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Abstract

In this paper, we consider the permanence of a modified delayed SIR epidemic model with density dependent birth rate which is
proposed in [M. Song, W. Ma, Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time
delay, Dynamic of Continuous, Discrete and Impulsive Systems, 13 (2006) 199–208]. It is shown that global dynamic property of the
modified delayed SIR epidemic model is very similar as that of the model in [W. Ma, Y. Takeuchi, T. Hara, E. Beretta, Permanence
of an SIR epidemic model with distributed time delays, Tohoku Math. J. 54 (2002) 581–591; W. Ma, M. Song, Y. Takeuchi, Global
stability of an SIR epidemic model with time delay, Appl. Math. Lett. 17 (2004) 1141–1145].
© 2006 Published by Elsevier B.V.
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1. Introduction

Epidemic models with or without time delay are studied by many authors (see, for example, for the model with
time delay [1,2,11–13,15], for one without time delay [7,9,10,14]). They consider the stability or permanence of the
models by applying the theory on delay differential equations [3–6,8]. In this paper, we consider the permanence of
the following modified delayed SIR epidemic model with density dependent birth rate which is proposed in [13],⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ṡ(t) = −�S(t)I (t − h) − �1S(t) + b

(
1 − �1

N(t)

1 + N(t)

)
,

İ (t) = �S(t)I (t − h) − �2I (t) − �I (t),

Ṙ(t) = �I (t) − �3R(t),

(1.1)

where S(t)+I (t)+R(t) ≡ N(t) denotes the number of a population at time t; S(t), I (t) and R(t) denote the numbers of
susceptible members to the disease, of infective members and of members who have been removed from the possibility
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of infection through full immunity, respectively. It is assumed that all newborns are susceptible. The positive constants
�1, �2 and �3 represent the death rates of susceptibles, infectives and recovered, respectively. It is natural biologically to
assume that �1 � min{�2, �3}. The positive constants b and � represent the birth rate of the population and the recovery
rate of infectives, respectively. The constant �1 (0��1 < 1) reflects the relation between the birth rate and the density
of population. The nonnegative constant h is the time delay.

The initial condition of (1.1) is given as

S(�) = �1(�), I (�) = �2(�), R(�) = �3(�) (−h���0), (1.2)

where �=(�1, �2, �3)
T ∈ C, such that �i (�)�0 (−h���0, i=1, 2, 3). C denotes the Banach space C([−h, 0],R3)

of continuous functions mapping the interval [−h, 0] intoR3. By a biological meaning, we further assume that �i (0) > 0
for i = 1, 2, 3. It is easily to show that the solution (S(t), I (t), R(t)) of (1.1) with the initial condition (1.2) exists for
all t �0 and is unique and positive for all t �0.

With some simple computation, we see that (1.1) always has a disease free equilibrium (i.e., boundary equilibrium)
E0 = (S0, 0, 0), where

S0 = 1

2�1

[
b(1 − �1) − �1 +

√
[b(1 − �1) − �1]2 + 4�1b

]
.

Furthermore, if

S0 > S∗ ≡ �2 + �

�
, (1.3)

then (1.1) also has an endemic equilibrium (i.e., interior equilibrium) E+ = (S∗, I ∗, R∗), where

I ∗ = −P +
√

P 2 − 4�S∗WQ

2�S∗W
, R∗ = �I ∗

�3
,

W = 1 + �

�3
> 0,

P = [�1S
∗ − b(1 − �1)]W + �S∗(1 + S∗),

Q = [�1S
∗ − b(1 − �1)](1 + S∗) − b�1 < 0.

A detailed analysis on the local asymptotic stability of E0 and E+, and the global asymptotic stability of E0 are
given in [13]. The purpose of the paper is to consider the permanence of (1.1) with the initial condition (1.2).

2. Permanence of (1.1)

In this section, we always assume that S0 > S∗ which ensures the existence of the endemic equilibrium E+ of (1.1).
The following lemma is proved in [13].

