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It is known that

∞∑
k=0

(2k
k

)
(2k + 1)4k

= π

2
and

∞∑
k=0

(2k
k

)
(2k + 1)16k

= π

3
.

In this paper we obtain their p-adic analogues such as

∑
p/2<k<p

(2k
k

)
(2k + 1)4k

≡ 3
∑

p/2<k<p

(2k
k

)
(2k + 1)16k

≡ pE p−3
(
mod p2),

where p > 3 is a prime and E0, E1, E2, . . . are Euler numbers.
Besides these, we also deduce some other congruences related to
central binomial coefficients. In addition, we pose some conjectures
one of which states that for any odd prime p we have

p−1∑
k=0

(
2k

k

)3

≡

⎧⎪⎪⎨
⎪⎪⎩

4x2 − 2p (mod p2)

if (
p
7 ) = 1 & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2)

if (
p
7 ) = −1, i.e., p ≡ 3,5,6 (mod 7).
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1. Introduction

The following three series related to π are well known (cf. [Ma]):

∞∑
k=0

(2k
k

)
(2k + 1)4k

= π

2
,

∞∑
k=0

(2k
k

)
(2k + 1)16k

= π

3
,

and

∞∑
k=0

(2k
k

)
(2k + 1)2(−16)k

= π2

10
.

These three identities can be easily shown by using 1/(2k + 1) = ∫ 1
0 x2k dx. In March 2010 the author

[Su2] suggested that

∞∑
k=0

(2k
k

)
(2k + 1)316k

= 7π3

216

via a public message to Number Theory List, and then Olivier Gerard pointed out there is a computer
proof via certain math. softwares like Mathematica (version 7). Our main goal in this paper is to
investigate p-adic analogues of the above identities for powers of π .

For a prime p and an integer a �≡ 0 (mod p), we let qp(a) denote the Fermat quotient (ap−1 −1)/p.
For an odd prime p and an integer a, by ( a

p ) we mean the Legendre symbol. As usual, harmonic
numbers refer to those Hn = ∑

0<k�n 1/k with n ∈ N = {0,1,2, . . .}. Recall that Euler numbers
E0, E1, E2, . . . are integers defined by E0 = 1 and the recursion:

n∑
k=0
2|k

(
n

k

)
En−k = 0 for n = 1,2,3, . . . .

And Bernoulli numbers B0, B1, B2, . . . are rational numbers given by B0 = 1 and

n∑
k=0

(
n + 1

k

)
Bk = 0 (n = 1,2,3, . . .).

Now we state our first theorem which gives certain p-adic analogues of the first and the second
identities mentioned at the beginning of this section.

Theorem 1.1. Let p be an odd prime.

(i) We have

(p−3)/2∑
k=0

(2k
k

)
(2k + 1)4k

≡ (−1)(p+1)/2qp(2)
(
mod p2), (1.1)

and
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∑
p/2<k<p

(2k
k

)
(2k + 1)4k

≡ pE p−3
(
mod p2) (1.2)

which is equivalent to the congruence

(p−1)/2∑
k=1

4k

(2k − 1)
(2k

k

) ≡ E p−3 + (−1)(p−1)/2 − 1 (mod p). (1.3)

(ii) Suppose p > 3. Then

(p−3)/2∑
k=0

(2k
k

)
(2k + 1)16k

≡ 0
(
mod p2), (1.4)

and

∑
p/2<k<p

(2k
k

)
(2k + 1)16k

≡ p

3
E p−3

(
mod p2) (1.5)

which is equivalent to the congruence

(p−1)/2∑
k=1

16k

k(2k − 1)
(2k

k

) ≡ 8

3
E p−3 (mod p). (1.6)

Remark 1.1. Motivated by the work of H. Pan and Z.W. Sun [PS], and Sun and R. Tauraso [ST1,ST2], the
author [Su1] managed to determine

∑pa−1
k=0

(2k
k

)
/mk modulo p2, where p is a prime, a is a positive

integer, and m is any integer not divisible by p. See also [SSZ,G-Z,Su3] for related results on p-adic
valuations.

The congruences in Theorem 1.1 are somewhat sophisticated. Now we deduce some easier congru-
ences via combinatorial identities. Using the software Sigma, we find the identities

n∑
k=0

(
n

k

)
(−1)k

(2k + 1)2
= 4n

(2n + 1)
(2n

n

) n∑
k=0

1

2k + 1
,

n∑
k=0

(−1)k

(k + 1)
(n

k

) = n + 1 − (n + 1)

n∑
k=1

1 − 2(−1)k

(k + 1)2
,

and

n
n∑

k=2

(−1)k

(k − 1)2
(n

k

) =
n∑

k=2

1 − 2k + (−1)k(1 − k + 2k2)

k(k − 1)2
= 1 + (−1)n

n
−

n−1∑
k=1

1 + 2(−1)k

k2
.

If p = 2n + 1 is an odd prime, then

(
n

k

)
≡

(−1/2

k

)
=

(2k
k

)
(−4)k

(mod p) for all k = 0, . . . , p − 1.



