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In this paper we examine the multiplicity of solutions of a differential inclusion problem
involving p(x)-Laplacian of the type

[Pλ]
⎧⎨
⎩

−�p(x)u + V (x)|u|p(x)−2u ∈ ∂ j1
(
x, u(x)

) + λ∂ j2
(
x, u(x)

)
, in Ω,

∂u

∂n
= 0, on ∂Ω.

By using the nonsmooth version of Ricceri variational principle we get three critical points
of the corresponding energy Motreanu–Panagiotopoulos type functional, which are the
solutions of (Pλ).

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In the past decade, the existence and multiplicity of solutions for elliptic type partial differential equations with different
boundary value conditions have been widely investigated by many authors, which are usually reduced to the solutions of
many of Dirichlet and Neumann type problems and obstacle problems with all kinds of nonlinearities. During the authors
studied these problems, the variational methods to a class of non-differentiable functionals which is extended by Chang [7]
often applied directly to prove some existence and multiplicity theorems. Later, Ricceri in his paper [27] introduced another
variational principle for the problems whose corresponding energy functional is Gateaux differentiable. After that, the result
of Ricceri has been extended by Marano and Motreanu [23] to a large class of non-differentiable functionals. From then
on, many authors used this result to study all kinds of Dirichlet and Neumann boundary value problems involving the
p-Laplacian with discontinuous nonlinearities.

The hemivariational and variational-hemivariational inequalities of Dirichlet and Neumann boundary value problems
whose corresponding energy functional is called a Motreanu–Panagiotopoulos type functional have been considered by
many authors, such as S.A. Marano and N.S. Papageorgiou in [24] by the extended variational methods due to Chang [7] to
examine the following elliptic variational-hemivariational inequality

(P1)

{−�u ∈ ∂ J (x, u) − ∂G(x, u), in Ω,

u(x) = 0, on ∂Ω,
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in which the authors get two existence results for (P1), the first basically through the nonsmooth mountain pass theorem,
while another is given through appropriate assumptions on J (x, u) and G(x, u) such that the energy functional possesses
a global minimum, which turn out to be a critical point. Besides, similarly to [24], M.E. Filippakis and N.S. Papageorgiou
in [14] examined a resonant variational inequality driven by the p-Laplacian and with a nonsmooth potential, and also
through the nonsmooth critical point theory for Motreanu–Panagiotopoulos type functional to obtain the existence of a
nontrivial solution and nontrivial positive solutions. The nonsmooth version of Ricceri variational principle is also another
important tool during the authors considering the hemivariational and variational-hemivariational inequalities with discon-
tinuous nonlinearities. For example, the following differential inclusion problem (P2)

(P2)

{
−�pu + |u|p−2u ∈ λα(x)∂ F

(
u(x)

) + μβ(x)∂G
(
u(x)

)
, in R

N ,

u(x) → 0, as |x| → ∞,

where �pu = div(|∇u|p−2∇u). A. Kristály, W. Marzantowicz and C. Varga in [17], as an applications of nonsmooth three
critical points theorems, studied the three solutions of (P2) when p > N � 2. Moreover, G. Bonanno and N. Giovannelli
in [4] deal with an eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities. When p > N ,
through nonsmooth version of B. Ricceri’s three existence theorem which is extended by Marano and Motreanu, the authors
also proved the multiplicity result. There are a lot of people treated the elliptic hemivariational inequalities with the corre-
sponding energy functional, i.e., Motreanu–Panagiotopoulos type functional. We refer the readers to the references [30,5,3,
20,19,16].

In the latest years the study of nonlinear partial differential equations with non-standard growth conditions has been the
object of increasing amount of attention. The problems of this type are studied in the behavior of electrorheological fluids
(see M. Ru̇žička [29]), and of other phenomena related to image processing, elasticity and the flow in porous media (see
V.V. Zhikov [31]). For the application backgrounds we also can trace the book of L. Diening [11] and the papers of E. Acerbi
and G. Mingione [1,2], and M. Mihăilescu, V. Rădulescu [25]. Therefore, it is no surprised that the nonsmooth version
of Ricceri variational principle which is established by Marano and Motreanu is used to study the various mathematical
problems with p(x)-growth conditions. The purpose of the present paper is by the extension of the three critical points
theorem of Ricceri to discuss the existence of solutions of the following p(x)-Laplacian equation

(Pλ)

⎧⎨
⎩

−�p(x)u + V (x)|u|p(x)−2u ∈ ∂ j1
(
x, u(x)

) + λ∂ j2
(
x, u(x)

)
, in Ω,

∂u

∂n
= 0, on ∂Ω,

where �p(x)u = div(|∇u|p(x)−2∇u) is said to be p(x)-Laplacian operator, λ > 0, Ω ⊂ RN (N > 2) is a nonempty bounded
domain with a boundary ∂Ω of class C1, p(x) > 0, p(x) ∈ C(Ω̄) with 1 < p− = infx∈Ω p(x), p+ = supx∈Ω p(x), V (x) ∈ L∞(Ω)

is a function possibly changing sign, j1(x, ζ ) and j2(x, ζ ) are locally Lipschitz functions in the ζ -variable integrand (in
general it can be nonsmooth), and ∂ j1(x, ζ ) and ∂ j2(x, ζ ) are the subdifferential with respect to the ζ -variable in the sense
of Clarke [8], and n is the outward unit normal on ∂Ω .

The above mentioned variational principle is also widely used to the variational problems with p(x)-growth conditions,
such as X.L. Fan and S.G. Deng in [12] studied p(x)-Laplacian equation with Neumann, Dirichlet problem:

−div
(|∇u|p(x)−2∇u

) + a(x)|u|p(x)−2u = λ f (x, u) + μg(x, u), in Ω,

where the function satisfies a(x) ∈ L∞(Ω) and ess infx∈Ω = a0 > 0. By using the variational principle of Ricceri and the local
Mountain pass lemma one gets the multiplicity of solutions of the problem with λ = 1. While, through the same variational
principle, F. Cammarotoa, A. Chinnì and B. Di Bella in [6] studied the problem when λ is an arbitrary positive constant. More
generality, G.W. Dai in [9] applied the version of nonsmooth three critical points theorem to examine the Neumann type
differential inclusion problems involving p(x)-Laplacian:

(P3)

⎧⎨
⎩

−div
(|∇u|p(x)−2∇u

) + μ|u|p(x)−2u = λ∂ F (x, u), in Ω,

∂u

∂n
= ϕ, on ∂Ω.

Besides, by the same theory, he and his partner W.L. Liu in [10] also considered the Dirichlet problem with nonsmooth
potential when μ = 0 in (P3). For other results, by using the B. Ricceri’s three critical points theorem or the nonsmooth
version of B. Ricceri’s variational principle to consider the quasilinear elliptic equation and elliptic systems involving p(x)-
Laplacian, we refer the readers to the references [21,22,15].

