,, € X(P) is

also complete. In our context this condition shows up when we put the Lie—Weinstein dual pair in our
language by making the identificatio®®s ~ M /G 4, and P, ~ M /G ,, with

A.=spar{X for, | f € CX(P2)} and B.=spar{Xor, | f € CZ(P)}.
The subscript in C>°(P;) andC°(P,) denotes compactly supported functions. The completeness of
the projectionsr; andz, ensures that 4. andG s, are subgroups dP (M), as required in the hypotheses
of Theorem 4.5. A morad hocstudy of this particular dual pair using certain transversality properties

of the submersiong; and, shows that the completeness is not actually needed (see [2]) in order to
guarantee leaf correspondence.

5. Howe pairsand dual pairs

Definition 5.1. Let (M, {-, -}) be a Poisson manifold amtl, B ¢ P, (M) be two pseudosubgroups of its
local Poisson diffeomorphism pseudogroup. We say that the diagram

(Ma {" })

(M/Av{’}M/A) (M/B’{v}M/B)

is aHowe pairon (M, {-, -}) if the following two conditions are satisfied at the same time:
(T5C™®(M/A)) =}, C®(M/B), (5.1)
(T5C>®(M/B)) = ;C®(M/A). (5.2)

The superscript c in the previous equalities means centralizer with respect to the algebra structure ot
C*(M) given by the Poisson bracket avi. As in the case of the dual pairs, the Poisson manifold
(M, {-, -}) will be called the equivalence bimodulef the Howe pair.

Proposition 5.2. Let (M, {-, -}) be a smooth Poisson manifold,c P, (M), and A’ its dual. Then, ifA
has the extension property aid is integrable we have that

(T5C®(M/A)) =n},C®(M/A), (5.3)
(5, C®(M/A)) D r;C®(M/A). (5.4)
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Moreover, ifA is von Neumann and’ has the extension property then the diagravy A, {-, -} /4) Bl
(M, {-, ) 225 (M/A",{-, }a/a) is @ Howe pair.

Proof. We first establish (5.3), which is equivalent to proving th@e (M)*) = C®(M)*": let f €
C>®(M) arbitrary, andg € C*(M)* an A-invariant function with associated Hamiltonian fla%. Then,
foranym e M

d
Ef(mm)) =df(F,(m))  X.(F,(m))=1{f, g}(F:(m)). (5.5)

Now, if f e (C®(M)*) then {f,g} =0 in (5.5) and thereforef o F,(m) = f(m). Since theA-

invariant functiong and the pointn are arbitrary, andd has the extension property, we can conclude

that f € C(M)*". Conversely, iff € C®*(M)*, then f o F, = f and therefore (5.5) implies that

f e (C®(M)*)°. Expression (5.4) can be obtained by taking centralizers on both sides of (5.3).
Suppose now thatt is von Neumann. In order to conclude that we have a Howe pair we just need

to show that(r%,C>®(M/A")* C w5C>®(M/A) or, equivalently, thatC®(M)*)¢ c C®(M)". Let

f e (C®(M)*)¢. Since A’ has the extension property, any eleméfite G 4 can be written as the

finite composition of locally defined flows; associated to the Hamiltonian vector fieldsAdfinvariant

globally defined functiong € C>(M)*. Given that for any of those functions we have thath} = 0,

it is clear thatf o F; = f|pom(r,). NOw, the von Neumann character #fimplies that for anyp € A and

m € M arbitrary, there exist$ € G 4 such thatf o ¢ (m) = f o Fr(m) = f(m), which guarantees the

A-invariance off.

Corollary 5.3. Let(M, {-, -}) be a smooth Poisson manifold aAd B C P, (M) be two pseudosubgroups
of its local Poisson diffeomorphism pseudogrday( M) that have the extension property. If the diagram

(M/A, (-, Yaa) & (M, 0) 28 (M/B, {-, }u/8) is adual pair then it is also a Howe pair.
As a corollary to the previous result we can easily obtain the following well known fact:

Corollary 5.4. If the diagram(Py, {-, -} p,) LM, 0) 3 Py, |-, -}p,) is a Lie—~Weinstein dual pair with
connected fibers then it is a Howe pair.

Proof. It is a straightforward consequence of Example 3.7 where we saw that any Lie—Weinstein
dual pair with connected fibers can be understood as a dual pair in our sense with respect to twc
pseudosubgroups 4, Gz C P, (M). These pseudosubgroups have the extension property by Lemma 3.6
and hence the hypotheses of the previous corollary are satisfied in our case.

Even though Corollary 5.3 shows that in the presence of the extension property any dual pair is a Howe
pair, the following example demonstrates that the converse is not, in general, true.

Example5.5 (A Howe pair that is not a dual pajr Let (T?, w) be the two torus thought of as a symplectic
manifold with the formw given by the standard area form. Consider a Poisson action of the additive group
(R, +) onT? via an irrational flow. It is straightforward to check that the Poisson diffeomorphisms group

2 . . . 7TAR 2 ﬂA]/R 2 , )
Ag C P(T?) associated to this action generates a HowePginr «— T? — T?/Aj, that is not a dual
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pair. Indeed, notice first that the onli; -invariant open subset @f? is T? itself hence, sinc€ > (T?)4®
is made of constant functions the dual distributiéf is trivial and C®(T?)4r = C*(T?), necessarily.
It is clear that in these circumstanc€€®(T?)4r)¢ = C®(T?)4r and (C®(T2)4r)¢ = C®(T?)4r,
Nevertheless, the orbits of thég-action are strictly contained inside the only leaf of the distribution
Ag, which implies thatAr is not von Neumann and thereby does not generate a dual pair.

