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Abstract

For a probability measure R on a product of two probability spaces that is absolutely continuous with
respect to the product measure we prove the existence of liftings subordinated to a regular conditional proba-
bility and the existence of a lifting for R with lifted sections which satisfies in addition a rectangle formula.
These results improve essentially some of the results from the former work of the authors [W. Strauss,
N.D. Macheras, K. Musiał, Splitting of liftings in products of probability spaces, Ann. Probab. 32 (2004)
2389–2408], by weakening considerably the assumptions and by presenting more direct and shorter proofs.
In comparison with [W. Strauss, N.D. Macheras, K. Musiał, Splitting of liftings in products of probability
spaces, Ann. Probab. 32 (2004) 2389–2408] it is crucial for applications intended that we can now pre-
scribe one of the factor liftings completely freely. We demonstrate the latter by applications to τ -additive
measures, transfer of strong liftings, and stochastic processes.
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1. Introduction

We prove that if (X,A,P ) and (Y,B,Q) are arbitrary probability spaces and R is an arbitrary
probability on A ⊗ B with marginals P and Q such that R is P ⊗ Q-continuous, then for given
lifting ρ on the complete space (Y, B̂, Q̂) there exist a lifting ρ′ on (Y, B̂, Q̂), a P -continuous
product regular conditional probability {Sy : y ∈ Y } on A with respect to B̂, a lifting ξ on the

R-complete space (X × Y,A ⊗̂R B, R̂) and a collection of liftings {ξy : y ∈ Y } on the complete
spaces (X, Â, Ŝy), y ∈ Y , possessing the section property

[SP(ξ)]: [ξ(E)]y = ξy([ξ(E)]y) for all E ∈ A ⊗̂R B and all y ∈ Y ,

as well as the rectangle formula in the following two versions (RF) and (RF′):

[RF′(ξ, ρ)]: There exist N ∈ (B̂)0 and y0 ∈ Nc such that for all A ∈ A and B ∈ B,

(a) ξ(A × B) = ⋃
y∈ρ(B)∪N [ξy(A) × {y}] if y0 ∈ ρ(B),

(b) ξ(A × B) = ⋃
y∈ρ(B)∩Nc [ξy(A) × {y}] if y0 /∈ ρ(B);

[RF(ξ, ρ′)]: ξ(A × B) = ⋃
y∈ρ′(B)[ξy(A) × {y}] for all A ∈ A and B ∈ B.

In the sequel we will use the above notation also in case when ξ and ξy are densities only. It is
known from [10] that a product formula like (RF) can only be achieved for a probability R which
is absolutely continuous with respect to P ⊗ Q. The above result generalizes the main positive
result from [6], proved there for R = P ⊗ Q. It improves also Theorem 2.6 from [10], where
the lifting ρ could only be prescribed arbitrarily under a stronger assumption, and gives a direct
proof of it. But note that the free choice of the lifting ρ is crucial for the applications below.

We give applications to τ -additive absolutely continuous measures, see Theorem 4.2, which
improve the main result from [7], proved there for R = P ⊗ Q.

We give applications also to strong liftings, see Theorems 5.1 and 5.2, which improve Theo-
rem 3 of Section 3 from [5] as well as the main result from [4], respectively, both proved there
for R = P ⊗ Q. The strong lifting results are related to the problem of transfer of the strong
lifting property from the marginals P and Q to R, and give, for a wide class of topological prob-
ability spaces, a positive solution of the problem. Finally, we present an application to stochastic
processes.

2. Preliminaries

If (Z,Z, S) is a probability space, then we denote by Ẑ the completion of Z with respect
to S and by Ŝ the completion of S. We write L∞(S) := L∞(Z,Z, S) for the space of bounded
Z-measurable real valued functions. Functions equal a.e. are not identified.

We use the notion of lower density (but we call it a density) and lifting in the sense of [3].
Λ(S) denotes the system of all liftings on (Z,Z, S). Similarly, ϑ(S) is the collection of all lower
densities on (Z,Z, S).

Throughout what follows (X,A,P ) and (Y,B,Q) are arbitrary probability spaces. A × B

is the product algebra generated by A and B in X × Y , A ⊗ B := σ(A × B) is the product
σ -algebra generated by A × B and P ⊗ Q is the direct product of P and Q. The completion
of A ⊗ B with respect to P ⊗ Q is denoted by A ⊗̂ B and by P ⊗̂ Q is denoted the completion
of P ⊗ Q. R is a probability measure on A ⊗ B, such that P and Q are the marginals of R. We
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write A0 = {A ∈ A: P(A) = 0} and B0 = {B ∈ B: Q(B) = 0}. Â and B̂ are reserved for the
completions of A and B with respect to P and Q, respectively.