2222 Z.-W. Sun / Journal of Number Theory 131 (2011) 2219–2238
Thus, from the above three identities we deduce for any prime p > 3 the congruences

(p−3)/2∑
k=0

(2k
k

)
(2k + 1)24k

≡ (−1)(p+1)/2 qp(2)2

2
(mod p), (1.7)

(p−1)/2∑
k=2

4k

(k − 1)2
(2k

k

) ≡ 8E p−3 − 4 − 12

(−1

p

)
(mod p) (1.8)

and

(p−1)/2∑
k=0

4k

(k + 1)
(2k

k

) ≡
(−1

p

)
(4 − 2E p−3) − 2 (mod p). (1.9)

Note that the series
∑∞

k=0 4k/((k + 1)
(2k

k

)
) diverges while Mathematica (version 7) yields

∞∑
k=0

(2k
k

)
(2k + 1)24k

= π

4
log 2 and

∞∑
k=2

4k

(k − 1)2
(2k

k

) = π2 − 4

the latter of which appeared in [Sp].
Let p be an odd prime. By a known result (see, e.g., [I]),

p−1∑
k=0

(2k
k

)3

64k
≡ a(p)

(
mod p2),

where the sequence {a(n)}n�1 is defined by

∞∑
n=1

a(n)qn = q
∞∏

n=1

(
1 − q4n)6

.

Clearly, a(p) = 0 if p ≡ 3 (mod 4).
Recall that Catalan numbers are those integers

Ck = 1

k + 1

(
2k

k

)
=

(
2k

k

)
−

(
2k

k + 1

)
(k = 0,1,2, . . .).

They have many combinatorial interpretations (see, e.g., [St2, pp. 219–229]).
Now we present our second theorem.

Theorem 1.2. Let p be an odd prime.

(i) We have

p−1∑
k=0

k3
(2k

k

)3

64k
≡

{
0 (mod p) if p ≡ 1 (mod 4),

− 1
640 (

p+1
4 !)−4 (mod p) if p ≡ 3 (mod 4).

(1.10)
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If p > 3 and p ≡ 3 (mod 4), then

p−1∑
k=0

(
p − 1

k

) (2k
k

)3

(−64)k
≡ 0

(
mod p2). (1.11)

(ii) We have

p−1∑
k=0

C2
k

16k
≡ −3 (mod p), (1.12)

and

p−1∑
k=0

C3
k

64k
≡

{
7 (mod p) if p ≡ 1 (mod 4),

7 − 3
2 (

p+1
4 !)−4 (mod p) if p ≡ 3 (mod 4).

(1.13)

Also,

p−1∑
k=0

(2k
k

)
Ck

32k
≡

{
p (mod p2) if p ≡ 1 (mod 4),

p + (4p + 2p − 6)
(
(p−3)/2
(p−3)/4

)
(mod p2) if p ≡ 3 (mod 4).

(1.14)

Remark 1.2. Let p be an odd prime. We conjecture that if p ≡ 1 (mod 4) and p > 5 then

pa−1∑
k=0

k3
(2k

k

)3

64k
≡ 0

(
mod p2a) for all a = 1,2,3, . . . .

We also conjecture that
∑(p−1)/2

k=0 kC3
k /16k ≡ 2p−2 (mod p2) if p ≡ 1 (mod 3), and

∑(p−1)/2
k=0 C3

k /64k ≡
8 (mod p2) if p ≡ 1 (mod 4).

In the next section we are going to provide several lemmas. Theorems 1.1 and 1.2 will be proved
in Sections 3 and 4 respectively. Section 5 contains some open conjectures of the author for further
research.

2. Some lemmas

For n ∈ N the Chebyshev polynomial Un(x) of the second kind is given by

Un(cos θ) = sin((n + 1)θ)

sin θ
.

It is well known that

Un(x) =
�n/2�∑
k=0

(
n − k

k

)
(−1)k(2x)n−2k.
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Lemma 2.1. For n ∈ N, we have the identities

n∑
k=0

(
n + k

2k

)
(−4)k

2k + 1
= (−1)n

2n + 1
(2.1)

and

n∑
k=0

(
n + k

2k

)
(−1)k

2k + 1
=

{
(−1)n/(2n + 1) if 3 � 2n + 1,

2(−1)n−1/(2n + 1) if 3 | 2n + 1.
(2.2)

Proof. Note that

U2n(x) =
n∑

k=0

(
2n − k

2n − 2k

)
(−1)k(2x)2n−2k =

n∑
j=0

(
n + j

2 j

)
(−1)n− j(2x)2 j .

Thus

n∑
k=0

(
n + k

2k

)
(−4)k

2k + 1
=

1∫
0

n∑
k=0

(
n + k

2k

)
(−4)kx2k dx = (−1)n

1∫
0

U2n(x)dx

= (−1)n

0∫
π/2

U2n(cos θ)(− sin θ)dθ

= (−1)n

π/2∫
0

sin
(
(2n + 1)θ

)
dθ

= −(−1)n

2n + 1
cos

(
(2n + 1)θ

)∣∣∣∣
π/2

0
= (−1)n

2n + 1
.