We must point out that the p(x)-Laplacian possesses more complicated nonlinearities than p-Laplacian. For example, it
is inhomogeneous and, in general, it does not have the “first eigenvalue”. In other words, the infimum of the eigenvalues of
p(x)-Laplacian equals 0. Moreover, the compact theorem of the generalized Lebesgue–Sobolev space W 1,p(x)(Ω) has a more
strict requirement. Therefore, to get the three solutions for (Pλ) by the nonsmooth version of Ricceri variational principle,
we have to get over several difficulties, and the contribution of this paper can be briefly described as follows:
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1. One of the aims of the present paper is to improve and generalize the results of [17] to the case of variable exponent
p(x)-Laplacian. Since the property of the first eigenvalue of p(x)-Laplacian is not the same as the p-Laplacian, namely the
first eigenvalue is not isolated (see [13]), therefore, the first difficulty is we cannot use the eigenvalue property of p(x)-
Laplacian.

2. We study problem (Pλ) from a more extensive viewpoint. We want to give a progression of the results of [12,6]
to the nonsmooth case. Unfortunately, the technique and assumptions on nonlinearities in [6] is not applicable here since
the discontinuous nonlinearities in (Pλ). Here, we use another technique which is simpler and more direct in this paper.
Besides, the indefinite weight function V (x) in (Pλ) is another difficulty.

3. We note that there is a key assumption on the exponent that p > N or p− > N , such as in the references [17,4,6,9] and
so on. For the detailed reason of this assumption see Remark 3.1. Here, we retreat this restriction on variable exponent p(x).

This paper is divided into three sections, in Section 2, we introduce some basic properties of the generalized Lebesgue
space L p(x)(Ω) and the generalized Lebesgue–Sobolev space W 1,p(x)(Ω), and the generalized gradient of locally Lipschitz
function. In Section 3, we give suitable hypotheses on j1(x, ζ ) and j2(x, ζ ), and use the nonsmooth three critical points
theorems to prove the existence results for problem (Pλ).

2. Mathematical preliminaries

In this section we introduce some auxiliary results which is necessary for us to discuss problem (Pλ). Set

C+(Ω̄) = {
h

∣∣ h(x) ∈ C(Ω), h(x) > 1, for any x ∈ Ω̄
}
.

Firstly, define the variable exponent Lebesgue space L p(x)(Ω) by

Lp(x)(Ω) =
{

u
∣∣∣ u is a measurable real-valued function

∫
Ω

∣∣u(x)
∣∣p(x)

dx < ∞
}

with the norm

|u|p(x) = inf

{
λ > 0:

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣
p(x)

dx � 1

}
;

and generalized Lebesgue–Sobolev spaces W 1,p(x)(Ω) by

W 1,p(x)(Ω) = {
u ∈ Lp(x)(Ω)

∣∣ |∇u| ∈ Lp(x)(Ω)
}

with the norm

‖u‖ = |u|p(x) + |∇u|p(x).

Then L p(x)(Ω) and W 1,p(x)(Ω) are separable reflexive Banach spaces. For brevity we shall write X = W 1,p(x)(Ω). For V (x) ∈
L∞(Ω), we set V + = max{V (x),0} and V − = max{−V (x),0}. Thus we have V (x) = V +(x) − V −(x). Define J : X → R by

J (u) =
∫
Ω

1

p(x)

(|∇u|p(x) + V +|u|p(x))dx, ∀u ∈ X .

Then J is even, J ∈ C1(X, R) and〈
J ′(u), v

〉
X =

∫
Ω

|∇u|p(x)−2∇u∇v dx + V +(x)|u|p(x)−2uv dx, ∀u, v ∈ X,

where 〈·,·〉X is the duality pairing between X∗ and X .

Proposition 2.1. (See [12].) The function J : X → R is convex. The mapping J ′ : X → X∗ is a strictly monotone, bounded homeomor-
phism, and is of (S+) type, namely

un ⇀ u in X and lim sup
n→∞

〈
J ′(un), un − u

〉
� 0, implies un → u.

Proposition 2.2. (See [12].) (1) If q(x) ∈ C+(Ω̄) and q(x) � p∗(x), ∀x ∈ Ω̄ , then the imbedding from W 1,p(x)(Ω) to Lq(x)(Ω) is
compact and continuous, where

p∗(x) =
{

Np(x)
N−p(x) , p(x) < N,

∞, p(x) � N.

(2) If p1(x), p2(x) ∈ C+(Ω̄), and p1(x) � p2(x), ∀x ∈ Ω̄ , then L p2(x)(Ω) ↪→ L p1(x)(Ω), and the imbedding is continuous.
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Let X be a Banach space and X∗ its topological dual. A function ϕ : X → R is said to be locally Lipschitz, if for every
u ∈ X there exist a neighborhood U of u and a constant K > 0, such that |ϕ(v) − ϕ(w)| � K |v − w| for every v, w ∈ U .
From convex analysis we know that a proper, convex and lower semicontinuous function g : X → R̄ = R ∪ {+∞} is locally
Lipschitz in the interior of its effective domain dom g = {u ∈ X: g(u) < +∞}. For each h ∈ X , we define the generalized
directional derivative of ϕ at u in the direction h by

ϕ◦(u,h) = lim sup
w→u, t→0

ϕ(w + th) − ϕ(w)

t
.

It is easy to check that the function X � h → ϕ◦(u,h) is sublinear and continuous, by the Hahn–Banach theorem it is the
support function of a nonempty, convex and W ∗-compact set ∂ϕ(u) ⊆ X∗ , defined by

∂ϕ(u) = {
u∗ ∈ X∗:

〈
u∗,h

〉
X � ϕ◦(u,h); ∀h ∈ X

}
.

The set ∂ϕ(u) is known as the subdifferential of ϕ at x.

Proposition 2.3. (See [8].) Let f , g : X → R be two locally Lipschitz functions. Then

(1) f ◦(u;h) = max{〈ξ,h〉: ξ ∈ ∂ f (u)};
(2) ( f + g)◦(u;h) � f ◦(u;h) + g◦(u;h);
(3) Let j : X → R be a continuously differentiable function. Then ∂ j(u) = { j′(u)}, j◦(u;h) coincides with 〈 j′(u),h〉X and

( f + j)◦(u;h) = f ◦(u;h) + 〈 j′(u),h〉X for all u,h ∈ X ;
(4) (− f )◦(u;h) = f ◦(u;−h), and f ◦(u;κh) = κ f ◦(u;h) for every κ > 0;
(5) The function(u,h) → f ◦(u;h) is upper semicontinuous.

Let I be a function on X satisfying the following structure hypothesis (I is called a Motreanu–Panagiotopoulos type
functional):

(H) I = Φ + Ψ , where Φ : X → R is locally Lipschitz while Ψ : X → R ∪ {+∞} is convex, proper, and lower semicontinuous.

We say that u ∈ X is a critical point of I if it fulfills the inequality

Φ◦(u; v − u) + Ψ (v) − Ψ (u) � 0, ∀v ∈ X .

Set K := {u ∈ X | u is a critical point of I} and Kc = K ∩ I−1(c). A number c ∈ R such that Kc �= 0 is called a critical value
of I .