This example also shows that Howe’s condition is not enough to ensure symplectic leaf correspon-
dence. Indeed, the remarks in the preceding paragraph indicate that the Howe pair assodigted to

T?/Ag 2% 2 9 12, Now, the right hand side leg of this pair has just one symplectic leaf (the entire
two torusT?) while, for the left hand side, every point ¥/ Ag is a symplectic leaf sinc€>(T?/Ag)
consists of constant functions.

6. Hamiltonian Poisson subgroups

In this section we will study the properties of the diagras/A, {-, -}s/4) M) LN
(M/A", {-, }mya) induced by weakly and strongly Hamiltonian subgroups” P(M). Since we are
dealing with actual subgroups ¢?(M), Proposition 3.8 guarantees the integrability of the polar
distribution A” which we will not need to put as a hypothesis.

In Example 5.5 we identified a weakly Hamiltonian subgroup that induced a Howe pair. In our first
result in this section, Proposition 6.1, we will show that this is not a coincidence since any weakly
Hamiltonian subgroup endowed with the extension property always has a Howe pair associated. We als
saw in that example that the (weak) Hamiltonian condition is not sufficient to generate a dual pair; in
Proposition 6.2 we will show that if we add to the Hamiltonian hypothesis the property of separation
A-orbits then we are guaranteed to obtain a dual pair.

Proposition 6.1. Let (M, {-,-}) be a Poisson manifold and c P(M) be a weakly Hamiltonian
subgroup of its Poisson diffeomorphism group.Alfhas the extension property then the diagram

(M/A (-, Yuga) < (M {1 =5 (MJA (-, }uya) is @ Howe pair.

Proof. By Proposition 3.8 the polar distributioA” is always integrable in this case. The conclusions
of Proposition 5.2 show that we just need to prove gl C>*(M/A"))¢ C m3;C*(M/A). Hence, let

¢ € A andm € M arbitrary. Since, by hypothesis, the grodpis weakly Hamiltoniang (m) can be
written as¢(m) = F;; o F2o---o F}(m), with F the flow of a Hamiltonian vector field,, associated

to a function’; in the centralizexC>(M)#)¢. We assume for the sake of simplicity t@atn) = F, (m),
with F, the flow of X, h € (C*(M)?)¢. Due to the expression (5.3), the functibrcan be written as
h=gomu, with g € C¥(M/A’). Let now f € (%,C®(M/A"). Given that{ f, h} = {f, g oma} =0

we can conclude thaf o ¢ (m) = f o F,(m) = f(m). As we can reproduce this process for ang A
andm € M we have thatf € C*(M)* =n%C>(M/A), as required.

Proposition 6.2. Let (M, {-,-}) be a Poisson manifold and c P(M) be a subgroup of its Poisson
diffeomorphism group.
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() If A is strongly(resp. weakly Hamiltonian and has the extension property, theérc G 4 (resp.
A-mC Gy -mforanyme M).
(i) If C>(M)* separates thei-orbits onM then, for anym € M, we have thaG 4 -m C A - m.
(iii) If A is (strongly or weakly Hamiltonian and has the extension property, afitt(M)# separates

the A-orbits onM, thenA is von Neumann and the diagram /A, {-, -} y/4) ML) LN
(M/A', {-, -}mya) is adual pair. Additionally, ifA” has the extension property itis also a Howe pair.

Proof. (i) Let ¢ € A be arbitrary. Sincel is strongly (resp. weakly) Hamiltoniag, (resp.¢ (m) for any

m € M) can be written ag = F;' o F;0---o F (resp.¢(m) = F;: o F2 0---0 Fj (m)), with F{ the flow

of a Hamiltonian vector field(;,, associated to a functiol; in the centralizeC>(M)#). In order to

keep the exposition simple we assume that F,, with F, the flow of X;,, h € (C*(M)*). Due to (5.3),
the functionk can be written ag =1 o ,, with/ € C*(M/A’). ConsequentlyX, = X;.,,, and hence
F,=¢ € Gy (resp.F,(m) = ¢ (m) € G4 - m), as required.

(i) Any element inFr € G 4+ can be written as a finite composition of Hamiltonian flafvsssociated
to functionsf o /|y, f € C®(U/A’), U an opend’-invariant set. Then, for any € C*(M)# and any
m € U we have that-h(F,(m)) = {hly, f o walu}u (Fi(m)) = —d(f o ma|y)(F;(m)) - X, (F,(m)) =0,
that is, any functiom: € C*°(M)# is constant along the Hamiltonian flow gfo 7 4/|y. Now, since
C>®(M)* separates thel-orbits on M, we can conclude that, for any point € M, the setF,(m) is
included in a singled-orbit, namely,F, (m) C A - m and therefores 4~ - m C A - m, as required.

(iii) Parts (i) and (ii) imply in the context of our hypotheses that for ang M, A -m = G 4 - m”
and, consequenthf/A = M/A”. This proves thatd is von Neumann and therefore that the diagram
(M/A L, Ymya) ML LD Ty (M/A', {-, - }mya) is a dual pair. Corollary 5.3 ensures that it is
also a Howe pair in the presence of the extension propertyt’for O

7. Dual pairsinduced by canonical Liegroup actions

In this section we will analyze under what circumstances we can construct von Neumann and Howe
pairs using the subgroupt; := {®, | g € G} of the Poisson diffeomorphism grodp(M) associated to
the canonical actio® :G x M — M of a Lie groupG on a Poisson manifoldM, {-, -}). Recall that
in this setup, as we already mentioned in Example 3.13, the polar distribdtias always integrable
(Proposition 3.8) and the projection onto the corresponding leaf spae— M/Aj; is referred to as
the optimal momentum magdhe reason behind this denomination is (see [32] for the details) that the
Hamiltonian flow F, associated to ang-invariant functionf € C*®°(U)¢ defined on anyG-invariant
open subsel/ of M preserves the level sets ®fthat is,J o F;, = J (Noether’'s Theorem). Moreover, by
construction, the level sets of this map are the smallest submanifoltlspyeserved byG-equivariant
Hamiltonian flows onM. Also, the mag( is universal in the category of the momentum maps that can
be associated to th@-symmetry of(M, {-, -}) [32].