By (X×Y,A⊗̂R B, R̂) we denote the completion of the probability space (X×Y,A⊗B,R).
(X,T ,A,P ) is a topological measure space if (X,A,P ) is a measure space and T is a topol-
ogy on X such that A ⊇ T . B(X) denotes the σ -algebra of Borel subsets of X. The Baire
σ -algebra of (X,T ), i.e. the σ -algebra generated by the system of all co-zero sets of X, is de-
noted by B0(X). A measure μ on B0(X) is called completion regular, if for every Borel set B

there exist sets A1,A2 ∈ B0(X) such that A1 ⊆ B ⊆ A2 and μ(A2 \ A1) = 0. A measure μ on
B(X) is called completion regular, if its restriction to B0(X) is completion regular.

Unexplained notation and terminology concerning liftings and densities come from [9].

Definition 1. Assume that for every y ∈ Y there is a probability Sy on A such that:

(D1) For every A ∈ A the map y → Sy(A) is B-measurable;
(D2) R(A × B) = ∫

B
Sy(A)dQ(y) for all A ∈ A and all B ∈ B.

Then the family {Sy : y ∈ Y } is called a product regular conditional probability (product r.c.p.
for short) on A for R with respect to B (cf. [2]). A product r.c.p. {Sy : y ∈ Y } on A for R with
respect to B is said to be absolutely continuous with respect to P (or P -continuous), if

∀A ∈ A
[
P(A) = 0 ⇒ ∀y ∈ Y, Sy(A) = 0

]
.

The completion of A with respect to Sy is denoted by Ây . Clearly Â ⊆ Ây , if Sy � P .

It is known from [10, p. 2390] that R � P ⊗ Q if and only if there exists a P -continuous
product r.c.p. {Sy : y ∈ Y } on A for R with respect to B.

If ρ is a density in ϑ(Q̂), we say that ρ and a product r.c.p. {Sy : y ∈ Y } on A for R with
respect to B satisfy the condition IT(ρ), if

[IT(ρ)]: R(A × B) = 0 ⇒ Sy(A) = 0 for all y ∈ ρ(B) or Q(B) = 0.

Condition IT(ρ) traces back to A. and C. Ionescu-Tulcea [3, p. 115]. Clearly, IT(ρ) yields the
absolute continuity of {Sy : y ∈ Y } with respect to P .

A probability measure μ on a topological measure space is τ -additive if

μ
(⋃

G
)

= sup
{
μ(G): G ∈ G

}
,

whenever G is a non-empty upwards-directed family of open sets.
The probability measure μ is Radon if for each A ∈ A, we have

μ(A) = sup
{
μ(K): K ⊆ A, K compact

}
.

If μ is a Radon probability measure then (X,T ,A,μ) is called a Radon probability space.

3. Arbitrary absolutely continuous measures

We have proven in [6] that given complete probability spaces (X,A,P ) and (Y,B,Q) and
a lifting ρ ∈ Λ(Q) there exist liftings σ ∈ Λ(P ) and ϕ ∈ Λ(P ⊗̂ Q) such that ϕ(A × B) =
σ(A) × ρ(B) whenever A ∈ A and B ∈ B, and [ϕ(E)]y = σ([ϕ(E)]y) for all E ∈ A ⊗̂ B and
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y ∈ Y . That result has been generalized in [10, Theorem 2.6] to the case of measures defined
on the product σ -algebra which are absolutely continuous with respect to the product measure
P ⊗ Q. We are going to present now an improvement of the result of [10] with a shorter and
more direct proof. We present it not just for completeness but because we need an essential part
of the new proof in order to prove the main result of our paper.

As a preparation we give the next two results. The following lemma is of independent interest,
since it produces rectangle formulas for densities.

Lemma 3.1. Let R be a probability measure defined on A ⊗ B with marginals P and Q, and let
ρ be an arbitrary member of ϑ(Q̂).

If R � P ⊗ Q, then there exists a product r.c.p. {Sy : y ∈ Y } on A for R with respect to B̂,
and there exist ηy ∈ ϑ(Ŝy) for all y ∈ Y as well as η ∈ ϑ(R̂) and ρ′ ∈ ϑ(Q̂) such that the section
property SP(η), the property IT(ρ′) and the rectangle formulas RF(η,ρ′) as well as RF′(η,ρ)

hold true. In addition η has measurable x-sections:

[MS(η)]: [η(E)]x ∈ B̂ for all E ∈ A ⊗̂R B and all x ∈ X.