Definition 2.4. (See [26].) I = Φ + Ψ is said to satisfy the Palais–Smale condition at level c ∈ R (shortly, (PS)c) if every
sequence {un} in X satisfying I(u) → c and

Φ◦(un; v − un) + Ψ (v) − Ψ (un) � −εn‖v − un‖, ∀v ∈ X,

for a sequence {εn} in [0,∞) with εn → 0, contains a convergent subsequence. If (PS)c is verified for all c ∈ R , I is said to
satisfy the Palais–Smale condition (shortly, (PS)).

Proposition 2.5. (See [23, Theorem B].) Let X be a separable and reflexive Banach space, let I1 := Φ1 +Ψ1 and I2 := Φ2 be like in (H),
let Λ be a real interval. Suppose that:

(b1) Φ1is weakly sequentially lower semicontinuous while Φ2 is weakly sequentially continuous.
(b2) For every λ ∈ Λ the function I1 + λI2 fulfills (PS)c , c ∈ R, together with lim‖u‖→+∞(I1(u) + λI2(u)) = +∞.
(b3) There exists a continuous concave function h : Λ → R satisfying

sup
λ∈Λ

inf
u∈X

(
I1(u) + λI2(u) + h(λ)

)
< inf

u∈X
sup
λ∈Λ

(
I1(u) + λI2(u) + h(λ)

)
.

Then there is an open interval Λ0 ⊆ Λ such that for each λ ∈ Λ0 the function I1 + λI2 has at least three critical points in X.
Moreover; if Ψ1 ≡ 0, then there exist an open interval Λ1 ⊆ Λ and a number σ > 0 such that for each λ ∈ Λ0 the function I1 + λI2
has at least three critical points in X having norms less than σ > 0.

Proposition 2.6. (See [28].) Let X be a non-empty set and Φ,Ψ two real functionals on X. Assume that there are γ > 0, u0, u1 ∈ X,
such that
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Φ(u0) = Ψ (u0) = 0, Φ(u1) > γ ,

sup
u∈Φ−1((−∞,γ ])

Ψ (u) < γ
Ψ (u1)

Φ(u1)
.

Then, for each ρ satisfying

sup
u∈Φ−1((−∞,γ ])

Ψ (u) < ρ < γ
Ψ (u1)

Φ(u1)
,

one has

sup
λ�0

inf
u∈X

(
Φ(u) + λ

(
ρ − Ψ (u)

))
< inf

u∈X
sup
λ�0

(
Φ(u) + λ

(
ρ − Ψ (u)

))
.

3. Main result

In this section we prove the existence theorem for problem (Pλ). We first fix some notation. The energy functional
ϕ : X → R corresponding to problem (Pλ) is given by

ϕ(u) =
∫
Ω

1

p(x)

(|∇u|p(x) + V (x)|u|p(x))dx −
∫
Ω

j1(x, u)dx − λ

∫
Ω

j2
(
x, u(x)

)
dx

=
∫
Ω

1

p(x)

(|∇u|p(x) + V +(x)|u|p(x))dx −
∫
Ω

j1(x, u)dx − λ

{∫
Ω

j2
(
x, u(x)

)
dx + 1

λ

∫
Ω

1

p(x)
V −(x)|u|p(x) dx

}
.

(3.1)

Set

A1(u) = −
∫
Ω

j1(x, u)dx; J (u) =
∫
Ω

1

p(x)

(|∇u|p(x) + V +|u|p(x))dx;

A2(u) = −
∫
Ω

j2(x, u)dx; L(u) = −1

λ

∫
Ω

1

p(x)
V −|u|p(x) dx, (3.2)

and

h1 = A1 + J , h2 = A2 + L, (3.3)

then, under these notations, ϕ = h1 + λh2. Let V p(x) = {u ∈ W 1,p(x)(Ω):
∫
Ω

u dx = 0}, then V p(x) is a closed linear subspace
of W 1,p(x)(Ω) with codimension 1, and we have W 1,p(x)(Ω) = R ⊕ V p(x) (see [13]). If we define the norm by

‖u‖′ = inf

{
λ > 0:

∫
Ω

(∣∣∣∣∇u

λ

∣∣∣∣
p(x)

+ V +(x)

∣∣∣∣u

λ

∣∣∣∣
p(x))

dx � 1

}
,

by Proposition 2.6 in [13], it is easy to see that ‖u‖′ is an equivalent norm in V p(x) . Thereafter, we will also use ‖ · ‖ to
denote the equivalent norm ‖ · ‖′ in V p(x) .

It is easy to see that, when u ∈ V p(x) , we have

(i) if ‖u‖ < 1, then 1
p+ ‖u‖p+ � J (u) � 1

p− ‖u‖p−
;

(ii) if ‖u‖ > 1, then 1
p+ ‖u‖p− � J (u) � 1

p− ‖u‖p+
.

Moreover, put

λ1 := inf
u∈V p(x)\{0},‖u‖>1

∫
Ω

1
p(x) (|∇u|p(x) + V +|u|p(x))dx∫

Ω
|u|q(x) dx

.

If q+ < p(x), ∀x ∈ Ω , by continuous embedding of X in L p−
(Ω) and, by Proposition 2.2(2), the above inequalities of (i), (ii),

we have that λ1 > 0.
Our assumptions on the data of (Pλ) are the following:
H( j1) : j1 : Ω×R → R is a function such that j1(x, ζ ) satisfies j1(x,0) = 0 and also
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( j1)1 for all ζ ∈ R , Ω� x �→ j1(x, ζ ) ∈ R is measurable;
( j1)2 for almost all x ∈ Ω , R� ζ �→ j1(x, ζ ) ∈ R is locally Lipschitz;
( j1)3 for almost all x ∈ Ω , all ζ ∈ R and all w ∈ ∂ j1(x, ζ ), we have

|w| � a(x)|ζ |p−−1, with a(x) ∈ L∞(Ω)+;
( j1)4 there exist q(x), s(x) ∈ C+(Ω̄) satisfying q+ < p(x) < s−, ∀x ∈ Ω , such that

lim sup
|ζ |→0

j1(x, ζ )

|ζ |q(x)
< −2λ1,

and

lim sup
|ζ |→∞

j1(x, ζ ) − â(x)|ζ |p−

|ζ |s− < 0, with â(x) ∈ L∞(Ω)+,

uniformly for almost all x ∈ Ω .
H( j2): j2 : Ω × R → R is a function, such that j2(x, ζ ) satisfies j2(x,0) = 0 and also
( j2)1 for all ζ ∈ R , Ω� x �→ j2(x, ζ ) ∈ R is measurable;
( j2)2 for almost all x ∈ Ω , R� ζ �→ j2(x, ζ ) ∈ R is locally Lipschitz;
( j2)3 for almost all x ∈ Ω , all ζ ∈ R and all v(x) ∈ ∂ j2(x, ζ ), we have

|v| � b(x)|ζ |p(x)−1 with b(x) ∈ L∞(Ω)+;
( j2)4 there exists K > 0, for all 0 < |ζ | < K, such that p(x) j2(x, ζ ) > − 1

λ
V −(x)|ζ |p(x) , and

p(x) j2(x, ζ ) + 1

λ
V −(x)|ζ |p(x) = o

(|ζ |p+) (|ζ | → 0
); lim sup

ζ→∞
j2(x, ζ )

|ζ |p+ < 0,

uniformly for almost all x ∈ Ω .