Similarly,

n∑
k=0

(
n + k

2k

)
(−1)k

2k + 1
=

1∫
0

n∑
k=0

(
n + k

2k

)
(−1)kx2k dx = (−1)n

1∫
0

U2n

(
x

2

)
dx

= (−1)n

π/3∫
π/2

U2n(cos θ)(−2 sin θ)dθ

= −2(−1)n

π/3∫
π/2

sin
(
(2n + 1)θ

)
dθ

= 2(−1)n

2n + 1
cos

(
(2n + 1)θ

)∣∣∣∣
π/3

= 2(−1)n

2n + 1
cos

(
2n + 1

3
π

)

π/2
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=
{

(−1)n/(2n + 1) if 3 � 2n + 1,

2(−1)n−1/(2n + 1) if 3 | 2n + 1.

This concludes the proof. �
Lemma 2.2. Let p = 2n + 1 be an odd prime. For k = 0, . . . ,n we have

(
n + k

2k

)
≡

(2k
k

)
(−16)k

(
mod p2). (2.3)

Proof. As observed by the author’s brother Z.H. Sun,

(
n + k

2k

)
=

∏
0< j�k(p2 − (2 j − 1)2)

4k(2k)! ≡
∏

0< j�k(−(2 j − 1)2)

4k(2k)! =
(2k

k

)
(−16)k

(
mod p2).

We are done. �
Remark 2.1. Using Lemma 2.2 and the identity

n∑
k=0

(n+k
2k

)
(−2)k

2k + 1
= (1 + i)(−i)n(1 + (−1)n−1i)

2(2n + 1)
,

we can deduce for any prime p > 3 that

(p−3)/2∑
k=0

(2k
k

)
(2k + 1)8k

≡ −
(−2

p

)
qp(2)

2
+

(−2

p

)
p

8
q2

p(2)
(
mod p2).

Lemma 2.3. Let p be any odd prime. Then

(p−1)/2∑
k=1

4k

k
(2k

k

) ≡ 2
(
(−1)(p−1)/2 − 1

)
(mod p). (2.4)

Proof. Clearly (2.4) holds for p = 3.
Now assume that p > 3. We can even show a stronger congruence

1

2

(p−1)/2∑
k=1

4k

k
(2k

k

) ≡ (−1)(p−1)/2(1 − p qp(2) + p2qp(2)2) − 1
(
mod p3).

Let us employ a known identity (cf. [G, (2.9)])

n∑
k=1

22k−1

k
(2k

k

) = 22n(2n
n

) − 1

which can be easily proved by induction. Taking n = (p − 1)/2 and noting that

(−1)n
(

2n

n

)
≡ 4p−1 (

mod p3)
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by Morley’s congruence [Mo], we get

1

2

(p−1)/2∑
k=1

4k

k
(2k

k

) ≡ (−1)(p−1)/2

1 + p qp(2)
− 1 ≡ (−1)(p−1)/2(1 − p qp(2) + p2qp(2)2) − 1

(
mod p3).

This ends the proof. �
Lemma 2.4. For any n ∈ N, we have the identity

n∑
k=−n

(−1)k

(2k + 1)2

(
2n

n + k

)
= 16n

(2n + 1)2
(2n

n

) . (2.5)

Proof. Let un and vn denote the left-hand side and the right-hand side of (2.5) respectively. By the
well-known Zeilberger algorithm (cf. [PWZ]),

(2n + 3)(2n + 5)2un+2 − 16(n + 2)(2n + 3)2un+1 + 64(n + 1)(n + 2)(2n + 1)un = 0

for all n = 0,1,2, . . . . It is easy to verify that {vn}n�0 also satisfies this recurrence. Since u0 = v0 = 1
and u1 = v1 = 8/9, by the recursion we have un = vn for all n ∈ N. �
Remark 2.2. (2.5) was discovered by the author during his study of Delannoy numbers (cf. [Su5]).
The reader may consult [GZ] and [ZG] for some other combinatorial identities obtained via solving
recurrence relations.

Lemma 2.5. For any n ∈ N we have

n∑
k=0

(
2n − k

k

)
(−1)k =

(
1 − n

3

)
(2.6)

and

n∑
k=0

(
2n − k

k

)
1

(−4)k
= 2n + 1

4n
. (2.7)

Remark 2.3. (2.6) and (2.7) are known identities, see (1.75) and (1.73) of [G].