Proof. According to [6, Corollary 2.2], that holds true for arbitrary (X,A,P ), for given density
ρ ∈ ϑ(Q̂) there exist densities τ ∈ ϑ(P ) and ϕ ∈ ϑ(P ⊗̂ Q) such that

ϕ(A × B) = τ(A) × ρ(B) for each A × B ∈ A × B, (1)[
ϕ(E)

]y = τ
([

ϕ(E)
]y) for all E ∈ A ⊗̂ B and all y ∈ Y, (2)[

ϕ(E)
]
x

∈ B̂ for all x ∈ X and all E ∈ A ⊗̂ B. (3)

If R � P ⊗ Q, then R(E) = ∫
E

f (x, y) d(P ⊗ Q) for every E ∈ A ⊗̂ B, where f is the
Radon–Nikodym derivative of R with respect to P ⊗ Q. Hence

R(A × B) =
∫
B

(∫
A

f y(x) dP (x)

)
dQ(y) for every A × B ∈ A ⊗̂ B,

and

Q(B) =
∫
B

(∫
X

f y(x) dP (x)

)
dQ(y) for every B ∈ B.

We may and do assume that
∫
X

f y(x) dP (x) = 1 for all y ∈ Y . Set Ty(A) = ∫
A

f y(x) dP (x)

for all y ∈ Y . Since f ∈ L1(P ⊗ Q), the Fubini Theorem yields the Q̂-measurability of the
function T.(A), when A ∈ A. Hence {Ty : y ∈ Y } is a product r.c.p. on A for R with respect to B̂.

Put H := ϕ({f > 0}). It follows that H ∈ A ⊗̂ B and ϕ(H) = H . It is also obvious that
(P ⊗̂Q)(E ∩H) = 0 implies R̂(E) = 0 and R̂(H) = 1. Moreover Hy ∈ Â and τ(Hy) = Hy for
all y ∈ Y , by condition (2).

Next put N := {y ∈ Y : T̂y(H
y) < 1}. Then N ∈ (B̂)0. Notice that Hy is a support of Ty for

all y /∈ N , since for each such y we have Ty(H
y) = 1 and P(A ∩ Hy) = 0 implies Ty(A) = 0

(because Ty � P ). Choose an arbitrary y0 ∈ Nc and modify {Ty : y ∈ Y } to a product r.c.p. on A

for R with respect to B̂ by means of Sy := Ty if y ∈ Nc and Sy := Ty0 if y ∈ N . For all A ∈ Ây

and y /∈ N , define

ηy(A) :=
{

X if A = X a.e. (Ŝy),

y
τ(A ∩ H ) otherwise.



N.D. Macheras et al. / J. Math. Anal. Appl. 335 (2007) 213–224 217
Then ηy ∈ ϑ(Ŝy) for all y /∈ N (cf. [1]). For y ∈ N take ηy := ηy0 ∈ ϑ(Ŝy).
Define

η(E) := [
ϕ(E ∩ H) ∩ (

X × Nc
)] ∪ {

(x, y) ∈ X × N : (x, y0) ∈ ϕ(E ∩ H)
}

whenever E ∈ A ⊗̂R B.
The density properties of η are straightforward to verify. It is also easy to see that η satisfies

conditions SP(η) and MS(η) of the lemma.
To verify condition RF′(η,ρ), take A ∈ A and B ∈ B. Applying condition (1), for each y ∈

Nc ∩ ρ(B), we get[
η(A × B)

]y = [
ϕ
(
(A × B) ∩ H

)]y = [
τ(A) × ρ(B)

]y ∩ Hy = τ(A) ∩ Hy,

while for each y ∈ N and y0 ∈ ρ(B), we get[
η(A × B)

]y = [
ϕ
(
(A × B) ∩ H

)]y0 = [
τ(A) × ρ(B)

]y0 ∩ Hy0 = τ(A) ∩ Hy0 .

Consequently, if y0 ∈ ρ(B), then

η(A × B) =
⋃
y∈Y

[[
ψ(A × B)

]y × {y}]
=

⋃
y∈ρ(B)∩Nc

[
ηy(A) × {y}] ∪

⋃
y∈N

[
ηy0(A) × {y}]

=
⋃

y∈ρ(B)∪N

[
ηy(A) × {y}],

i.e. condition (a) of RF′(η,ρ) holds true. If y0 /∈ ρ(B), we get in the same way

η(A × B) =
⋃

y∈ρ(B)∩Nc

[
ηy(A) × {y}],

i.e. condition (b) of RF′(η,ρ) holds true.
To show condition RF(η,ρ′), put ρ′(B) := [ρ(B) ∩ Nc] ∪ N if y0 ∈ ρ(B) and ρ′(B) :=

ρ(B) ∩ Nc otherwise. It is now straightforward to verify that ρ′ ∈ ϑ(Q̂), hence condition
RF(η,ρ′) follows immediately from RF′(η,ρ).

If A ∈ A and B ∈ B, then R(A × B) = 0 yields η(A × B) = ∅, hence RF(η,ρ′) yields
ηy(A) = ∅ for all y ∈ ρ′(B) or ρ′(B) = ∅. But ρ′(B) = ∅ implies Q(B) = 0. If Q(B) > 0,
then ηy(A) = ∅ for all y ∈ ρ′(B), implying Sy(A) = 0 for all y ∈ ρ′(B). So the property IT(ρ′)
holds true.