Remark 3.1. Recently papers on the three solutions or infinitely many solutions for the partial differential equations with
non-standard growth conditions have been the object of increasing amount of attention. Many authors often give the crucial
hypothesis on the variable exponent of N < p− , which is necessary of the compact imbedding form W 1,p(x)(Ω) to C0(Ω)

or L∞(Ω). Besides, due to the complexity of problem which they considered, this assumption may be more convenient for
them to deal with the problems. In the present paper we abandon this restriction on p(x). Moreover, when N < p− , the
next lemma is our appendant result, we list it below.

Lemma 3.1. For every p(x) ∈ C+(Ω̄) with N < p− , there exists a function r(x) ∈ C+(Ω̄) satisfying r+ < p(x) < r∗(x), ∀x ∈ Ω .

Proof. Let us suppose that μ : Ω → R is a continuous function, satisfying 0 < μ(x) < min{ln p−, ln(p−/p+ + 1)}, ∀x ∈ Ω .
Define a new function f (t) = p− exp(−t), it is easy to see that f (t) is a decreasing function. Set r(x) = p− exp(−μ(x)),
then the compound function r(x) is of C(Ω̄). By the properties of decreasing function and μ(x) < ln p−, ∀x ∈ Ω , one
has f (ln p−) < f (μ(x)), note that f (ln p−) = 1, it follows that f (μ(x)) > 1, ∀x ∈ Ω . Therefore r(x) ∈ C+(Ω̄). Besides, by
μ(x) > 0, we have r(x) < p−, ∀x ∈ Ω , it follows that r+ < p− . Next we show p(x) < r∗(x), ∀x ∈ Ω . If r(x) � N , then
r∗(x) = ∞, it is obvious that p(x) < r∗(x). If r(x) < N , then from μ(x) < ln(p−/p+ + 1) and keeping in mind N < p− , we get

exp
(
μ(x)

)
<

p−

p+ + 1 <
Np− + p−p(x)

Np(x)

�⇒ exp
(−μ(x)

)(
Np− + p−p(x)

)
> Np(x)

�⇒ Np− exp
(−μ(x)

)
> p(x)

(
N − p− exp

(−μ(x)
))

,

namely, Nr(x) > p(x)(N − r(x)), since r(x) < N , then p(x) < r∗(x). This completes the proof. �
We now state our main result of this section.

Theorem 3.1. If hypotheses H( j1) and H( j2) hold, then there exists Λ1 ⊆ [0,+∞), such that for each λ ∈ Λ1 , problem (Pλ) has at
least three nontrivial solutions in V p(x) .

Before proving Theorem 3.1, we first prove the following lemmas which are useful for the proof of this theorem.
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Lemma 3.2. Since ji are locally Lipschitz functions which satisfy ( ji)3 , then Ai in (3.2) are well defined and they are locally Lipschitz.
Moreover, let E be a closed subspace of X and Ai |E the restriction of Ai to E, where i = 1 or 2. Then

(Ai|E)◦(u; v) �
∫
Ω

(− ji)
◦(x, u(x); v(x)

)
dx, for all u, v ∈ E.

Since the proof of the above lemma is similar to that of [18, Lemma 4.2], we shall omit it here.

Lemma 3.3. For any ε > 0, and q(x) as mentioned in ( j1)4 there exists a uε ∈ V p(x) with ‖uε‖ > 1, such that

1

p+ ‖uε‖p− + λ1

∫
Ω

|uε|q(x) dx � ε + 2λ1

p+(λ1 + ε)
‖uε‖p−

.

Proof. Since λ1 := infu∈V p(x)\{0},‖u‖>1

∫
Ω

1
p(x) (|∇u|p(x)+V +|u|p(x))dx∫

Ω |u|q(x) dx
, then by the definition of infimum, for every ε > 0, there

exists a uε ∈ V p(x) with ‖uε‖ > 1, such that∫
Ω

1
p(x) (|∇uε|p(x) + V +|uε|p(x))dx∫

Ω
|uε|q(x) dx

< λ1 + ε.

It follows that

λ1

λ1 + ε
<

λ1
∫
Ω

|uε|q(x) dx∫
Ω

1
p(x) (|∇uε|p(x) + V +|uε|p(x))dx

�
λ1

∫
Ω

|uε|q(x) dx
1

p+ ‖uε‖p−

therefore, we get

1

p+ ‖uε‖p− + λ1

∫
Ω

|uε|q(x) dx � 1

p+

(
1 + λ1

λ1 + ε

)
‖uε‖p−

.

This completes the proof. �
Lemma 3.4. There exist a u� ∈ V p(x) with u� �= 0 and, γ � > 0 such that h1(u�) > γ � , where h1 = J + A1 is as mentioned in (3.3).

Proof. Case I: By the virtue of assumptions of ( j1)4, there exists a δ0 > 0 small enough (without loss of generality we
assume δ0 < 1), such that for almost all x ∈ Ω , one has

j1(x, ζ ) � −2λ1|ζ |q(x), ∀|ζ | � δ0, (3.4)

besides by ( j1)4, we know that there exists τ > 0 such that

lim sup
|ζ |→∞

j1(x, ζ ) − â(x)|ζ |p−

|ζ |s− < −2τ ,

uniformly for almost all x ∈ Ω . So we can find an M > 1 large enough such that for almost all x ∈ Ω , all ζ such that |ζ | � M ,
we have

lim sup
|ζ |→∞

j1(x, ζ ) − â(x)|ζ |p−

|ζ |s− < −τ ,

it immediately follows

j1(x, ζ ) � â(x)|ζ |p− − τ |ζ |s− , ∀|ζ | > M. (3.5)

On the other hand, since j1(x,0) = 0 and by ( j1)3, then from the Lebourg mean value theorem (see [3]) for almost all x ∈ Ω

j1(x, ζ ) � a(x)|ζ |p−
, ∀δ0 < |ζ | � M. (3.6)

Note that a(x) ∈ L∞(Ω)+ , p− > q+ and, δ0 < 1 imply − 2λ1

δ
p−
0

< −2λ1, for almost all x ∈ Ω , from (3.4) and (3.6) we have

j1(x, ζ ) � −2λ1|ζ |q(x) +
(

a(x) + 2λ1

δ
p−

)
|ζ |p−

, ∀|ζ | � M, (3.7)

0
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when |ζ | > M > δ0. Since δ0 < 1 and p− > q+ , then (
|ζ |
δ0

)p−
> |ζ |q(x) , which shows that

−2λ1|ζ |q(x) +
(

a(x) + 2λ1

δ
p−
0

)
|ζ |p−

> 0. (3.8)