Lemma 2.6. Let p > 3 be a prime. Then

∑
0<k��p/6�

(−1)k

k2
≡ (−1)(p−1)/210E p−3 (mod p). (2.8)

Proof. Recall that the Euler polynomial of degree n is defined by

En(x) =
n∑

k=0

(
n

k

)
Ek

2k

(
x − 1

2

)n−k

.
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It is well known that

En(1 − x) = (−1)n En(x), En(x) + En(x + 1) = 2xn,

and

En(x) = 2

n + 1

(
Bn+1(x) − 2n+1 Bn+1

(
x

2

))
,

where Bm(x) denotes the Bernoulli polynomial of degree m.
Note that E p−3(0) = 2

p−2 (1 − 2p−2)B p−2 = 0 and E p−3(5/6) = E p−3(1/6). Thus

2
∑

0<k��p/6�

(−1)k

k2
≡

�p/6�∑
k=0

(−1)k(2kp−3)

=
�p/6�∑
k=0

(
(−1)k E p−3(k) − (−1)k+1 E p−3(k + 1)

)

= E p−3(0) − (−1)�p/6�+1 E p−3

(⌊
p

6

⌋
+ 1

)

≡ (−1)�p/6�E p−3

(
1

6

)
(mod p).

Evidently �p/6� ≡ (p − 1)/2 (mod 2). As En(1/6) = 2−n−1(1 + 3−n)En for all n = 0,2,4, . . . (see, e.g.,
G.J. Fox [F]), we have

E p−3

(
1

6

)
= 22−p(

1 + 33−p)
E p−3 ≡ 2

(
1 + 32)E p−3 = 20E p−3 (mod p).

Therefore (2.8) follows from the above. �
3. Proof of Theorem 1.1

(a) Set n = (p − 1)/2. By Lemmas 2.1 and 2.2,

n−1∑
k=0

(2k
k

)
(2k + 1)4k

≡
n−1∑
k=0

(
n + k

2k

)
(−4)k

2k + 1
= (−1)n − (−4)n

2n + 1

= (−1)n 1 − 2p−1

p
= (−1)n+1qp(2)

(
mod p2).

This proves (1.1). When p = 2n + 1 > 3, again by Lemmas 2.1 and 2.2, we have

n−1∑
k=0

(2k
k

)
(2k + 1)16k

≡
n−1∑
k=0

(
n + k

2k

)
(−1)k

2k + 1
= 0

(
mod p2)

and hence (1.4) holds.
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(b) For k ∈ {1, . . . , (p − 1)/2}, it is clear that

1

p

(
2(p − k)

p − k

)
= 1

p
× p!∏p−2k

s=1 (p + s)

((p − 1)!/∏
0<t<k(p − t))2

≡ (k − 1)!2
(p − 1)!/(p − 2k)! ≡ − (k − 1)!2

(2k − 1)! = − 2

k
(2k

k

) (mod p).

Therefore

1

p

∑
p/2<k<p

(2k
k

)
(2k + 1)4k

=
(p−1)/2∑

k=1

(2(p−k)
p−k

)
/p

(2(p − k) + 1)4p−k

≡ −2
(p−1)/2∑

k=1

4k−1

(1 − 2k)k
(2k

k

) = 1

2

(p−1)/2∑
k=1

4k

k(2k − 1)
(2k

k

) (mod p).

Similarly,

1

p

∑
p/2<k<p

(2k
k

)
(2k + 1)16k

≡ 1

8

(p−1)/2∑
k=1

16k

k(2k − 1)
(2k

k

) (mod p)

and hence (1.5) and (1.6) are equivalent. Observe that

(p−1)/2∑
k=1

4k

k(2k − 1)
(2k

k

) = 2
(p−1)/2∑

k=1

4k

(2k − 1)
(2k

k

) −
(p−1)/2∑

k=1

4k

k
(2k

k

) .

Thus, in view of (2.4), both (1.2) and (1.3) are equivalent to the congruence

(p−1)/2∑
k=1

4k

k(2k − 1)
(2k

k

) ≡ 2E p−3 (mod p) (3.1)

which holds trivially when p = 3.
(c) Now we prove (3.1) for p > 3. It is easy to see that

(n + 1)
(
2(n + 1) − 1

)(2(n + 1)

n + 1

)
= 2(2n + 1)2

(
2n

n

)

for any n ∈ N. Thus

(p−1)/2∑
k=1

4k

k(2k − 1)
(2k

k

) =
(p−3)/2∑

k=0

4k+1

2(2k + 1)2
(2k

k

) .
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In view of Lemma 2.4,

(p−3)/2∑
n=0

4n

(2n + 1)2
(2n

n

) =
(p−3)/2∑

n=0

1

4n

n∑
k=−n

(−1)k

(2k + 1)2

(
2n

n − k

)

=
(p−3)/2∑

k=−(p−3)/2

(−1)k

(2k + 1)24|k|

(p−3)/2∑
n=|k|

( 2n
n−|k|

)
4n−|k| .

For k ∈ {0, . . . , (p − 3)/2}, with the help of Lemma 2.5 we have

(p−3)/2∑
n=k

( 2n
n−k

)
4n−k

=
(p−3)/2−k∑

r=0

(2k+2r
r

)
4r

=
(p−3)/2−k∑

r=0

(−2k−r−1
r

)
(−4)r

≡
(p−1)/2−k∑

r=0

(p−1−2k−r
r

)
(−4)r

− 1

(−4)(p−1)/2−k

= p − 2k − (−1)(p−1)/2−k

4(p−1)/2−k
≡ (−1)(p+1)/2−k − 2k

4−k
(mod p).