7.1. Properness, Hamiltonian actions, and dual pairs

An action® :G x M — M of a Lie groupG on a manifoldM is said to beproper if the following
condition is satisfied: given two convergent sequengeg} and{g, -m,} in M, there exists a convergent
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subsequencgg,, } in G. The following proposition is a summary of well known facts about proper actions
that we will use in the sequel. The reader is encouraged to check with [1,5] for proofs.

Proposition 7.1. Let® :G x M — M be a proper action of a Lie grouy on a smooth manifold/.
Then

(i) Ag :={P,|g € G} has the extension property.
(i) C*(M)4c = C>(M)° separates th&-orbits.
(i) The isotropy subgrou,, of any pointm € M is compact.

Theorem 7.2. Let G be a Lie group acting canonically and properly on the Poisson manifédd{-, -})
viathe map®:G x M — M. Let Az C P(M) be the subgroup oP(M) defined by := {®, .M —
M | g € G} and Ay its polar. Letr : M — M /A be the canonical projection o¥f onto the quotient
M/Ag andJ:M — M/A, be the associated optimal momentum mapA dfis (strongly or weakly

Hamiltonian then it is von Neumann and therefore the diagtafi A, {-, -Ju/a,) <— (M, {-,-}) =
(M/AG,{-, ‘}mya;,) is a dual pair.

Proof. Itis a straightforward consequence of Propositions 6.2 and 711.

Corollary 7.3. In the same setup as in the previous theorem,fis (strongly or weakly Hamiltonian
then, theG-orbits are connected and path connected.

Proof. The condition onAs being Hamiltonian implies via the previous theorem thgf is von
Neumann and therefore, for amy € M the orbitG - m equalsG 4 - m which is connected and path
connected. O

Theorem 7.2 shows that properness in a canon{gaction is a condition that added to the
Hamiltonian character is sufficient to ensure that the corresponding transformationgrau@ (M) is
von Neumann. However, as the following example shows, this condition is not necessary.

Example 7.4 (The coadjoint action produces von Neumann subgroup®(gf)). Let G be a connected
Lie group,g its Lie algebra, ang* its dual. Let{-, -} be the4+— Lie—Poisson bracket that makgsinto
a Poisson manifold. More specifically, for aifyh € C*(g*) andu € g*, we define

of &h
{f,h} () = <M, [ﬁ, a:|>,

where the symbok-,-) denotes the natural pairing @f* with g and the element%, oh ¢ g are

determined by the expressions 8

)
Df () -pi= <p, ﬁ

Sh
Dh(u) - p:= <p, @>’
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for all p € g*. Given that for anyf € C*(g*), g € G, andu € g* we have that

3f B S(fOAdZ—l)
SAd: ) _Adg( 5n )

it can be readily verified that coadjoint action @fon g* is canonical and has the identity as standard
momentum map associated. Also, for ghy C*(g*) andu € g* X (n) = —ad;, u.
S

We now check tha#i; is von Neumann. Lef € g* be arbitrary and/ c g* be an operG-invariant
neighborhood of the coadjoint orbit of the elementLet f € C>(U)C. Then for any¢ € gandp € U

we have that
1)
</0 ) Adexpté / >

S d
(Xf(lo),f)Z—(adkgp,§>:—<p,|:~_f,§i|>:E %

810 t=0
d

5f SF\ d
=— Ad; ,—)=(adp, —)=—
dt ,—o< expie 3/0> < e 5p> di

where the last equality follows from th@-invariance of the functiory’. This computation shows that
Ay (n) = {0} for all 4 € g*. The connectedness of the groGpautomatically implies thatt; = A and
thereforeA is von Neumann.

The symplectic leaf correspondence for the legs of the diagraG < g* — g* guaranteed in this
case by Theorem 4.5 is a restatement of the well known fact that the symplectic leggés| af-}) are
the coadjoint orbits.

Of(Adengp) =0,
t=

7.2. Compact connected Lie group symplectic actions and von Neumann subgr@a4)of

Definition 7.5. Let G be a compact connected Lie group with Lie algefracting canonically on
the symplectic manifold M, w) via the map®:G x M — M. Let Az C P(M) be the subgroup
of P(M) defined byAg :={®,:M — M | g € G}. Let £ e g and T(§) be the torus defined by
T (&) := {expt& |t € R}. We will say that the elemer#t has a coisotropic torusassociated when the
orbits of theT (¢)-action onM are coisotropic.

Theorem 7.6. Let G be a compact connected Lie group with Lie algelgracting canonically on
the symplectic manifoldM, w) via the map®:G x M — M. Let A C P(M) be the subgroup of
P(M) defined byd; :={®,:M — M | g € G} and Ay its polar. Letmr : M — M /A be the canonical
projection ofM onto the quotiend/ /A andJ: M — M /Ay, be the associated optimal momentum map.
Let T be a maximal torus off and suppose that its Lie algebtdas a basigé,, .. ., &} whose elements
have coisotropic toril" (¢;) associated. Them s is weakly Hamiltonian and von Neumann.