Thus through (3.5), for almost all x ∈ Ω , and (3.8) one has

j1(x, ζ ) �
(

a(x) + â(x) + 2λ1

δ
p−
0

)
|ζ |p− − τ |ζ |s− − 2λ1|ζ |q(x), ∀|ζ | > M. (3.9)

Similarly to the above, note q+ < p− < s− , from (3.7) it follows that

j1(x, ζ ) � −2λ1|ζ |q(x) +
(

a(x) + 2λ1

δ
p−
0

)
|ζ |p− − a(x)

M p− |ζ |p− − τ

Ms− |ζ |s− + a(x)

∣∣∣∣ ζ

M

∣∣∣∣
q(x)

+ τ

∣∣∣∣ ζ

M

∣∣∣∣
q(x)

�
(

−2λ1 + a(x)

Mq(x)
+ τ

Mq(x)

)
|ζ |q(x) − τ

Ms− |ζ |s− +
(

a(x) − a(x)

M p− + 2λ1

δ
p−
0

)
|ζ |p−

, ∀|ζ | � M. (3.10)

Therefore, note that M > 1, from (3.9) and (3.10), for almost all x ∈ Ω and all ζ ∈ R , it follows that

j1(x, ζ ) �
(

−2λ1 + a(x) + τ

Mq(x)

)
|ζ |q(x) +

(
a(x) + â(x) + 2λ1

δ
p−
0

)
|ζ |p− − τ

Ms− |ζ |s− ,

we can choose M0 so large that a(x)+τ

Mq(x)
0

< λ1, without loss of generality we suppose that a(x) > â(x) > 0, ∀x ∈ Ω . Then the

above inequality becomes

j1(x, ζ ) � −λ1|ζ |q(x) +
(

2a(x) + 2λ1

δ
p−
0

)
|ζ |p− − τ

Ms−
0

|ζ |s− . (3.11)

Therefore through the inequality (3.11), for any u ∈ V p(x) with ‖u‖ > 1, we have

h1(u) = J (u) + A1(u)

=
∫
Ω

1

p(x)

(|∇u|p(x) + V +|u|p(x))dx −
∫
Ω

j1(x, u)dx

� 1

p+ ‖u‖p− + λ1

∫
Ω

|u|q(x) dx +
∫
Ω

τ

Ms−
0

|u|s− dx −
∫
Ω

(
2a(x) + 2λ1

δ
p−
0

)
|u|p−

dx. (3.12)

Since the imbedding from X to L p−
is compact, then there is a constant c0 > 0, such that |u|p− < c0‖u‖, ∀u ∈ X . Besides

from Lemma 3.3, for an ε0 > 0 small enough we make sure that

λ1

p+(λ1 + ε0)
>

(
2‖a‖∞ + 2λ1

δ
p−
0

)
c0.

Remind that a(x) ∈ L∞(Ω)+ where ‖ · ‖∞ denotes the norm of L∞(Ω), there are a uε0 ∈ V p(x) with ‖uε0‖ > 1, gathering
the inequality (3.12) and the above inequality, one has

h1(uε0) = J (uε0) + A1(uε0)

=
∫
Ω

1

p(x)

(|∇uε0 |p(x) + V +|uε0 |p(x))dx −
∫
Ω

j1(x, uε0)dx

� 1

p+ ‖uε0‖p− + λ1

∫
Ω

|uε0 |q(x) dx +
∫
Ω

τ

Ms−
0

|uε0 |s− dx −
∫
Ω

(
2a(x) + 2λ1

δ
p−
0

)
|uε0 |p−

dx

� 1

p+

(
1 + λ1

λ1 + ε0

)
‖uε0‖p− +

∫
Ω

τ

Ms−
0

|uε0 |s− dx −
(

2‖a‖∞ + 2λ1

δ
p−
0

)
c0‖uε0‖p−

� 1

p+ ‖uε0‖p−
. (3.13)

Defining u1 = uε0 and a constant 0 < γ1 < 1
+ , through (3.13) we have h1(u1) > γ1.
p
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Case II: We also can find a u2 ∈ V p(x) with ‖u2‖ < 1, and γ2 > 0 satisfying h1(u2) > γ2. In fact, similarly to (3.12) and
(3.13), using (3.11), when ‖u‖ < 1, we get

h1(u) � 1

p+ ‖u‖p+ +
∫
Ω

τ

Ms−
0

|u|s− dx +
∫
Ω

λ1|u|q(x) −
(

2a(x) + 2λ1

δ
p−
0

)
|u|p−

dx. (3.14)

Set

K =
{
ζ ∈ R

∣∣∣ |ζ | < min

(
1,

(
λ1δ

p−
0

2‖a‖∞δ
p−
0 + 2λ1

) 1
p−−q+ )}

,

then in V p(x) we can choose a u2 ∈ K , with ‖u2‖ < 1, satisfying λ1|u2|q(x) − (2a(x) + 2λ1

δ
p−
0

)|u2|p−
> 0. By (3.14) we have

h1(u2) � 1

p+ ‖u2‖p+ + τ

Ms−
0

∫
Ω

|u2|s− dx � 1

p+ ‖u2‖p+
> 0.

From the above inequality we can find a γ2 > 0 satisfying h1(u2) > γ2. Combining the above two cases, there exist a
u� ∈ V p(x) with u� �= 0 and, γ � > 0 such that h1(u�) > γ � . Thus we have completed the proof. �
Lemma 3.5. There exists a γ > 0 with γ < γ � such that

sup
u∈h−1

1 ((−∞,γ ])∩V p(x)

(−h2(u)
)
< γ

−h2(u�)

h1(u�)
,

where u� , γ � and h2 = A2 + L are as mentioned in Lemma 3.4 and in (3.3) respectively.

Proof. Firstly, from the assumptions of ( j2)4, for ∀ε > 0, ∃δ′ > 0, ∀0 < |ζ | � δ1 < min{δ′,1}, for almost all x ∈ Ω , we have

j2(x, ζ ) � − 1

λp(x)
V −|ζ |p(x) + 1

p(x)
ε|ζ |p+

. (3.15)

Again, by ( j2)4, for the above ε > 0, there exists a C > 1 large enough, for almost all x ∈ Ω , such that

j2(x, ζ ) � ε|ζ |p+
, ∀|ζ | > C . (3.16)

Secondly, since j2(x,0) = 0 and by ( j2)3, and note b(x) ∈ L∞(Ω)+ , then similarly to the proof of Lemma 3.4, for almost all
x ∈ Ω , through the Lebourg mean value theorem

j2(x, ζ ) � c(x)|ζ |α(x), ∀δ1 < |ζ | � C, (3.17)

where c(x) ∈ L∞(Ω)+ and p+ < α(x) < p∗(x), ∀x ∈ Ω . Gathering (3.16) and (3.17), for almost all x ∈ Ω , it follows that

j2(x, ζ ) � c(x)|ζ |α(x) + ε|ζ |p+
, ∀|ζ | > δ1. (3.18)

Keeping in mind that p+ < α(x), ∀x ∈ Ω , and δ1 < 1, (3.15) and (3.18) lead to

j2(x, ζ ) � c(x)|ζ |α(x) + ε|ζ |p+ + 1

p(x)
ε|ζ |p+ − 1

λp(x)
V −

∣∣∣∣ ζ

δ1

∣∣∣∣
p(x)