This completes the proof of the lemma. �
The following result improves Theorem 2.5. from [10].

Proposition 3.2. Let R be a probability measure defined on A ⊗ B with marginals P and Q,
and let ρ ∈ ϑ(Q̂) be arbitrary.

If R � P ⊗Q, then there exists a product r.c.p. {Sy : y ∈ Y } on A for R with respect to B̂, and

there exist ψy ∈ ϑ(Ŝy) for all y ∈ Y, as well as ψ ∈ ϑ(R̂) and ρ′ ∈ ϑ(Q̂) such that the properties
SP(ψ), MS(ψ), IT(ρ′) and the full section property

[FS(ψ)]: Ŝy([ψ(E)]y ∪ [ψ(Ec)]y) = 1 for all E ∈ A ⊗̂R B and all y ∈ Y ,
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hold true. In addition we have the following two properties:

(i) There exist N ∈ (B̂)0 and y0 ∈ Nc such that for all A ∈ A and B ∈ B,

(a) ψ(A × B) ⊇ ⋃
y∈ρ(B)∪N [ψy(A) × {y}] if y0 ∈ ρ(B);

(b) ψ(A × B) ⊇ ⋃
y∈ρ(B)∩Nc [ψy(A) × {y}] if y0 /∈ ρ(B),

(ii) ψ(A × B) ⊇ ⋃
y∈ρ′(B)[ψy(A) × {y}] for all A ∈ A and all B ∈ B.

Proof. There exist η ∈ ϑ(R̂) and ηy ∈ ϑ(Ŝy) for all y ∈ Y , satisfying the thesis of Lemma 3.1.
Let

Φ := {
ψ̄ ∈ ϑ(R̂): ∀y ∈ Y ∀E ∈ A ⊗̂R B

[
ψ̄(E)

]y ⊆ ηy

([
ψ̄(E)

]y)
and ∀E ∈ A ⊗̂R B η(E) ⊆ ψ̄(E)

}
.

Notice first that Φ �= ∅ since η ∈ Φ.

We consider Φ with inclusion as the partial order: ψ̄1 � ψ̄2 if ψ̄1(E) ⊆ ψ̄2(E) for each E ∈
A ⊗̂R B. Following the arguments of the proof of Theorem 3.5 from [10], we get a maximal
element ψ in Φ satisfying conditions MS(ψ), SP(ψ) and FS(ψ) of the theorem. Setting ψy = ηy ,
for every y ∈ Y , we get immediately condition (i) from the property η(E) ⊆ ψ(E) for all E ∈
A ⊗̂ B, and from condition RF′(η,ρ) of Lemma 3.1. Condition (ii) and property IT(ρ′) follow
in the same way as condition RF(η,ρ′) and property IT(ρ′), respectively, of Lemma 3.1. �
Theorem 3.3. Let R be a probability measure defined on A ⊗ B with marginals P and Q, and
let ρ ∈ Λ(Q̂) be an arbitrary lifting.

If R � P ⊗ Q, then there exists a product r.c.p. {Sy : y ∈ Y } on A for R with respect to B̂,
and there exist ξ ∈ Λ(R̂), ρ′ ∈ Λ(Q̂) and a collection of liftings {ξy ∈ Λ(Ŝy): y ∈ Y } such that
the properties SP(ξ), IT(ρ′), RF(ξ, ρ′) and RF′(ξ, ρ) hold true.

Proof. According to Proposition 3.2 there exists a product r.c.p. {Sy : y ∈ Y } on A for R with
respect to B̂, and there exist densities ψy ∈ ϑ(Ŝy) for all y ∈ Y and ψ ∈ ϑ(R̂) such that the
properties SP(ψ) and FS(ψ) hold true.

Let N and y0 ∈ Nc be as in Proposition 3.2 and take for each y ∈ Nc a lifting ξy ∈ Λ(Ŝy)

such that ξy(A) ⊇ ηy(A) for each A ∈ Ây (for the existence of such a lifting see e.g. [11]). For
each y ∈ N , take ξy := ξy0 .

Define ξ ∈ ϑ(R̂) by setting for each E ∈ A ⊗̂R B and each y ∈ Y ,[
ξ(E)

]y = ξy

([
ψ(E)

]y)
. (4)

Since ψ(E) ⊆ ξ(E) for all E ∈ A ⊗̂R B, we get the R̂-measurability of ξ(E) and ξ(E) = E

a.e. (R̂). In order to prove that ξ is a lifting it suffices to show that we have always ξ(Ec) =
[ξ(E)]c . But this is a consequence of FS(ψ) and (4) as we get for each y the equality [ξ(Ec)]y =
([ξ(E)]y)c . This proves that ξ ∈ Λ(R̂).