Proof. Since the action of any compact group is always proper, according to Theorem 7.2, it suffices to
prove thatA; is weakly Hamiltonian, which will be a consequence of the following lemma:

Lemma 7.7. Suppose that we have the same setup as Thedr@nThen, for anyt € g that has a
coisotropic torusT (¢) associated and any: € M, there exists a functiorf e (C>°(M)45)¢ such that if
F; is the flow of the Hamiltonian vector fiekl;, thenexp& - m = Fi(m).
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Proof. Leté&, € X(M) be the vector field that assigns to any peinE M, the infinitesimal generator at
m associated to the elemenk g. The canonical character of the action implies that

0= ﬁng = igMda) + d(lgMa)) = d(igMa)),

that is, the one forny := i, w is closed. Consider now the subsetsioflefined byK := {expt& |t € R}
and T'(¢) := K, where the bar ovek means closure. As we already pointed out suligt) is a
closed connected Abelian subgroup @fand therefore a torus. Notice that for amye M we have
that7 (&) -m C K - m; indeed, ift -m € T (&) - m, there exists a sequenfig,} C K of elements ink such
thatk, — ¢, which implies thai, - m — ¢ - m and therefore - m € K - m. Hence, since the restriction
a|k.,» = 0 we have thatr|g,, =0, and thereforer|7«).,, = 0. By the Relative Poincaré Lemma (see
for instance Corollary 7.5 in p. 362 of [20]) there exists a neighborh@oaf 7 (£) - m, which by the
compactness of (§) can be chosef (¢)-invariant, and a functioth € C*°(U) such thatdi|y = oy .
This statement amounts to saying that the function C*°(U) is a momentum map for the canonical
action of K on the symplectic manifoldU, w|y).

Now, by shrinkingU if necessary and using the hypothesis on the coisotropic character of the torus
T(¢), we can represent/ by a normal form coordinate chart around the peinsimilar to the ones
introduced in Appendix A (Theorem A.1), that is, we can assume without loss of generality that

U=TE) xXre), ™,

wherem is a Ady ), -invariant complement to the Lie algebra [4&§),,) in € := {n € Lie(T(§)) |
nu(m) € (Lie(T (§)) - m)”}. The pointm is represented in these coordinates [by0], andm’ is a
T (&).,-equivariant ball of radius > 0 small enough centered at the originmaf. Let ¢, :m* — R be a
smooth,T (§),,-invariant, and compactly supported function such ¢hat) = 0, for anyn € m*\m?*, and
¢, (W) =1 for aT (£),-invariant neighborhoodV C m*. Let @ be theT (&£)-invariant function defined
by
Q:U=TE) X7, m: - R,
[k, n] = ¢ (1).

Notice that® is zero off the operT (¢)-invariant set/ and therefore it can be trivially extended to a
T (¢)-invariant function, we will call it equally® € C>(M)”®, on the entire space. The reconstruction
equations (A.5)—(A.7) applied @ (use the Abelian character 8f(¢)) imply that the Hamiltonian vector
field X4 equals

(D) u(m) ifmeU,
0 if meM\U.

Let f = @h. Now, given thatX; = X¢, = @X;, + hXe and @ is constant in thel (£)-invariant
neighborhoodN ~ T (§) x7¢),, W aroundm, we have thatX ;(z) = X;(z) = &u(z) for anyz € N.
Consequently, if; is the flow of the vector fiel ¢, it is clear that ex - m = Fy(m). In order to finish
the proof we just need to show thte (C>®(M)46)c. This is indeed so because for aGyinvariant
function! € C>(M)“¢ we have thaf f, [}(z) =df(z) - X;,(z) =0 foranyz € M\ U. Also, whenz € U

{f,}@)={@h,1}(2) = P(){h,}(2) + h(D{P,[}(2)
=—@(2)(dI(2) - X4(2)) —h(2)(d(2) - X0 (2))
=—@(2)(dl(2) - En(2)) — h(2)(Al(2) - (Dmr )M (2)) =0,

Xo(2) = i
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due to the G-invariance ofl. Hence {f,I} = 0 for any ! € C®(M)4¢ and, consequentlyf e
(T*C>®(M/Ag)), as required. O

We conclude the proof of the theorem by noting that since the gébigocompact and connected, any
elementg € G can be written ag = h/h~1, with [ € T. As T is Abelian and connected, there exist real
numbersy, ..., f; such that = expr&; - - - expr.&,.. Hence, for anyn € M we can write

g-m=hexpné;---expu&h ™t -m
= hexptiErh - hexphéh™t - m = expri(Adyér) - - - expri (Ady &) - m.

A straightforward computation shows tha@tAd, (%)) = AT (¢;)h~! and that, as a consequence, the
coisotropy of the torug' (&;) implies that of T (Ad,(&;)). Therefore, by the previous lemma we have
thatg - m = Fl o--- o Ff(m), with eachF, the flow of a Hamiltonian vector field ; associated to a
function f; € (m*C*(M/Ag))°. O

The reader may be wondering if the coisotropy hypothesis in the statement of Theorem 7.6 is not just
a technical requirement that appears in the proof of Lemma 7.7 and that could be eliminated by using
different techniques in the proof. The following example, that | owe to J. Montaldi and T. Tokieda, shows
that this is not the case, that is, in the absence of additional hypotheses, compactness and connectedne
in the Lie groupG associated to a symplectic action do not suffice to ensure that the corresponding
transformation groupi s is von Neumann.

Example 7.8 (A compact and connected canonical group action that is not von Negmasti/ := T? x

T? be the product of two tori whose elements we will denote by the four-tuglés €2, V1, &¥2). We
endowM with the symplectic structure defined byw := dé; A d6, + v/2dv1 A dir,. We now consider

the canonical circle action given byfe (€%, €%, gV1, gV2) .= (6119 g% W19 gV2) This action

does not satisfy the coisotropy hypothesis and, as we will now verify, the associated transformation groupg
Agt C P(M) is not von Neumann. Indeed, the ©r M) comprises the functiong of the form

f = f(e% gv2 @V Aninspection of the Hamiltonian flows associated to such functions readily

shows that the leaves of, fill densely the manifoldV. This implies tha‘rC‘x’(M)A/s1 is made up by

constant functions and thereforg),; (m) = {0}, for all m € M. ConsequentlyAs: is not von Neumann.
Notice that this example shows that the polar of a regular integrable distribution even though it is

integrable, it is not, in general, regular. More specifically, even though the projectionM — M/Aq

is a surjective submersion, this is not true in the cas;eA?}c M —> M/A,.