+ 1

λp(x)
V −

∣∣∣∣ ζ

δ1

∣∣∣∣
α(x)

� − 1

λp(x)
V −

∣∣∣∣ ζ

δ1

∣∣∣∣
p(x)

+
(

1 + 1

p(x)

)
ε|ζ |p+ +

(
c(x) + V −

λp(x)|δ1|α(x)

)
|ζ |α(x), ∀|ζ | > δ1 (3.19)

and j2(x, ζ ) � − 1
λp(x) V −|ζ |p(x) + 1

p(x) ε|ζ |p+ + ε|ζ |p+ + c(x)|ζ |α(x), ∀|ζ | � δ1. Therefore, through the above two inequalities,
for almost all x ∈ Ω and all ζ ∈ R , we show that

j2(x, ζ ) + 1

λp(x)
V −|ζ |p(x) �

(
1 + 1

p(x)

)
ε|ζ |p+ +

(
c(x) + V −

λp(x)|δ1|α(x)

)
|ζ |α(x). (3.20)

Define the function g : [0,+∞) → R by

g(t) = sup
{−h2(u): u ∈ V p(x) with ‖u‖p+ � ηt

}
,

where η is an arbitrary constant satisfying η > 1. Pay attention to the α(x) < p∗(x), ∀x ∈ Ω , then from the compact
imbedding of X to Lα(x)(Ω) and the continuous imbedding to L p+

(Ω), there exist c1 > 0 and c2 > 0 such that

|u|p+ < c1‖u‖; |u|α(x) < c2‖u‖, ∀u ∈ X . (3.21)
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Since h2(u) = A2(u) + L(u) (here, A2 and L are stated in (3.2)), then from (3.20) and (3.21), we have

g(t) �
(

1 + 1

p−

)
ε|u|p+

p+ + c3 max
{|u|α+

α(x), |u|α−
α(x)

}
�

(
1 + 1

p−

)
cp+

1 εηt + c3 max
{

cα+
2 η

α+
p+ t

α+
p+ , cα−

2 η
α−
p+ t

α−
p+ }

, (3.22)

where c3 = (‖c‖∞ + ‖V ‖∞
λp−|δ1|α+ ). On the other hand, by virtue of ( j2)4, g(t) > 0 for t > 0. Furthermore, due to α− > p+ and

the arbitrariness of ε > 0, we deduce

lim
t→0+

g(t)

t
= 0. (3.23)

By Lemma 3.4, we know h1(u�) > 0, it is obvious that u� �= 0. Therefore also by ( j2)4, it shows that −h2(u�) > 0. Since
from (3.23), for −h2(u�)

h1(u�)
> 0, there exists a t0 > 0 such that

g(t)

t
<

−h2(u�)

h1(u�)
, ∀t < t0,

namely

sup
u∈{‖u‖p+�ηt}∩V p(x)

−h2(u) < t
−h2(u�)

h1(u�)
. (3.24)

From the proof of Lemma 3.4, it is easy to get h1 being weakly coercive, i.e. h1 → +∞ as ‖u‖ → ∞. In fact, when ‖u‖ →
+∞, without loss of generality we may assume |u| → +∞. Since p− < s− , then by virtue of the Young inequality, we can
get (

2a(x) + 2λ1

δ
p−
0

)
|u|p− � ε

∣∣|u|p− ∣∣s−/p− + ε−(p−)/(s−−p−)cs−/(s−−p−)

4

� ε|u|s− + c5, (3.25)

for some c4 = 2‖a‖∞ + 2λ1

δ
p−
0

> 0, c5 = c5(c4, ε) > 0. Therefore by (3.12), we know that

h1(u) � 1

p+ ‖u‖p− + λ1

∫
Ω

|u|q(x) dx +
∫
Ω

τ

Ms−
0

|u|s− dx −
∫
Ω

ε|u|s− dx + c4|Ω|. (3.26)

Let ε < τ

Ms−
0

, then from (3.26) it is easy to see the coercivity of h1.

Now, we choose a constant γ with 0 < γ < min {t0, γ
�} (where γ � is the one in Lemma 3.4). If h1(u) � γ , then by the

coercivity of h1, there exists a constant c6 > 1 such that ‖u‖p+ � c6γ , therefore, we have

h−1
1

(
(−∞, γ ]) ∩ V p(x) ⊆ {

u ∈ V p(x), ‖u‖p+ � c6γ
}
,

from which it follows that

sup
u∈h−1

1 ((−∞,γ ])∩V p(x)

−h2(u) � sup
u∈{‖u‖p+�c6γ }∩V p(x)

−h2(u). (3.27)

Because of γ < t0 and c6 > 1, the inequality (3.24) and the arbitrariness of η > 1 deduce that

sup
u∈{‖u‖p+�c6γ }∩V p(x)

−h2(u) < γ
−h2(u�)

h1(u�)
. (3.28)

Combining (3.27) and (3.28) we obtain the desired inequality of this lemma, and the proof is complete. �
By the assumptions of H( j1) and H( j2), the functions h1 and h2 turn out to be locally Lipschitz. Here, we consider the

indicator function of the closed subspace V p(x) , i.e., ψ1 : X → (−∞,+∞],

ψ1(u) =
{

0, if u ∈ V p(x),

+∞, otherwise,
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where ψ1 is evidently convex, proper, and lower semicontinuous. Write

I1(u) := h1(u) + ψ1(u) as well as I2(u) := h2(u), u ∈ X .

Obviously, I2 and I2 satisfy condition (H) of Section 2. Therefore, for every λ > 0 the function I1 + λI2 complies with (H)
too. Now, we will prove the key lemma of this paper.

Lemma 3.6. If the hypotheses of H( j1) and H( j2) hold, then for every λ > 0 the function I1 + λI2 fulfills (PS)c in V p(x) , c ∈ R, and

lim‖u‖→+∞
(

I1(u) + λI2(u)
) = +∞, ∀u ∈ V p(x).

Proof. Firstly, we will prove that h1 + λh2 is weakly coercive, for every λ > 0. Indeed, for every u ∈ V p(x) and without loss
of generality we assume ‖u‖ > 1, because of the definition of ψ1 and (3.12) we have that

I1(u) + λI2(u) =
∫
Ω

1

p(x)

(|∇u|p(x) + V +|u|p(x))dx −
∫
Ω

j1(x, u)dx − λ

∫
Ω

j2(x, u)dx −
∫
Ω

1

p(x)
V −|u|p(x) dx

� 1

p+ ‖u‖p− + λ1

∫
Ω

|u|q(x) dx +
∫
Ω

τ

Ms−
0

|u|s− dx −
∫
Ω

(
2a(x) + 2λ1

δ
p−
0

)
|u|p−

dx − λ

∫
Ω

j2(x, u)dx

− ‖V ‖∞
p−

∫
Ω

|u|p(x) dx. (3.29)

Similarly to (3.25), note s− > p+ , through Young inequality one has

‖V ‖∞
p− |u|p+ � ε

∣∣|u|p+ ∣∣s−/p+ + ε−(p+)/(s−−p+)

(‖V ‖∞
p−

)s−/(s−−p+)

� ε|u|s− + c7, (3.30)

where c7 > 0 is a constant. On one hand, by assumption of ( j2)4, there exists an M1 > 0, for almost all x ∈ Ω and all
|ζ | > M1, such that

j1(x, ζ ) < 0.