Lemma 2.1. For any solution (S(t), I (t), R(t)) of (1.1) with (1.2), we have that

lim sup
t→+∞

N(t)�S0. (2.1)

We also have the following

Lemma 2.2. For any solution (S(t), I (t), R(t)) of (1.1) with (1.2), it has that

lim inf
t→+∞ S(t)� b(1 − �1)

�S0 + �1
≡ �1. (2.2)
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Proof. For any sufficiently small � > 0, from Lemma 2.1, there exists a large t1 > 0 such that for t � t1, I (t)�S0 + �.
Hence, for t � t1 + h,

Ṡ(t)� − �S(t)(S0 + �) − �1S(t) + b(1 − �1)

= − [�(S0 + �) + �1]S(t) + b(1 − �1),

which clearly implies that

lim inf
t→+∞ S(t)� b(1 − �1)

�(S0 + �) + �1
= �1.

Note that � may be arbitrarily small. It has that (2.2) holds. This completes the proof of Lemma 2.2. �

The following Lemma 2.3 plays an important role for the permanence of (1.1).

Lemma 2.3. For any solution (S(t), I (t), R(t)) of (1.1) with (1.2), it has that

lim inf
t→+∞ I (t)�	I ∗e−(�2+�)(d+h) ≡ �2,

where 	 > 0 and d > 0 satisfy

q ≡ 1

	�I ∗ + �1

(
b(1 − �1) + b�1

1 + S0 + �0

)
> S∗

and

S
 ≡ q(1 − e−(	�I∗+�1)d ) > S∗,

respectively. �0 > 0 satisfies

1

�1

(
b(1 − �1) + b�1

1 + S0 + �0

)
> S∗. (2.3)

Proof. First, note that since S0 satisfies

S0 = 1

�1

(
b − b�1S0

1 + S0

)
> S∗,

it is possible to choose �0 > 0 satisfying (2.3). Hence, there exist 	 > 0 and d > 0 such that q > S∗ and S
 > S∗ hold.
Let us consider any solution (S(t), I (t), R(t)) of (1.1) with (1.2). For t �0, we define a differentiable function V (t)

as follows:

V (t) = I (t) + �S∗
∫ t

t−h

I (u) du. (2.4)

Then, the derivative of V (t) along the solution of (1.1) with (1.2) satisfies

V̇ (t) = İ (t) + �S∗I (t) − �S∗I (t − h)

= �(S(t) − S∗)I (t − h) + [�S∗ − (�2 + �)]I (t)

= �(S(t) − S∗)I (t − h). (2.5)

From Lemma 2.1, there is some t0 > 0 such that for any t � t0, it has that

N(t)�S0 + �0.

Claim. It is impossible that for all large t , it has that

I (t)�	I ∗.
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In fact, if the claim is not true, there exists t∗ � t0 such that for any t � t∗, it has that

I (t)�	I ∗.

Hence, it follows from the first equation of (1.1) that, for any t � t∗ + h,

Ṡ(t) = − �S(t)I (t − h) − �1S(t) + b(1 − �1) + b�1

1 + N(t)

� − (�	I ∗ + �1)S(t) + b(1 − �1) + b�1

1 + S0 + �0
.

Thus, it has that, for any t � t∗ + h + d ,

S(t)�S(t∗ + h)e−(�	I∗+�1)(t−t∗−h) +
(

b(1 − �1) + b�1

1 + S0 + �0

) ∫ t

t∗+h

e−(�	I∗+�1)(t−�) d�

>
1

�	I ∗ + �1

(
b(1 − �1) + b�1

1 + S0 + �0

)
(1 − e−(�	I∗+�1)(t−t∗−h))

� 1

�	I ∗ + �1

(
b(1 − �1) + b�1

1 + S0 + �0

)
(1 − e−(�	I∗+�1)d )

= q(1 − e−(	�I∗+�1)d )

= S
 > S∗. (2.6)

Therefore, from (2.5) and (2.6), we have that, for any t � t∗ + d + h,

V̇ (t) = �(S(t) − S∗)I (t − h)

> �(S
 − S∗)I (t − h).

Set

i = min
�∈[−h,0]

I (t∗ + d + 2h + �) > 0.

Now, we show that I (t)� i for all t � t∗ + d + h.
In fact, if there is a T �0 such that I (t)� i for t∗ + d + h� t � t∗ + d + 2h + T , I (t∗ + d + 2h + T ) = i and

İ (t∗ + d + 2h + T )�0, it has from the second equation of (1.1) and (2.6) that, for t = t∗ + d + 2h + T ,

İ (t)�[�S(t) − (�2 + �)]i
> �[S
 − S∗]i
> 0.