7.3. Tubewise Hamiltonian actions and dual pairs

In Appendix A (Section A.3) the reader can find an in depth study of the conditions under which
the proper canonical action of a connected Lie groujn a symplectic manifold M, ») is strongly
tubewise Hamiltonian. More specifically, in that section it is explained how under some circumstances,
for any pointm € M there is an opei@-invariant neighborhood of its orbit such that the restriction of
the G-action to this neighborhood has a standard momentum map associated, thus implying that the
action is strongly tubewise Hamiltonian. The question that we will try to answer in this section is the
following: is there any situation where the strongly tubewise Hamiltonian condition implies that the
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action is weakly Hamiltonian and therefore induces a dual pair? The following result provides some
answers to this question.

Theorem 7.9. Let G be a connected Lie group with Lie algebgaacting canonically and properly on
the symplectic manifoldM, w) via the map®:G x M — M. Let A C P(M) be the subgroup of
P(M) defined byd; :={®,:M — M | g € G} and Ay; its polar. Letmr : M — M /A be the canonical
projection ofM onto the quotiend/ /A andJ: M — M /A be the associated optimal momentum map.
Foranym € M lett,, C g be the Lie subalgebra gfdefined by,, = {n e g| nu(m) € (g-m)*},K,, CG

be the(uniqué connected Lie subgroup generated by,it andy,, € 21(G; g*) be theG-equivariant,
g*-valued one form defined by

(Ym(8) - ToLg -1, &) := —w(m)((Ad,-1&) yy(m), ny(m)) foranyge G, &, neg.

Suppose that for any € M, the orbitG - m is coisotropic, there existsAd(K,,)-invariant complement
to €, in g, &, is Abelian, andy,, is exact(which happens for instance whéh'(G) = 0 or when the orbit
G - m is isotropig. Then,A; is weakly Hamiltonian and von Neumann.

Proof. We will show that in the presence of our hypotheses a conclusion similar to that of Lemma 7.7
holds, that is, we will see that for arye g and anym € M, there exists a functiorf € (C®(M)46)¢
such that ifF; is the flow of the Hamiltonian vector fiel& ; then, expg - m = F1(m). Indeed, for a fixed
m € M, the exactness af,, guarantees, by Proposition A.2, that there exigisiavariant neighborhood
U of the orbitG - m where the restriction of thé-action has a standard momentum map associated and,
consequently, for ang € g we have that exg - m = F1(m), with F; the flow of the Hamiltonian vector
field in U associated to a functiolne C*°(U) that can be constructed by taking theomponent of the
tubular momentum map.

We now proceed in a way that mimics the proof of Lemma 7.7. First, by shririffghecessary, we
can represent it by a normal form coordinate chart around the poithiat is, we can assume without loss
of generality thal/ = G x¢,, m}, wherem is a Ad;,, -invariant complement to the Lie algebra [48,,)
in ¢,. The pointm is represented in these coordinates[&yd], andm’ is an openG,,-equivariant ball
of radiusr > 0 small enough centered at the originmf. Let ¢, : m* — R be a smoothG,,-invariant
compactly supported function such tigatn) = 0, for anyn € m*\ m?, andg, (W) = 1 for aG,,-invariant
neighborhoodW C m*. Let & be theG-invariant function defined by

Q:U=G xg,mi - R
[k, n] = ().

Notice that® is zero off the openG-invariant setU and therefore can be trivially extended to a
G-invariant function, we will call it equally® € C>*(M)%, on the entire space. The reconstruction
equations (A.5)—(A.7) applied @ imply that the Hamiltonian vector fiel®d, equals

(Drr¢p)m(m) ifmeU,
0

if me M\ U. (7.1)

Xo(2) = i
Indeed, the hypothesis on the existence of @amg)-invariant complement té,, in g implies that the
map F in (A.4) reduces taF (&, A, 1) = Pg-(adiX) + (7, -)4, Whose unique solution far is r = 0. This
implies that the magr = 0 and, given that by hypothesis the Lie algebyas Abelian, the reconstruction
equation (A.6) vanishes, thus justifying (7.1).
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Let f = @h. Now, given thatX; = X4, = ®X;, + hXe and @ is constant on thes-invariant
neighborhoodN >~ G xg, W aroundm, we have thatX s(z) = X,(z) = &y(z) for any z € N.
Consequently, if; is the flow of the vector fiel ¢, it is clear that ex§ - m = Fy(m). In order to finish
the proof we just need to show thgte (C>®(M)46)c. This is indeed so because for aGyinvariant
function! € C>(M)“¢ we have thaf f, [}(z) =df(z) - X;(z) =0 foranyz € M\ U. Also, whenz € U

{f.[}(2) ={Ph,1}(z) = P(2){h, [}(2) + h(){D,[}(z)
=—@(2)(dl(2) - X4(2)) — h(2)(dl(2) - X5 (2))
=—&(2)(dl(2) - En(2)) — h(2)(AI(2) - (D) m(2)) =0,

due to the G-invariance ofl. Hence {f,I} = 0 for any ! € C®(M)%¢ and, consequentlyf e
(T*C>®(M/Ag)), as required. O

7.4. Complete polar distributions and symplectic leaf correspondence

In this section we will show that the polar distributiet}, relative to the proper and canonical action
of a Lie groupG on a symplectic manifold is complete (see Definition 2.4). Therefore the quotient space
M /Ay, can be written as the orbit spasg/ G 4, relative to the action o of a subgroupG 4, C P(M)
that we will construct later on by finding a completiofj. of the standard polar familyl;;. This goal,
that in principle seems rather technical, gains importance when we recall the definition of the symplectic
leaves (Definition 4.1) and the Symplectic Leaf Correspondence Theorem (Theorem 4.5) where we sav
that all these ideas are well behaved when we deal with the quotiers lf genuine subgroupef
P(M).