On the other hand, from the Lebourg mean value theorem (see [4]), for almost all x ∈ Ω and all ζ ∈ R , we have∣∣ j2(x, ζ ) − j2(x,0)
∣∣ �

∣∣v1(x, ζ )
∣∣|ζ |, (3.31)

for some v1 ∈ ∂ j(x, tζ ) with 0 < t < 1. On account of ( j2)3 besides j2(x,0) = 0, then for almost all x ∈ Ω and all ζ such
that |ζ | � M1, through (3.31) it follows that∣∣ j2(x, ζ )

∣∣ � c8,

where c8 = c8(M1,‖b‖∞, β) > 0. Thus through this discussion, it follows that∫
Ω

j2(x, u)dx =
∫

{|u|>M1}
j2(x, u)dx +

∫
{|u|�M1}

j2(x, u)dx � c8|Ω|. (3.32)

Using (3.25), (3.30) and (3.32) to (3.29), it follows that

I1(u) + λI2(u) � 1

p+ ‖u‖p− + λ1

∫
Ω

|u|q(x) dx + τ

Ms−
0

∫
Ω

|u|s− dx − 2ε

∫
Ω

|u|s− dx − (c5 + c7 + c8)|Ω|. (3.33)

Choose ε > 0 such that ε < τ

2Ms−
0

. Then from the inequality (3.33) it follows that I1 + λI2 is weakly coercive in V p(x) , for

every λ > 0.
Now, we will prove that I1 + λI2 fulfills (PS)c , c ∈ R. Let {un} ⊂ V p(x) be a sequence such that

I1(un) + λI2(un) → c (3.34)

and for every v ∈ V p(x) , we have

(h1 + λh2)
◦(un; v − un) + ψ1(v) − ψ1(un) � −εn‖v − un‖, (3.35)
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for a sequence {εn} in [0,+∞) with εn → 0. By the coerciveness of the function I1 + λI2, (3.34) implies that the sequence
{un} is bounded in V p(x) . Therefore, there exists an element u ∈ V p(x) such that {un} converges weakly to u in V p(x) . Since
J and L are continuous differentiable functions in (3.2), then by Proposition 2.3(2) and (3) we show that

(h1 + λh2)
◦(un; v − un) � h◦

1(un; v − un) + μh◦
2(un; v − un)

= A◦
1(un; v − un) + 〈

J ′(un), v − un
〉
X + λA◦

2(un; v − un) + λ
〈
L′(un), v − un

〉
X , (3.36)

where L′ : X → X∗ , and〈
L′(u), v

〉
X := −1

λ

∫
Ω

V −|u|p(x)−2uv dx, ∀u, v ∈ X .

Choosing in particular v = u in (3.35) and the definition of ψ1, (3.36) becomes〈
J ′(un), un − u

〉
X � εn‖u − un‖ + A◦

1(un; u − un) + λA◦
2(un; u − un) + λ

〈
L′(un), u − un

〉
X .

Since the embedding X ↪→ L p(x)(Ω) is compact, then we have that L : X → R and L′ : X → X∗ are sequentially weakly-
strongly continuous, namely, un ⇀ u in X , implies L(un) → L(u) and L′(un) → L′(u). Therefore, it follows that〈

L′(un), u − un
〉
X → 0, as n → ∞. (3.37)

On the other hand, also by compact imbedding of X ↪→ L p−
(Ω) and X ↪→ L p(x)(Ω), up to a subsequence, {un} converges

strongly to u in L p−
(Ω) and L p(x)(Ω). By virtue of Proposition 2.3, Lemma 3.2 and ( j1)3, through Hö1der’s inequality, one

has

A◦
1(un; u − un) �

∫
Ω

(− j1)
◦(x, un(x); u − un

)
dx

=
∫
Ω

j◦1
(
x, un(x); un − u

)
dx

=
∫
Ω

max
{〈

ξn(x), un − u
〉
X ; ξn(x) ∈ ∂ j1

(
x, un(x)

)}
dx

�
∫
Ω

a(x)|un|p−−1|un − u|dx

� ‖a‖∞|un|p−−1
p− |un − u|p− . (3.38)

Due to {un} is bounded in X , it follows that {un} is bounded in L p−
(Ω), and besides {un} converges strongly to u in L p−

(Ω).
Therefore, |un − u|p− → 0, and A◦

1(un; u − un) → 0, as n → ∞. Similarly to the above statement, by ( j1)3, Proposition 2.3,
Lemma 3.2 and Hö1der’s inequality, we have

A◦
2(un; u − un) �

∫
Ω

(− j2)
◦(x, un(x); u − un

)
dx

=
∫
Ω

j◦2
(
x, un(x); un − u

)
dx

=
∫
Ω

max
{〈

ξn(x), un − u
〉
X ; ξn(x) ∈ ∂ j2

(
x, un(x)

)}
dx,

�
∫
Ω

b(x)|un|p(x)−1|un − u|dx

� ‖b‖∞|un|p(x)−1
p(x) |un − u|p(x), (3.39)

also by the compact imbedding of X ↪→ L p(x)(Ω), we obtain A◦
2(un; u − un) → 0, as n → ∞. Because of the sequence εn → 0

as n → +∞, combining (3.37), (3.38) and (3.39), we show that

lim sup
n→+∞

〈
J ′(un), un − u

〉
X � 0.

From Proposition 2.1 we have un → u as n → +∞. Thus the function I1 + λI2 fulfills (PS)c in V p(x) , c ∈ R. �
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Now we will prove the main result of this section.

Proof of Theorem 3.1. From the proofs of Lemmas 3.4 and 3.5, and the definition of ψ1, we know that there exist a γ > 0
and u� ∈ V p(x) such that I1(u�) > γ , moreover, keep in mind that j1(x,0) = j2(x,0) = 0. Thus we have I1(0) = −I2(0) = 0.
Choose ρ satisfying

sup
u∈I−1

1 ((−∞,γ ])∩V p(x)

(−I2(u)
)
< ρ < γ

−I2(u�)

I1(u�)
,

by Proposition 2.6, we have

sup
λ�0

inf
u∈V p(x)

(
I1(u) + λ

(
ρ + I2(u)

))
< inf

u∈V p(x)

sup
λ�0

(
I1(u) + λ

(
ρ + I2(u)

))
. (3.40)