Therefore

(p−3)/2∑
n=0

4n

(2n + 1)2
(2n

n

) ≡
(p−3)/2∑

k=−(p−3)/2

(−1)k

(2k + 1)2

(
(−1)(p+1)/2−k − 2|k|)

=
(p−3)/2∑

k=0

(−1)k

(2k + 1)2

(
(−1)(p+1)/2−k − 2k

)

+
(p−3)/2∑

k=1

(−1)−k

(−2k + 1)2

(
(−1)(p+1)/2+k − 2k

)

≡
(p−1)/2∑

k=1

(−1)k−1

(2k − 1)2

(
(−1)(p+1)/2−k+1 − 2(k − 1)

)

+
(p−1)/2∑

k=1

(−1)k

(2k − 1)2

(
(−1)(p+1)/2+k − 2k

)
(mod p)

and hence

(p−3)/2∑
n=0

4n

(2n + 1)2
(2n

n

) ≡
(p−1)/2∑

k=1

(−1)k

(2k − 1)2

(
2(−1)(p+1)/2−k + 2(k − 1) − 2k

)

= 4(−1)(p+1)/2
∑

1�k�(p−1)/2
k≡(p−1)/2 (mod 2)

1

(2k − 1)2
(mod p).
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Since p > 3 and
∑p−1

k=1 1/(2k)2 ≡ ∑p−1
k=1 1/k2 (mod p), we have

2
(p−1)/2∑

k=1

1

k2
≡

(p−1)/2∑
k=1

(
1

k2
+ 1

(p − k)2

)
=

p−1∑
k=1

1

k2
≡ 0 (mod p)

and hence

∑
1�k�(p−1)/2

2k+1≡p (mod 4)

1

(2k − 1)2
≡

∑
1�k�(p−1)/2

p+1−2k≡2 (mod 4)

1

(p + 1 − 2k)2
=

p−1∑
k=1

k≡2 (mod 4)

1

k2

≡ −
p−1∑
k=1
4|k

1

k2
= − 1

16

�p/4�∑
k=1

1

k2
(mod p).

As
∑�p/4�

k=1 1/k2 ≡ (−1)(p−1)/24E p−3 (mod p) by Lehmer [L, (20)], from the above we obtain that

(p−3)/2∑
n=0

4n

(2n + 1)2
(2n

n

) ≡ 4(−1)(p+1)/2 (−1)(p−1)/24E p−3

−16
= E p−3 (mod p)

and hence (3.1) holds.
(d) Finally we show (1.6) for p > 3. In view of Lemmas 2.4 and 2.5, arguing as in (c) we get

1

8

(p−1)/2∑
k=1

16k

k(2k − 1)
(2k

k

) =
(p−3)/2∑

n=0

16n

(2n + 1)2
(2n

n

)

≡
(p−3)/2∑

k=−(p−3)/2

(−1)k

(2k + 1)2

(p−3)/2−|k|∑
r=0

(
p − 1 − 2|k| − r

r

)
(−1)r

=
(p−3)/2∑

k=−(p−3)/2

(−1)k

(2k + 1)2

(( |k| − (p − 3)/2

3

)
− (−1)(p−1)/2−|k|

)

=
(p−3)/2∑

k=−(p−3)/2

(−1)k

(2k + 1)2

((
p − 2|k|

3

)
+ (−1)(p+1)/2−|k|

)
(mod p).

Observe that

(p−3)/2∑
k=−(p−3)/2

1

(2k + 1)2
=

(p−3)/2∑
k=0

1

(2k + 1)2
+

(p−3)/2∑
k=1

1

(−2k + 1)2

= 2
(p−1)/2∑

k=1

1

(2k − 1)2
− 1

(p − 2)2

≡ 2

( p−1∑ 1

k2
−

(p−1)/2∑ 1

(2k)2

)
− 1

4
≡ −1

4
(mod p)
k=1 k=1
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and

(p−3)/2∑
k=−(p−3)/2

(−1)k

(2k + 1)2

(
p − 2|k|

3

)

=
(p−3)/2∑

k=0

(−1)k

(2k + 1)2

(
p + k

3

)
+

(p−3)/2∑
k=1

(−1)k

(−2k + 1)2

(
p + k

3

)

=
(p−1)/2∑

k=1

(−1)k

(2k − 1)2

((
p + k

3

)
−

(
p + k − 1

3

))
− (−1)(p−1)/2

(p − 2)2

(
p + (p − 1)/2

3

)

≡
(p−1)/2∑

k=1

(−1)k

(2k − 1)2
− 3

(p−1)/2∑
k=1

3|p+k+1

(−1)k

(2k − 1)2
+ (−1)(p+1)/2

4
(mod p).