As a corollary we will obtain a correspondence between the symplectic leaves of the two legs of the
diagram(M /Ag, {-, }m/as) M, D LN (MJA,{-, Yamya,) in many of the situations identified
in the preceding paragraphs in which that diagram is a dual pair.

Proposition 7.10. Let G be a Lie group that acts canonically and properly on the symplectic manifold
(M, w) and Ag C P(M) be the associated Poisson diffeomorphisms subgroup. Then, the standard polar
family of vector fieldsAd; admits a completiotd,, that makes the polar distributioA;; complete.

Proof. The main tool in the proof will be the reconstruction equations presented in Appendix A.2, hence
the reader interested in the presentation that follows is encouraged to make a forward excursion to tha
section in order to get acquainted with the notation that we will use in the following paragraphs without
much explanation.

Letm € M be an arbitrary point. Theorem A.1 guarantees the existencé& ahaariant neighborhood
U of m and of aG-equivariant symplectomorphisg:U — Y, := G xg,, (m* x (V,,),) satisfying
¢ (m) = [e, 0, 0]. Since the reconstruction equations (A.5)—(A.7) provide us with an explicit way to
write down the Hamiltonian vector field associated to any functicnC>(Y,)¢ we will use them to
find a suitable generating family of complete vector fields for the polar distributjoby working in all
the possible tubeg, and translating our results back 46 via the symplectic diffeomorphismg. The
following arguments explain in detail this strategy.

Let C>(W)%», with W C m* x (V,,), an openG ,,-invariant neighborhood of the origin, be the set of
compactly supported,, -invariant smooth functions oW. Since the subgrou@,, is compact and fixes
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the origin ofm* x (V,,),, itis clear that
{dh(0,0) | h e CZ(W)Pm} ={df(0.0) | f € C®(m} x (V),)?"},

and therefore it suffices to use the set of Hamiltonian vector fields associated to the functions in
C> (W) to generate the image hy of the polar distributionAl; (m) evaluated atn. By inspection

of the reconstruction equations it is easy to see that any of those Hamiltonian vector fields is complete:
take for instance (A.7), withox € Cf"(W)Gm and consider it as a vector field 0W,,), with parameters

g andp. The compact support condition @mv 7 implies that for any value of the parameterand p

the vector fieldXy, (g, p, v) on(V,,), is compactly supported and therefore complete. A similar analysis
on (A.6) reveals the same conclusions #f-. As to X, it is a G-equivariant vector field o7 with
parameters om* andV,, whose flow can be expressed using the notation of Appendix A.2, by the map

F(g) =g Fi(e) =g - expt(¥(p,v) + D+ (h o) (p, v)).

The vector fieldX; is therefore complete which proves thét is a complete vector field oF,. Also,

since¢ is a symplectic map, the vector fiel},., = T¢p =10 X, 0¢ on U is also complete and as it is zero
outside¢—1(G x¢, W) C U it can be trivially extended to a complete Hamiltonian vector fieldWn
associated to &-invariant function (any extension @fo ¢). The union of all the similarly constructed
vector fields using as many tubular neighborhoods as necessary constitutes a completion of the standal
polar family A;;, hence proving that;; is complete. O

The proposition that we just proved guarantees that the symplectic leaves/af, are well
defined for proper symplectic actions. Moreover, the combination of this statement with the Symplectic
Leaf Correspondence Theorem 4.5, as well as with Theorems 7.2, 7.6, and 7.9, guarantees th

correspondence between the symplectic leaves on the legs of the diadfany, {-, -}y /a;) P

(M, w) N (M/A,{-, Im/ay) in a variety of situations that we enumerate for completeness in the
following corollary.

Corollary 7.11. Let G be a Lie group that acts canonically and properly on the symplectic manifold
(M, w) and Ag C P(M) be the associated Poisson diffeomorphisms subgroup. Suppose that at least
ONE of the following conditions is satisfied

(i) Ag is (weakly or strongly Hamiltonian,

(i) the Lie groupG is compact and connected, and the tori4f are coisotropic,

(iii) for any pointm € M, the orbitG - m is coisotropic, there exists &d(K,,)-invariant complement to
£, in g, £, is Abelian, andy,, is exact(see Theoren¥.9 for this notatior).

Then, the map

(M/A) /- Imjag — (MJAG /- uyar,
Limag > Lim,,

establishes a bijection between the symplectic leave@fAq, {-, -}m/4,) and those of(M/A(,
2 Yaapa)-
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Remark 7.12. As we recalled in Remark 7.12 the symplectic leaves of the Poisson manifolds in the legs
of a Lie-Weinstein dual paitPy, {-, -}p,) < (M, w) = (P2, {-.-}p,) in which the projectionsr; and,

have connected fibers are in bijection. Moreover, it can be shown [2] tiat éind £, are symplectic
leaves ofP; and P, in correspondence and C M is the immersed connected submanifoldMfsuch
that € = nl‘l(ﬁl) = nz‘l(ﬁz) then, the symplectic forms., andw,, on £, and L,, respectively, are
related by the equation

ixw=milxwr, + mlcwr,, (7.2)

whereix : K <— M denotes the natural inclusion. In my forthcoming paper [29] | will show that the
symplectic leaves in the von Neumann pairs studied in this section can be, under certain hypotheses
be endowed with actual smooth structures that make them into real symplectic manifolds related by an
equality identical to (7.2).
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Appendix A
In this section we explain more in detail some of the tools that have been used throughout the paper.
A.1. A normal form for canonical proper actions

The Slice Theorem in the category of globally Hamiltonian proper Lie group actions (in this section
the expression globally Hamiltonian means that the action has a globally defined equivariant momentum
map associated) is a well known and widely used tool introduced by Marle [21,22] and by Guillemin and
Sternberg [8]. The classical construction of the normal form coordinates in this setup uses very strongly
the existence of a momentum map in the space that we want to locally model. In the following paragraphs
we show how to reproduce this result for canonical proper actions on a symplectic manifold that do not
necessarily have a momentum map associated. In the exposition we will limit ourselves to present the
ingredients of this construction. For a complete presentation the reader is encouraged to check with [31
where this normal form is explained in full detail.