To prove the validity of the rectangle property RF′(ξ, ρ), let us fix an arbitrary A×B ∈ A×B.
Applying condition (4) and assertion (i) of Proposition 3.2, we get[

ξ(A × Y)
]y = ξy

([
ψ(A × Y)

]y) ⊇ ξy

(
ψy(A)

) = ξy(A) if y ∈ Nc,

and [
ξ(A × Y)

]y = ξy

([
ψ(A × Y)

]y) ⊇ ξy

(
ψy0(A)

) = ξy0(A) if y ∈ N.
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Hence [ξ(A×Y)]y ⊇ ξy(A) for each y ∈ Y . Standard calculations involving the lifting properties
of ξ and ξy yield[

ξ(A × Y)
]y = ξy(A) for each y ∈ Y. (5)

In the same way for A = X we get [ξ(X × B)]y = X for each y ∈ ρ(B) ∩ Nc, and
[ξ(X × B)]y = X for each y ∈ N if y0 ∈ ρ(B), hence[

ξ(X × B)
]y = X for each y ∈ [

ρ(B) ∩ Nc
] ∪ N if y0 ∈ ρ(B), (6)

and [
ξ(X × B)

]y = X for each y ∈ ρ(B) ∩ Nc if y0 /∈ ρ(B). (7)

Consequently, if y0 ∈ ρ(B), applying conditions (5) and (6) we have

ξ(A × B) = ξ(A × Y) ∩ ξ(X × B)

=
( ⋃

y∈Y

[
ξy(A) × {y}]) ∩

( ⋃
y∈ρ(B)∪N

[
X × {y}])

=
⋃

y∈ρ(B)∪N

[
ξy(A) × {y}],

hence condition (a) of RF′(ξ, ρ) holds true.
Similarly, if y0 /∈ ρ(B), applying condition (7), we get condition (b) of RF′(ξ, ρ).
Conditions RF(ξ, ρ′) and IT(ρ′) follow as in Lemma 3.1. �

4. τ -Additive absolutely continuous measures

It is known (cf. Ressel [8]) that for arbitrary τ -additive topological probability spaces
(X,T ,B(X),P ) and (Y,S,B(Y ),Q) there exists exactly one τ -additive extension P ⊗τ Q of
the product measure P ⊗ Q to the Borel σ -algebra B(X × Y) given by the formula

(P ⊗τ Q)(E) =
∫
X

Q(Ex)dP (x).

The following theorem is an extension of Theorem 3.3 to products of topological spaces. It also
generalizes the main result proved in [7]. As a preparation we need the following result.

Lemma 4.1. Let (X,T ,B(X),P ) and (Y,S,B(Y ),Q) be topological probability spaces with
τ -additive probability measures P and Q and let P ⊗τ Q be the τ -additive extension of P ⊗ Q

to the Borel σ -algebra B(X × Y).
If ρ ∈ ϑ(Q̂), then there exist densities δ ∈ ϑ(P ) and ζ ∈ ϑ(P ⊗̂τ Q) such that

ζ : B̂τ (X × Y) → B(X) ⊗̂ B(Y ), where B̂τ (X × Y) is the completion of B(X × Y) with respect
to P ⊗τ Q, and

( j) [ζ(E)]y = δ([ζ(E)]y) for all E ∈ B̂(X × Y) and y ∈ Y ;
( jj) [ζ(E)]x ∈ B̂(X) for all E ∈ B̂(X × Y) and x ∈ X;

( jjj) ζ(A × B) = δ(A) × ρ(B) for all A × B ∈ B(X) ×B(Y ).
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Proof. According to [6, Corollary 2.7], that holds true for arbitrary (X,A,P ), for given density
ρ ∈ ϑ(Q̂) there exist densities δ ∈ ϑ(P ) and ϕ ∈ ϑ(P ⊗̂ Q) satisfying conditions ( j) and ( jj) for
all E ∈ B(X) ⊗̂ B(Y ), and condition ( jjj). Then, applying the argument of the proof of Corol-
lary 2.2 from [7], we show that the σ -algebra B(X) ⊗B(Y ) is P ⊗̂τ Q-dense in B̂τ (X × Y).

Thus, if H ∈ B̂τ (X × Y) is arbitrary, then there exists EH ∈ B(X) ⊗ B(Y ) such that
P ⊗̂τ Q(H�EH ) = 0. We define ζ : B̂τ (X×Y) → B(X)⊗̂B(Y ) by setting ζ(H) := ϕ(EH ). �
Theorem 4.2. Let (X,T ,B(X),P ) and (Y,S,B(Y ),Q) be topological probability spaces with
τ -additive probability measures P and Q and let P ⊗τ Q be the τ -additive extension of P ⊗ Q

to the Borel σ -algebra B(X × Y).
If R is an arbitrary probability on B(X×Y) with marginals P and Q such that R � P ⊗τ Q,

and if ρ ∈ Λ(Q̂), then there exists a product r.c.p. {Sy : y ∈ Y } on B(X) for R with respect to
B̂(Y ) and there exist ξ ∈ Λ(R̂), ρ′ ∈ Λ(Q̂) and a collection of liftings {ξy ∈ Λ(Ŝy): y ∈ Y } such
that SP(ξ), IT(ρ′), RF′(ξ, ρ) and RF(ξ, ρ′) hold true, when B̂R(X × Y) (where B̂R(X × Y) is
the completion of B(X ×Y) with respect to R) is put instead of A ⊗̂R B, B(X) instead of A, and
B(Y ) instead of B.