Therefore

1

8

(p−1)/2∑
k=1

16k

k(2k − 1)
(2k

k

) ≡
(p−1)/2∑

k=1

(−1)k

(p − (2k − 1))2
− 3

(p−1)/2∑
k=1

3|2k−1−p

(−1)k

(p − (2k − 1))2

=
(p−1)/2∑

k=1

(−1)(p+1)/2−k

(2k)2
− 3

∑
0<k��p/6�

(−1)(p+1)/2−3k

(6k)2
(mod p).

Since

(p−1)/2∑
k=1

(−1)k

k2
≡

(p−1)/2∑
k=1

(−1)k + 1

k2
= 1

2

�p/4�∑
k=1

1

k2
≡ 2(−1)(p−1)/2 E p−3 (mod p),

with the help of Lemma 2.6 we finally get

1

8

(p−1)/2∑
k=1

16k

k(2k − 1)
(2k

k

) ≡ − E p−3

2
+ 10

12
E p−3 = E p−3

3
(mod p)

which proves (1.6).
Combining (a)–(d) we have completed the proof of Theorem 1.1. �

4. Proof of Theorem 1.2

Lemma 4.1. For any n ∈ N we have

2n∑
k=0

(−1)k
(

2n

k

)3

= (−1)n (3n)!
(n!)3

. (4.1)
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Proof. By Dixon’s identity (cf. [St1, p. 45]) we have

n∑
k=−n

(−1)k
(

2n

n + k

)3

= (3n)!
(n!)3

,

which is equivalent to the desired identity. �
Lemma 4.2. (See [DPSW, (2)].) For any positive odd integer n we have the identity

n∑
k=0

(
n

k

)3

(−1)k Hk = (−1)(n+1)/2

3
· (3n)!!
(n!!)3

, (4.2)

where (2m + 1)!! refers to
∏m

k=0(2k + 1).

Lemma 4.3. For each n = 1,2,3, . . . , we have

n∑
k=0

(
n + k

2k

)
Ck

(−2)k
=

{
(−1)(n−1)/2C(n−1)/2/2n if 2 � n,

0 if 2 | n.
(4.3)

Proof. The desired identity can be easily proved by the WZ method (cf. [PWZ]); in fact, if we denote
by S(n) the sum of the left-hand side or the right-hand side of (4.3), then we have the recursion
S(n + 2) = −nS(n)/(n + 3) (n = 1,2,3, . . .). �
Proof of Theorem 1.2. Let us recall that

(
(p − 1)/2

k

)
≡

(−1/2

k

)
=

(2k
k

)
(−4)k

for k = 0,1, . . . , p − 1.

Note also that for any positive odd integer n we have

n∑
k=0

(−1)k
(

n

k

)3

= 1

2

n∑
k=0

(
(−1)k

(
n

k

)3

+ (−1)n−k
(

n

n − k

)3)
= 0.

These two basic facts will be frequently used in the proof.
(i) Clearly,

p−1∑
k=0

k3
(2k

k

)3

64k
≡

(p−1)/2∑
k=0

(−1)kk3
(

(p − 1)/2

k

)3

= −
(

p − 1

2

)3 (p−1)/2∑
k=1

(−1)k−1
(

(p − 3)/2

k − 1

)3

≡ 1

8

(p−3)/2∑
k=0

(−1)k
(

(p − 3)/2

k

)3

(mod p).

So, if p ≡ 1 (mod 4) then (p −3)/2 is odd and hence
∑p−1

k=0 k3
(2k

k

)3
/64k ≡ 0 (mod p). When p = 4n+3

with n ∈ N, applying Lemma 4.1 we get
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8
p−1∑
k=0

k3
(2k

k

)3

64k
≡ (−1)n (3n)!

(n!)3
= (−1)n((p + 1)/4)3

((p + 1)/4)!3 × (p − 1)!∏
0<k<p−3n(p − k)

≡ (−1)n+1

64((p + 1)/4)!3(−1)p−1−3n(p − 1 − 3n)!

≡ − 1

64((p + 1)/4)!4(p + 5)/4
(mod p).

So (1.10) holds.
For k = 0,1, . . . , p − 1, clearly

(
p − 1

k

)
(−1)k =

∏
0< j�k

(
1 − p

j

)
≡ 1 − pHk

(
mod p2).

When p > 3 and p ≡ 3 (mod 4),
∑p−1

k=0

(2k
k

)3
/64k ≡ 0 (mod p2) as mentioned in the first section,

hence with the help of Lemma 4.2 we get

p−1∑
k=0

(
p − 1

k

) (2k
k

)3

(−64)k
≡

p−1∑
k=0

(1 − pHk)

(2k
k

)3

64k

≡ −p
(p−1)/2∑

k=0

(
(p − 1)/2

k

)3

(−1)k Hk

≡ −p
(−1)(p+1)/4

3
× (3(p − 1)/2)!!

((p − 1)/2)!!3 ≡ 0
(
mod p2).