Let (M, w) be a symplectic manifold be a Lie group acting properly and canonically on it, and
m € M be an arbitrary point il around which we want to construct the slice coordinates. The following
facts can be readily verified:
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() The vector spac®,, :=T,,(G - m)*/(T,,(G - m)® N T,,(G - m)) is symplectic with the symplectic
form wy,, defined bywy, ([v], [w]) := w(m)(v, w), for any[v] = 7 (v) and[w] = 7 (w) € V,,, and
wheren : T,,(G - m)® — T,(G - m)*/(T,,(G - m)* N T, (G - m)) is the canonical projection. The
vector spacé/,, is called thesymplectic normal spaca m.

(i) Let H := G,, be the isotropy subgroup af. The properness of th€-action guarantees thal
is compact. The mappin@, [v]) —> [k - v], with h € H and[v] € V,,,, defines a linear canonical
action of the Lie grougH on (V,,, wy, ), whereg - u denotes the tangent lift of th@-action onT M,
for g € G andu € T M. We will denote bydy,, : V,, — b* the associated’ -equivariant momentum
map.

(i) Let g andh be the Lie algebras of; and H, respectively. The vector subspate g given by
t={neglnuim) e (g-m)®}, is a subalgebra af such that) C ¢.

(iv) Lie algebra decompositions: the compactness of the isotropy subgtoafiows us to choose
two Ady-invariant complementan to h in € andq to ¢ in g. Therefore, we have the orthogonal
decompositions

g=hdmdq, wheret=5Hm, (A.1)

as well as their dualg* = h* @ m* @ q*, wheret* = h*  m*.
(v) The normal form tuliethere are twaH -invariant neighborhoodgV,,), andm’ of the origin inV,,
andm* such that the twisted product

Y, :=G xy (m5 x (V,),) (A.2)

is a symplectic manifold acted on lgy according to the expressi@n [k, i, v] := [gh, n, v], for any
g € G, and any&, n, v] € Y,. This action is canonical. The use of the construction (A.2) is justified
by the following theorem.

Theorem A.1 (Slice Theorem for canonical Lie group actionsgt (M, w) be a symplectic manifold and
let G be a Lie group acting properly and canonically of. Letm € M and denoteH := G,,. Then, the
manifold

Y,: =G xpy (mj‘ X (Vm),) (A.3)

introduced in (A.2) is a symplecticG-space and can be chosen such that there i6-avariant
neighborhoodU of m in M and an equivariant symplectomorphispn U — Y, satisfying ¢ (m) =
[e, O, O].

A.2. The reconstruction equations for canonical proper Lie group actions

The reconstruction equations are the differential equations that determine the Hamiltonian vector field
associated to &-invariant Hamiltonian in the coordinates provided by Theorem A.1l. In the globally
Hamiltonian context these equations can be found in [28,33,36]. As we will see, it is remarkable that in
the absence of a momentum map, the reconstruction equations written using the symplectic form of (A.2)
areformally identical to the ones obtained for the globally Hamiltonian case.

In order to present the reconstruction equationg letC>(Y,)¢ be the Hamiltonian function whose
associated vector field, we want to write down. Letr : xm* x (V,,), = G xg (m! x (V,),) be
the canonical projection. Th&-invariance ofi implies thath o 7 € C®(G x m* x (V,,),)" can
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be understood as & -invariant function that depends only on the€ and (V,,), variables, that is,
hom e C®m! x (V,),)".

Now, since the projectionr is a surjective submersion, the Hamiltonian vector fi&g can be
locally expressed aX;, = Tn(Xg, Xm+, Xv,), With X, X and Xy, locally defined smooth maps
on Y, and having values if'G, Tm* and T'(V,,), respectively. Moreover, using the Aednvariant
decomposition of the Lie algebgaintroduced in the previous section, the mappitig can be written,
forany (g, p,v) € G x m: x (V,),, asXg(g, p,v) = T.Ly(Xp(g, p, V) + Xm(g, p, V) + Xq(g, 0, V),
with Xy, X, and X, locally defined smooth maps dfy with values inh, m, andq, respectively. In
what follows we give the expressions that determiig X .+, and Xy, as a function of the differential
of the Hamiltoniar.

First, the construction af as a complement tbguarantees that the bilinear pairifig-), in q defined
by (£, n)q := w(m)(&y(m), ny(m)) is non-degenerate. L&, P+, andP - denote the projections from
g* onto h*, m*, andq*, respectively, according to the Adinvariant splittingg* = h* & m* @ q*. The
non degeneracy df, -), implies that the mapping

Fiext*xqg—q*
& 1) o Po(adi )2) + (T, ),

is such thatF (0,0, 0) = 0 and that its derivatived, F (0,0, 0):q* — q* is a linear isomorphism. The
Implicit Function Theorem implies the existence of a locally defined functiohx ¢ — q around the
origin such that (0, 0) = 0, andPy: (ad; , , ¢ ,),») + (t(§, 1), -)q = 0. Let nowy :m* x V,, — q be the
locally defined function given by (p, v) := T (D (h o ) (p, v), p + Iy, (V).