Proof. Choose a density f for R � P ⊗τ Q with respect to P ⊗τ Q. It follows that there exists
a set N ∈ B(Y )0 such that

∫
X

f y(x) dP (x) = 1 if y /∈ N . Let us set Sy(A) = ∫
A

f y(x) dP (x) if
y /∈ N and Sy(A) = Sy0(A) otherwise.

Since f ∈ L1(P ⊗τ Q), the Fubini Theorem yields the Q̂-measurability of the function S.(A),
when A ∈ B(X). Hence {Sy : y ∈ Y } is a product r.c.p. on A for R with respect to B̂.

Now, according to Lemma 4.1, for given ρ ∈ ϑ(Q̂) there exist densities δ ∈ ϑ(P̂ ) and ζ ∈
ϑ(P ⊗̂τ Q), such that ζ : B̂τ (X × Y) → B(X) ⊗̂B(Y ),

ζ(A × B) = δ(A) × ρ(B) for all A × B ∈ B̂(X) × B̂(Y ),

and [
ζ(E)

]y = δ
([

ϕ(E)
]y) for all E ∈ B̂τ (X × Y) and all y ∈ Y.

Put H := ζ({f > 0}). The rest of the proof is similar to that of Lemma 3.2 and Theorem 3.3. �
Corollary 4.3. Let (X,T ,B(X),P ) and (Y,S,B(Y ),Q) be Radon probability spaces and let
R be an arbitrary measure on B(X × Y) with marginals P and Q.

If R � P ⊗τ Q and ρ ∈ Λ(Q̂), then R is a Radon measure and there exists a product r.c.p.
{Sy : y ∈ Y } on B(X) for R with respect to B̂(Y ) such that all Sy and R are Radon measures.
Moreover, there exist ξ ∈ Λ(R̂), ρ′ ∈ Λ(Q̂) and a collection of liftings {ξy ∈ Λ(Ŝy): y ∈ Y } such
that the properties SP(ξ), IT(ρ′), RF′(ξ, ρ) and RF(ξ, ρ′) hold true, with B̂R(X × Y) instead of
A ⊗̂R B, B(X) instead of A, and B(Y ) instead of B.

Proof. Each Radon measure is τ -additive, hence applying Theorem 4.2 we get the existence of
a product r.c.p. {Sy : y ∈ Y } on B(X) with respect to B̂(Y ), and the existence of the liftings ξ, ρ′

and {ξy ∈ Λ(Ŝy): y ∈ Y } satisfying Theorem 4.2. Moreover according to Ressel [8, Theorem 1],
there exists a unique Radon measure on B(X×Y) extending P ⊗Q, hence the unique τ -additive
extension P ⊗τ Q of P ⊗ Q on B(X × Y) is a Radon measure. Since P is a Radon measure and
Sy � P for all y ∈ Y , we get that all Sy are Radon measures. But since R � P ⊗τ Q, taking in
account that P ⊗τ Q is a Radon measure we get that R is Radon. �
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5. Strong liftings

We say that a topological probability space (X,T ,A,P ) (or just the measure P ) has the uni-
versal strong density property (USDP for short), if every density for P is almost strong (see [9]).
Spaces possessing the USDP are e.g. those having a countable measurable network, in particular
spaces with a second countable topology. In particular, polish spaces as well as locally com-
pact metrizable spaces have the USDP (see [9]). The following result improves Theorem 3 of
Section 3 from [5] proved there for R = P ⊗ Q.

Theorem 5.1. Let (X,T ,A,P ) be a topological probability space such that P̂ has the USDP,
let (Y,S,B,Q) be a topological probability space admitting a strong lifting ρ ∈ Λ(Q̂), and let
R be an arbitrary probability on A ⊗ B with marginals P and Q.

If R � P ⊗ Q, then there exists a product r.c.p. {Sy : y ∈ Y } on A for R with respect to B̂,
and there exist an almost strong lifting ξ ∈ Λ(R̂) and a collection of strong liftings {ξy ∈ Λ(Ŝy):
y ∈ Y } such that the section property SP(ξ) and the rectangle formula RF′(ξ, ρ) hold true.
Moreover T × S ⊆ A ⊗̂R B.

In particular if A = B(X), B = B(Y ) and the measures P,Q are completion regular and
B0(X × Y) = B0(X) ⊗ B0(Y ), then R is completion regular too.