This proves (1.11) for p ≡ 3 (mod 4) with p �= 3.
(ii) Below we set n = (p − 1)/2 and want to show (1.12)–(1.14). Note that Ck ≡ 0 (mod p) when

n < k < p − 1. Also,

C p−1 = 1

p

(
2p − 2

p − 1

)
= 1

2p − 1

(
2p − 1

p

)
≡ −

p−1∏
k=1

p + k

k
≡ −1 (mod p).

Thus,

p−1∑
k=0

C2
k

16k
≡

n∑
k=0

C2
k

16k
+ 1 ≡

n∑
k=0

1

(k + 1)2

(
n

k

)2

+ 1 (mod p)

and

p−1∑
k=0

C3
k

64k
≡

n∑
k=0

C3
k

64k
− 1 ≡

n∑
k=0

(−1)k

(k + 1)3

(
n

k

)3

− 1 (mod p).
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Clearly,

(n + 1)2
n∑

k=0

1

(k + 1)2

(
n

k

)2

=
n∑

k=0

(
n + 1

k + 1

)2

=
n+1∑
k=0

(
n + 1

k

)2

− 1 =
n+1∑
k=0

(
n + 1

k

)(
n + 1

n + 1 − k

)
− 1

=
(

2n + 2

n + 1

)
− 1

(
by the Chu–Vandermonde identity

(
cf. [GKP, p. 169]

))

=
(

p + 1

(p + 1)/2

)
− 1 = 2p

(p − 1)/2

(
p − 1

(p − 3)/2

)
− 1 ≡ −1 (mod p)

and

−(n + 1)3
n∑

k=0

(−1)k

(k + 1)3

(
n

k

)3

=
n∑

k=0

(−1)k+1
(

n + 1

k + 1

)3

=
n+1∑
k=0

(−1)k
(

n + 1

k

)3

− 1.

If p ≡ 1 (mod 4), then n + 1 is odd and hence

n+1∑
k=0

(−1)k
(

n + 1

k

)3

= 0.

When p = 4m − 1 with m ∈ Z, by Lemma 4.1

n+1∑
k=0

(−1)k
(

n + 1

k

)3

=
2m∑

k=0

(−1)k
(

2m

k

)3

= (−1)m (3m)!
(m!)3

,

and in the case m > 1 we have

(−1)m(3m)! = (−1)m (p − 1)!∏
0<k<m−1(p − k)

≡ − 1

(m − 2)! = −m(m − 1)

m! ≡ 3

16(m!) (mod p).

Therefore, if p ≡ 3 (mod 4) then

n+1∑
k=0

(−1)k
(

n + 1

k

)3

≡ 3

16

(
p + 1

4
!
)−4

(mod p).

By the above,

p−1∑
k=0

C2
k

16k
≡ 1 − 1

(n + 1)2
= 1 − 4

(p + 1)2
≡ −3 (mod p).

If p ≡ 1 (mod 4), then

p−1∑ C3
k

64k
≡ 1

(n + 1)3
− 1 = 8

(p + 1)3
− 1 ≡ 7 (mod p).
k=0
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If p ≡ 3 (mod 4), then

p−1∑
k=0

C3
k

64k
≡

3
16 (

p+1
4 !)−4 − 1

−(n + 1)3
− 1 ≡ 7 − 3

2

(
p + 1

4
!
)−4

(mod p).

This proves (1.12) and (1.13).
With the help of Lemma 2.2, we have

p−1∑
k=0

(2k
k

)
Ck

32k
= pC2

p−1

32p−1
+

p−2∑
k=0

(2k
k

)
Ck

32k
≡ p +

n∑
k=0

(
n + k

2k

)
Ck

(−2)k

(
mod p2).

If p ≡ 1 (mod 4), then n = (p − 1)/2 is even and hence

n∑
k=0

(
n + k

2k

)
Ck

(−2)k
= 0

by Lemma 4.3.
Now assume that p ≡ 3 (mod 4). In view of Lemma 4.3,

n∑
k=0

(
n + k

2k

)
Ck

(−2)k
= (−1)(n−1)/2 C(n−1)/2

2n

= (−1)(p−3)/4

2(p−1)/2((p − 3)/4 + 1)

(
(p − 3)/2

(p − 3)/4

)

≡ 4(p − 1)

1 + ( 2
p )(2(p−1)/2 − ( 2

p ))

(
(p − 3)/2

(p − 3)/4

) (
mod p2).

Note that

4(p − 1)

1 + ( 2
p )(2(p−1)/2 − ( 2

p ))
≡ 4(p − 1)

(
1 −

(
2

p

)(
2(p−1)/2 −

(
2

p

)))

≡ (4p − 4)

(
1 − 2p−1 − 1

2

)
≡ 4p − 4 + 2

(
2p−1 − 1

) (
mod p2).