With these expressions at hand it can be verified [31] hais given by

(A.4)

XG(g,p,v) =T,Lg(¥(p,v) + Du=(hom)(p, v)), (A.5)
X (g, p,v) =P (adkpm* (hon)/)) + adkpm* (hon)JVm (V) + Py (acrp(pyv) (,0 + JVm (v))), (A.6)
Xy, (g, p,v)= B‘t,m (Dvm (h om)(p, v))). (A.7)

A.3. Tubewise Hamiltonian actions

In the following paragraphs we will see how the normal form introduced in Appendix A.1 helps us
determining, in the framework of proper canonical actions, when such an action is tubewise Hamiltonian.
In order to be more specific, recall that by Theorem A.1,@rngrbit of a symplectiaG-space(M, w) has
an invariant neighborhood around it that can be modeled by an associated bundle like the one presente
in (A.3). Consequently, we can conclude that the canonical prGpaction on(M, w) is strongly (resp.
weakly) tubewise Hamiltonian if thé&-action on eachG-invariant coordinate patch (A.3) is strongly
(resp. weakly) Hamiltonian. The following result provides a sufficient condition regarding the strong
case whose proof can be found in [31].

Proposition A.2. Let (M, w) be a symplectic manifold and |€ét be a Lie group with Lie algebra,

acting properly and canonically on. Letm e M, H :== G,, and Y, := G xyg (m* x (V,,),) be the
normal coordinates around the orbf - m introduced in (A.3). If the G-equivariant,g*-valued one
formy € 2%(G; g*) defined by

(y()-T.Lg-n, &) :=—w(m)((Ady18)y(m), nu(m)) foranygeG, &,neg (A.8)
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is exact then, th&-action onY, given byg - [h, n, v] := [gh, n, v], for anyg € G, and any{h, n,v] € Y,,
has a standard momentum map associated. Therefore, if the gfdagonnected andA.8) is exact,
the G-action onY, is strongly Hamiltonian.

The next proposition provides another characterization of the exactness of (A.8) and therefore anothe
sufficient condition for theG-action on the tubd’, to be strongly Hamiltonian whe& is connected.
See [31] for a proof.

Proposition A.3. Suppose that we are in the conditions of ProposithR2. Letm € M, H := G,
andY, := G xy (m: x (V,,),) be the normal coordinates around the orlait- m introduced in(A.3).
Let ¥:g x g — R be the two cocycle given b¥ (&, n) = w(m)(&y(m), ny(m)), with £, € g, and
>':g — g* be defined as£’(¢) = X(£, ), £ € g. Then, the form(A.8) is exact if and only if there
exists ag*-valued group one cocyclke: G — g* such that7,6 = X". In the presence of this cocycle, the
mapJ, : G x ¢* — g* given by

Jo(g,v) = Ad;‘_l v—06(g) (A.9)

is a momentum map for th@-action onG x ¢* with non-equivariance cocycle equal+a.

The following corollary presents two situations in which the hypotheses of Proposition A.2 are trivially
satisfied for any poiniz € M.

Corollary A.4. Let(M, w) be a symplectic manifold and I6tbe a connected Lie group with Lie algebra
g, acting properly and canonically oM . If either,

() HY(G)=0, or
(ii) all the G-orbits are isotropic

then, the associated subgroup; of P(M) is tubewise strongly Hamiltonian.
A.4. Proof of Lemma 3.6

Let D be a smooth integrable regular distribution on the manifdlcand =zp: M — M/D be the
associated surjective submersion. létbe a D-saturated open subset &f, z a point in U, and
f e C®U)P. Sincenp is a submersion, there are chaflg, ¢) and (W, ) aroundz and mp(z),
respectively, such thatp (V) =W, ¢:V - V' x W, ¥:W — W, ¢(z) = (0,0), and the local
representative ofrp, that is, s o mp o ¢ 1: V' x W — W’ is the projection onto the second factor.
We will shrink V if necessary so that c U.

Let B.(0) c W’ be a ball of radiuss > 0 and¢: B.(0) — [0, 1] be a bump function such that
dl5.,,0 = 1 and @|p,0)\s./40 = 0. Let F},: 9~ (B:(0)) C W — R be the smooth function given
by F,,() = fo)¢p (1)), | € v~1(B.(0), where f5:7p(U) — R is the unique smooth function
determined by the relatiof = f o mp|y. As the functionF;, and all its derivatives are zero in the
boundary ofy~1(B.(0)), F;, can be extended to a functidf, € C>*(M/ D).

Let F € C®(M)P be the function given byF := Fj o 7, and ¥ be the submanifold of\/
through z defined as¥ := ¢~1({0} x B.,2(0)). Notice thatr,(X) is an open subset of,(U) since
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Y (p(X)) = B2(0) is an open subset af (7 (U)). Consequently]” = ngl(nD(E)) c U is an open
D-invariant subset of/.

We will prove the lemma by showing thdt|; = f|r. Indeed, letm € T arbitrary. By definition
m e T iff mp(m) e mp(X) or, equivalently, there exists an element ¢~1({0} x B.,2(0)) such that
np(m) = mp(z). Due to the local expression af, in the charts(V, ¢) and (W, ¢) we have that
Y (p(2)) € Be2(0) or, equivalentlyrp(z) € w‘l(Bg/z(O)). With this in mind, we have that

F(m)= Fpomnp(m)=Fponp(z)=Fpomp(z),

where the previous equality follows from the fact thaf(z) € v (B, ,2(0)). We now use the definition

of Fj, and Fj, o mp(2) = fp(np(2)¢ (¥ (7p(2))) = fp(7p(2)) = fp(wp(m)) = f(m), which proves
that F(m) = f(m), as required.
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