Proof. According to [6, Corollary 2.2] there exist densities τ ∈ ϑ(P̂ ) and ϕ ∈ ϑ(P ⊗̂ Q) satis-
fying conditions (1) and (2). Since the measure P̂ has the USDP, it follows that the density τ is
almost strong, i.e. there exists a null set L ∈ Â0 such that for each G ∈ T , we have τ(G)∪L ⊇ G.

Let {Sy : y ∈ Y }, N , y0 ∈ Nc, H , Hy for all y ∈ Y as well as and ηy for all y ∈ Y be as in the
proof of Theorem 3.2.

(A) Let us fix an arbitrary y /∈ N . Put Ly := L ∪ (X \ Hy). Then Ly is an Ŝy -null set and
for every non-empty open subset G of X we have ηy(G) = X ⊇ G if G = X a.e. (Ŝy) and
ηy(G) ∪ Ly = τ(G ∩ Hy) ∪ Ly = τ(G) ∪ Ly ⊇ G otherwise. Hence ηy is Ŝy -almost strong.

For every x ∈ Ly , let Ey(x) := {G ∈ T : x ∈ G} and Fy(x) be the filter defined by

Fy(x) := {
A ∈ Ây : ∃G ∈ Ey(x) G ⊆ A a.e. (Ŝy)

}
.

Since all members of Ey(x) and consequently of Fy(x) are of positive measure, we see that

Fy(x) is measure stable (i.e. A ∈ Fy(x) and Ŝy(A�B) = 0 yields B ∈ Fy(x)). Define the map
η̄y : Ây → Ây by means of the formula

η̄y(A) := [
ηy(A) ∩ Lc

y

] ∪ η∗
y(A) for each A ∈ Ây,

where η∗
y(A) := {x ∈ Ly : A ∈ Fy(x)}.

It is straightforward to verify that η̄y ∈ ϑ(Ŝy).

Claim. The density η̄y is Ŝy -strong.

Proof. Take G ∈ T and x ∈ G. If x ∈ Ly then G ∈ Ey(x) ⊆ Fy(x) hence x ∈ η∗
y(G) ⊆ η̄y(G).

If x ∈ X \ Ly then x ∈ ηy(G) ∩ Hy ⊆ η̄y(G). Consequently, η̄y is Ŝy -strong. This completes the
proof of the claim. �

(B) For each y ∈ N , put η̄y := η̄y0 . It follows from the above claim that η̄y is a strong density
in ϑ(Ŝy).
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Consequently, we get from (A) and (B) that for each y ∈ Y the density η̄y ∈ ϑ(Ŝy) is strong.
Then, take as ξy an arbitrary strong ξy ∈ Λ(Ŝy) such that η̄y(A) ⊆ ξy(A) for all A ∈ A and

define ξ exactly as in the proof of Theorem 3.3. It follows (in the same way as in the proof of
Theorem 3.3) that conditions SP(ξ) and RF′(ξ, ρ) hold true.

To show that ξ is almost strong, take U1 × U2 ∈ T × S . If y0 ∈ ρ(U2), we can apply condi-
tion (a) of RF′(ξ, ρ) to obtain

ξ(U1 × U2) =
⋃

y∈ρ(U2)∪N

ξy(U1) × {y} ⊇
⋃

y∈ρ(U2)∪N

[
U1 × {y}]

= U1 × ([
ρ(U2) ∩ Nc

] ∪ N
) ⊇ U1 × [

ρ(U2) ∩ Nc
]

⊇ U1 × (
U2 ∩ Nc

)
.

In the same way, if y0 /∈ ρ(U2), applying condition (b) of RF′(ξ, ρ) we get η(U1 × U2) ⊇ U1 ×
(U2 ∩ Nc). Consequently, ξ is almost strong.

According to [9, Proposition 4.6], the almost strong lifting ξ can be modified into a strong
lifting ξ̄ ∈ Λ(R̂).

It then follows that for each U1 × U2 ∈ T × S , we get

U1 × U2 ∈ τξ̄ := {
E ∈ A ⊗̂R B: E ⊆ ξ̄ (E)

}
,

where τξ̄ is one of the lifting topologies in X×Y associated with ξ̄ (see [3] or [9]). Consequently,
each element of T × S belongs to τξ̄ , and so T × S ⊆ A ⊗̂R B.