From the proof of Lemma 3.5, we see that ρ > 0. If we define h : [0,+∞) → R by h(λ) = ρλ and Λ = [0,+∞), then h
and the inequality (3.40) fulfill the condition of Proposition 2.5 (b3). By standard results, the function h1 is locally Lipschitz
and weakly sequentially lower semicontinuous. Since ( j2)3 holds and X is compactly imbedding in L p(x)(Ω), the assertion
remains true regarding h2 too. So (b1) of Proposition 2.5 is satisfied. Finally, Lemma 3.6 makes sure that Proposition 2.5(b2)

holds. Therefore, there is an open interval Λ0 ⊆ Λ such that for each λ ∈ Λ0 the function I1 + λI2 has at least three critical
points in V p(x) . Then the energy functional ϕ = h1 + λh2 corresponding to problem (P ) has at least three critical points
in V p(x) . Suppose that u0 ∈ V p(x) is a critical point of ϕ , then we have

(h1 + λh2)
◦(u0; v − u0) + ψ1(v) − ψ1(u0) � 0, ∀v ∈ V p(x),

namely,

0 � A◦
1(u0; v − u0) + 〈

J ′(u0), v − u0
〉
X + λA◦

2(u0; v − u0) + λ
〈
L′(u0), v − u0

〉
X , (3.41)

from (3.41) there exist w0(x) ∈ ∂ j1(x, u0(x)) and v0(x) ∈ ∂ j2(x, u0(x)) such that

J ′(u0) = V −|u0|p(x)−2u0 + w0 + λv0. (3.42)

Let any η(x) ∈ C∞
0 (Ω), from (3.42) we have

〈−div
(|∇u0|p(x)−2∇u0

)
, η

〉
X = 〈−V |u0|p(x)−2u0, η

〉
X + 〈w0, η〉X + λ〈v0, η〉X .

Recalling that the embedding C∞
0 (Ω) ⊆ X is dense, we infer that

−div
(∣∣∇u0(x)

∣∣p(x)−2∇u0(x)
) + V

∣∣u0(x)
∣∣p(x)−2

u0(x) ∈ ∂ j1
(
x, u0(x)

) + λ∂ j2
(
x, u0(x)

)
.

This implies that u0 is a solution of (P ). Since ψ1 ≡ 0 in V p(x) , then, from Proposition 2.5, there exists Λ1 ⊆ [0,+∞), such
that for each λ ∈ Λ1, problem (Pλ) has at least three nontrivial solutions in V p(x) . �
Example 3.1. As a simple example of nonsmooth locally Lipschitz potential functions satisfying hypotheses H( j1) and H( j2),
we consider the following functions (for simplicity we drop the x-dependence):

j1(ζ ) =
{

(−2λ1 − β)|ζ |q(x), if |ζ | � 1,

â(x)|ζ |p− − ln |ζ |s− , if |ζ | > 1

and

j2(ζ ) =
{− 1

λp(x) V −(x)|ζ |p(x) + β|ζ |p(x), if |ζ | � 1,

−β ln |ζ |p+
, if |ζ | > 1,

where β > 0, â(x), s− , and q(x) are mentioned in the assumptions of H( j1) and H( j2). Evidently, ( j1)4 and ( j2)4 are
satisfied. Besides, through Lebourg mean value theorem, the hypotheses ( j1)3 and ( j2)3 are satisfied. Moreover, it is easy to
see that other assumptions in H( j1) and H( j2) are also satisfied.

Acknowledgments

I would like to express the gratitude to the anonymous referees for their very valuable observations.



C. Qian et al. / J. Math. Anal. Appl. 386 (2012) 364–377 377
References

[1] E. Acerbi, G. Mingione, Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal. 164 (2002) 213–259.
[2] E. Acerbi, G. Mingione, Regularity results for a class of functions with nonstandard growth, Arch. Ration. Mech. Anal. 156 (2001) 121–140.
[3] G.A. Afrouzi, S. Heidarkhani, Three solutions for a Dirichlet boundary value problem involving the p-Laplacian, Nonlinear Anal. 66 (2007) 2281–2288.
[4] G. Bonanno, N. Giovannelli, An eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities, J. Math. Anal. Appl. 308

(2005) 596–604.
[5] G. Bonanno, P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. 80 (2003) 424–429.
[6] F. Cammarotoa, A. Chinnì, B. Di Bella, Multiple solutions for a Neumann problem involving the p(x)-Laplacian, Nonlinear Anal. 71 (2009) 4486–4492.
[7] K.C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981)

102–129.
[8] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[9] G.W. Dai, Three solutions for a Neumann-type differential inclusion problem involving the p(x)-Laplacian, Nonlinear Anal. 70 (2009) 3755–3760.

[10] G.W. Dai, W.L. Liu, Three solutions for a differential inclusion problem involving the p(x)-Laplacian, Nonlinear Anal. 71 (2009) 5318–5326.
[11] L. Diening, Theoretical and numerical results for electrorheological fluids, PhD thesis, University of Frieburg, Germany, 2002.
[12] X.L. Fan, S.G. Deng, Remarks on Ricceri’s variational principle and applications to the p(x)-Laplacian equations, Nonlinear Anal. 67 (2007) 3064–3075.
[13] X.L. Fan, Eigenvalues of the p(x)-Laplacian Neumann problems, Nonlinear Anal. 67 (2007) 2982–2992.
[14] M.E. Filippakis, N.S. Papageorgiou, Solutions for nonlinear variational inequalities with a nonsmooth potential, Abstr. Appl. Anal. 2004 (8) (2004) 635–

649.
[15] B. Ge, X.P. Xue, M.S. Guo, Three solutions to inequalities of Dirichlet problem driven by p(x)-Laplacian, Appl. Math. Mech. 31 (10) (2010) 1283–1292.

(English edition).
[16] A. Iannizzotto, Three critical points for perturbed nonsmooth functionals and applications, Nonlinear Anal. 72 (2010) 1319–1338.
[17] A. Kristály, W. Marzantowicz, C. Varga, A non-smooth three critical points theorem with applications in differential inclusions, J. Global Optim. 46

(2010) 49–62.
[18] A. Kristály, Multiplicity results for an eigenvalue problem for hemi-variational inequalities in strip-like domains, Set-Valued Anal. 13 (1) (2005) 85–103.
[19] C. Li, C.L. Tang, Three solutions for a class of quasilinear elliptic systems involving the (p,q)-Laplacian, Nonlinear Anal. 69 (2008) 3322–3329.
[20] H. Lisei, Cs. Varga, Some applications to variational-hemivariational inequalities of the principle of symmetric criticality for Motreanu–Panagiotopoulos

type functionals, J. Global Optim. 36 (2) (2006) 283–305.
[21] J.J. Liu, X.Y. Shi, Existence of three solutions for a class of quasilinear elliptic systems involving the (p(x),q(x))-Laplacian, Nonlinear Anal. 71 (2009)

550–557.
[22] Q. Liu, Existence of three solutions for p(x)-Laplacian equations, Nonlinear Anal. 68 (2008) 2119–2127.
[23] S.A. Marano, D. Motreanu, On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems,

Nonlinear Anal. 48 (2002) 37–52.
[24] S.A. Marano, N.S. Papageorgiou, On some elliptic hemivariational and variational-hemivariational inequalities, Nonlinear Anal. 62 (2005) 757–774.
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