This is a contradiction to İ (t∗ + d + 2h + T )�0. Thus, I (t)� i for all t � t∗ + d + h.
Therefore, for all t � t∗ + d + h,

V̇ (t) > �(S
 − S∗)i,

which implies that V (t) → +∞ as t → +∞. On the other hand, from Lemma 2.1 and (2.4), there exists a sufficiently
large T̄ > 0 such that, for t � T̄ ,

V (t)�S0 + 1 + �S∗h(1 + S0).

This is a contradiction to V (t) → +∞ as t → +∞. Hence, the claim is proved.
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In the rest, we are left to consider two cases.

(i) I (t)�	I ∗ for all large t.
(ii) I (t) oscillates about 	I ∗ for all large t.

We show that I (t)�	I ∗e−(�2+�)(d+h) = �2 for all large t. Clearly, we only need to consider the case (ii). Let t1 and
t2 be sufficiently large such that t∗ < t1 < t2,

I (t1) = I (t2) = 	I ∗,

I (t) < 	I ∗ (t1 < t < t2).

If t2 − t1 �d + h, from the second equation of (1.1), we have that

İ (t) > − (�2 + �)I (t),

which implies that, for t ∈ (t1, t2),

I (t) > I (t1)e
−(�2+�)(t−t1).

It is obvious that, for t1 < t < t2,

I (t) > 	I ∗e−(�2+�)(d+h) = �2.

If t2 − t1 > d + h, we can easily obtain that I (t)��2 for t ∈ [t1, t1 + d + h]. Then, proceeding exactly as the proof for
the above claim, we can show that I (t)��2 for t1 + d + h� t � t2.

In fact, if not, there exists a T ∗ �0 such that I (t)��2 for t1 � t � t1 + d + h + T ∗ � t2, I (t1 + d + h + T ∗) = �2 and
İ (t1 + d + h + T ∗)�0. On the other hand, it has that, for t1 � t � t1 + d + h + T ∗ � t2,

I (t)�	I ∗.

Then, it has from the first equation of (1.1) that, for t1 + h� t � t1 + d + h + T ∗ � t2,

Ṡ(t) = − �S(t)I (t − h) − �1S(t) + b(1 − �1) + b�1

1 + N(t)

� − (�	I ∗ + �1)S(t) + b(1 − �1) + b�1

1 + S0 + �0
,

which implies that, for t1 + d + h� t � t1 + d + h + T ∗ � t2,

S(t)�S(t1 + h)e−(�	I∗+�1)(t−t1−h) +
(

b(1 − �1) + b�1

1 + S0 + �0

) ∫ t

t1+h

e−(�	I∗+�1)(t−�) d�

>
1

�	I ∗ + �1

(
b(1 − �1) + b�1

1 + S0 + �0

)
(1 − e−(�	I∗+�1)(t−t1−h))

� 1

�	I ∗ + �1

(
b(1 − �1) + b�1

1 + S0 + �0

)
(1 − e−(�	I∗+�1)d )

= q(1 − e−(�	I∗+�1)d )

= S
 > S∗. (2.7)
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Thus, it has from the second equation of (1.1) and (2.7) that, for t = t1 + d + h + T ∗,

İ (t) = �S(t)I (t − h) − �2I (t) − �I (t)

�[�S(t) − (�2 + �)]�2

> �[S
 − S∗]�2

> 0.

This is a contradiction to İ (t1 + d + h + T ∗)�0. Therefore, we have that I (t)��2 for t ∈ [t1, t2]. Since this kind of
interval [t1, t2] is chosen in an arbitrary way, we conclude that I (t)��2 for all large t in the case (ii). Hence, it has that

lim inf
t→+∞ I (t)��2.

The proof of Lemma 2.3 is completed. �

Theorem 2.4. If S0 > S∗, then, (1.1) is permanent for any time delay h.

Proof. Lemma 2.1 shows that the solution (S(t), I (t), R(t)) of (1.1) is uniformly ultimately bounded. Lemmas 2.2–2.3
show that S(t) and I (t) are ultimately strictly positive with some positive constants. Furthermore, it follows from the
third equation of (1.1) and Lemma 2.3 that lim inf t→+∞R(t)�(��2)/�3. Hence, (1.1) is permanent. This proves
Theorem 2.4. �
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