In particular, let A = B(X), B = B(Y ), P,Q be completion regular and let B0(X × Y) =
B0(X) ⊗ B0(Y ). To show that R is completion regular, let us fix A × B ∈ B(X) × B(Y ).
Since P,Q are completion regular, we get A × B ∈ B̂0(X) × B̂0(Y ), hence there exist E,F ∈
B0(X) and G,M ∈ B0(Y ) such that E ⊆ A ⊆ F , G ⊆ B ⊆ M and P(F \ E) = 0 = Q(M \ G).
Consequently, E × G,F × M ∈ B0(X × Y), E × G ⊆ A × B ⊆ F × M and P ⊗ Q(F × M \
E × G) = 0, hence R(F × M \ E × G) = 0, where the latter follows from the P ⊗ Q-continuity
of R. Therefore A × B ∈ B̂0R(X × Y), where B̂0R(X × Y) is the completion of B0(X × Y)

with respect to R, hence B(X) ⊗̂R B(Y ) ⊆ B̂0R(X × Y). But from T ×S ⊆ B(X) ⊗̂R B(Y ) it
follows that B̂R(X×Y) = B(X)⊗̂R B(Y ), hence B̂R(X×Y) ⊆ B̂0R(X×Y). Since the inverse
inclusion is always true, we get B̂R(X × Y) = B̂0R(X × Y), what proves that R is completion
regular. This completes the proof. �

It follows a corresponding result, where except of ρ ∈ Λ(Q̂) also a strong density τ ∈ ϑ(P̂ ) is
given. In such a case we have to assume something more, since in general for given τ and ρ one
cannot find strong liftings ξ ∈ Λ(R̂) and ξy ∈ Λ(Ŝy) for all y ∈ Y , satisfying conditions SP(ξ)

and RF′(ξ, η) of Theorem 5.1 (see [5, Section 3, Remark 5]).

Theorem 5.2. Let (X,T ,A,P ) be a topological probability space admitting a strong admissible
density (see [6] or [9]) τ ∈ ϑ(P̂ ), let (Y,S,B,Q) be a topological probability space admitting
a strong lifting ρ ∈ Λ(Q̂), and let R be an arbitrary probability on A ⊗ B with marginals P

and Q.
If R � P ⊗ Q then there exists a product r.c.p. {Sy : y ∈ Y } on A for R with respect to B̂,

and there exist a strong lifting ξ ∈ Λ(R̂) and a collection of strong liftings {ξy ∈ Λ(Ŝy): y ∈ Y }
such that the section property SP(ξ) and the rectangle formula RF′(ξ, ρ) hold true. Moreover
T × S ⊆ A ⊗̂R B.
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Proof. It follows from [6, Corollary 2.2], that there exists a density ϕ ∈ ϑ(P ⊗̂Q) satisfying the
conditions (1) and (2). It follows easily from condition (1) that ϕ is strong. Let N , y0 ∈ Nc , H ,
Hy and ηy for all y ∈ Y , be as in the proof of Theorem 3.2. The rest of the proof is similar to
that of Theorem 5.1. �
Remark 5.3. The existence of a strong admissible density τ ∈ ϑ(P̂ ) is guaranteed by [4, The-
orem 2.1] for non-atomic and strictly positive topological probability spaces (X,T ,A,P ) with
a countable basis {Bn: n ∈ N} for the topology T such that P(∂Bn) = 0 for all n (if T is regular,
then it is metrizable and this condition is satisfied).

6. An application to stochastic processes

The next result is about measurable lifting modification of a measurable process in case of
a probability measure R being not necessarily a product probability but still absolutely continu-
ous with respect to the product measure. It improves Theorem 5.1 from [10]. For the terminology
we apply in it we refer to [10, Section 5].

Theorem 6.1. Let R be a probability with marginals P and Q such that R � P ⊗ Q. Then
there exists a product r.c.p. {Sy : y ∈ Y } on A for R with respect to B, which is absolutely
continuous with respect to P such that for each bounded measurable stochastic process {Φy}y∈Y

on (X,A,P ) there exist a collection Ψ̃ := {Ψy}y∈Y of Ŝy -measurable functions Ψy on X and
a collection of liftings σy ∈ Λ(Ŝy), y ∈ Y, such that

(i) Φy = Ψy a.e. (Sy) for all y ∈ Y ;
(ii) Ψy = σy(Ψy) for all y ∈ Y ;

(iii) the map Ψ̃ :X × Y → (−∞,+∞) is R̂-measurable.

Proof. In view of Theorem 3.3 there exists a product r.c.p. {Sy : y ∈ Y } on A for R with respect
to B, which is absolutely continuous with respect to P , and there exist a lifting ξ ∈ Λ(R̂) and
a family {σy ∈ Λ(Ŝy): y ∈ Y } of liftings such that given process Φ̃ = {Φy}y∈Y , we have[

ξ(Φ̃)
]y = σy

([
ξ(Φ̃)

]y) for all y ∈ Y.

Since ξ is a lifting there exists NΦ̃ ∈ B0 such that

Φy = [
ξ(Φ̃)

]y a.e. (Sy) for all y /∈ NΦ̃.

We define now a collection Ψ̃ := {Ψy}y∈Y of Sy -measurable functions on X by setting

Ψy = σy(Φy) for each y ∈ Y.

Since ξ(Φ̃) is R̂-measurable, one can easily see that {Ψy}y∈Y satisfies the required condi-
tions. �
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