By the above, the congruence (1.14) also holds. We are done. �
5. Some open conjectures

In this section we pose some conjectures for further research.
Motivated by the identities

∑∞
k=0

(2k
k

)
/((2k + 1)16k) = π/3,

∞∑
k=0

(2k
k

)
(2k + 1)2(−16)k

= π2

10
and

∞∑
k=0

(2k
k

)
(2k + 1)316k

= 7π3

216
,

we formulate the following conjecture based on our computation via Mathematica.
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Conjecture 5.1. Let p > 5 be a prime. Then

(p−3)/2∑
k=0

(2k
k

)
(2k + 1)16k

≡ (−1)(p−1)/2
(

H p−1

12
+ 3p4

160
B p−5

) (
mod p5)

and

(p−3)/2∑
k=0

(2k
k

)
(2k + 1)316k

≡ (−1)(p−1)/2
(

H p−1

4p2
+ p2

36
B p−5

) (
mod p3).

We also have

(p−3)/2∑
k=0

(2k
k

)
(2k + 1)2(−16)k

≡ H p−1

5p

(
mod p3),

∑
p/2<k<p

(2k
k

)
(2k + 1)2(−16)k

≡ − p

4
B p−3

(
mod p2).

Remark 5.1. It is known that H p−1 ≡ −p2 B p−3/3 (mod p3) for any prime p > 3 (see, e.g., [S]). Thus
the first congruence in the conjecture is a refinement of (1.4).

Motivated by the known identities

∞∑
k=1

2k

k2
(2k

k

) = π2

8
and

∞∑
k=1

3k

k2
(2k

k

) = 2

9
π2

(cf. [Ma]), we raise the following related conjecture.

Conjecture 5.2. Let p be an odd prime. Then

p−1∑
k=1

(2k
k

)
k2k

≡ − H(p−1)/2

2
+ 7

16
p2 B p−3

(
mod p3).

When p > 3, we have

p−1∑
k=1

(−2)k

k2

(
2k

k

)
≡ −2qp(2)2 (mod p),

p
p−1∑
k=1

2k

k2
(2k

k

) ≡ −qp(2) + p2

16
B p−3

(
mod p3),

p−1∑
k=1

(2k
k

)
k3k

≡ −2
p−1∑
k=1

k �≡p (mod 3)

1

k

(
mod p3),
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and

p
p−1∑
k=1

3k

k2
(2k

k

) ≡ −3

2
qp(3) + 4

9
p2 B p−3

(
mod p3).

Now we propose three more conjectures.

Conjecture 5.3. Let p be an odd prime. Then

p−1∑
k=0

(
2k

k

)3

≡
{

4x2 − 2p (mod p2) if (
p
7 ) = 1 & p = x2 + 7y2 with x, y ∈ Z,

0 (mod p2) if (
p
7 ) = −1, i.e., p ≡ 3,5,6 (mod 7).

Remark 5.2. Let p be an odd prime with (
p
7 ) = 1. As (−7

p ) = 1, and the quadratic field Q(
√−7) has

class number one, p can be written uniquely in the form

a + b
√−7

2
× a − b

√−7

2
= a2 + 7b2

4

with a,b ∈ Z and a ≡ b (mod 2). Obviously a and b must be even (otherwise a2 + 7b2 ≡ 0 (mod 8)),
and p = x2 + 7y2 with x = a/2 and y = b/2.

Conjecture 5.4. Let p be an odd prime. Then

p−1∑
k=0

(2k
k

)2(3k
k

)
64k

≡
{

x2 − 2p (mod p2) if (
p

11 ) = 1 & 4p = x2 + 11y2 (x, y ∈ Z),

0 (mod p2) if (
p

11 ) = −1.

Remark 5.3. It is well known that the quadratic field Q(
√−11) has class number one and hence

for any odd prime p with (
p

11 ) = 1 we can write 4p = x2 + 11y2 with x, y ∈ Z. Concerning the
parameters in the representation 4p = x2 +11y2, Jacobi obtained the following result (see, e.g., [BEW]
and [HW]): If p = 11 f + 1 is a prime and 4p = x2 + 11y2 with x, y ∈ Z and x ≡ 2 (mod 11), then
x ≡ (6 f

3 f

)(3 f
f

)
/
(4 f

2 f

)
(mod p).

Conjecture 5.5. Let p be any odd prime. If p ≡ 1 (mod 4) and p = x2 + y2 with x ≡ 1 (mod 4) and
y ≡ 0 (mod 2), then

p−1∑
k=0

(2k
k

)2

8k
≡

p−1∑
k=0

(2k
k

)2

(−16)k
≡ (−1)(p−1)/4

(
2x − p

2x

) (
mod p2)

and

p−1∑
k=0

(2k
k

)2

32k
≡ 2x − p

2x

(
mod p2).

If p ≡ 3 (mod 4), then

p−1∑(
p − 1

k

) (2k
k

)2

(−8)k
≡

p−1∑ (2k
k

)2

32k
≡ 0

(
mod p2)
k=0 k=0
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and

p−1∑
k=0

(2k
k

)2

(−16)k
≡ −

p−1∑
k=0

(2k
k

)2

8k

(
mod p3).

Remark 5.4. The author could prove all the congruences in Conjecture 5.5 modulo p.

For more conjectures of the author on congruences related to central binomial coefficients, the
reader may consult [Su4].
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