
Journal of Biomedical Informatics 56 (2015) 87–93
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier .com/locate /y jb in
Improving patient prostate cancer risk assessment: Moving from static,
globally-applied to dynamic, practice-specific risk calculators
http://dx.doi.org/10.1016/j.jbi.2015.05.001
1532-0464/� 2015 Elsevier Inc. All rights reserved.

Abbreviations: AUC, area under the ROC curve; BIC, Bayesian information
criterion; DRE, digital rectal exam; EMR, electronic medical record; HLS, Hosmer–
Lemeshow test statistic; MCMC, Markov Chain Monte Carlo; PBCG, prostate biopsy
collaborative group; PCPT, prostate cancer prevention trial; PCPTRC, prostate cancer
prevention trial risk calculator; PSA, prostate specific antigen; ROC, receiver
operating characteristic; SABOR, San Antonio center of biomarkers of risk for
prostate cancer.
⇑ Corresponding author at: Department of Mathematics, Technische Universität

München, M12, Boltzmannstr. 3, D-85747 Garching near Munich, Germany. Tel.:
+49 89 289 18390; fax: +49 89 289 18435.

E-mail address: a.strobl@tum.de (A.N. Strobl).
Andreas N. Strobl a,b,⇑, Andrew J. Vickers c, Ben Van Calster d, Ewout Steyerberg e, Robin J. Leach f,g,
Ian M. Thompson g, Donna P. Ankerst a,b,g,h

a TU München, Department of Mathematics, Munich, Germany
b HelmholtzZentrum München, Institute of Computational Biology, Munich, Germany
c Memorial Sloan-Kettering Cancer Center, Department of Epidemiology and Biostatistics, New York City, NY, USA
d KU Leuven, Department of Development and Regeneration, Leuven, Belgium
e Erasmus MC, Department of Public Health, Rotterdam, The Netherlands
f University of Texas Health Science Center at San Antonio, Department of Cellular and Structural Biology, San Antonio, TX, USA
g University of Texas Health Science Center at San Antonio, Department of Urology, San Antonio, TX, USA
h University of Texas Health Science Center at San Antonio, Department of Epidemiology and Biostatistics, San Antonio, TX, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 18 December 2014
Revised 14 March 2015
Accepted 4 May 2015
Available online 16 May 2015

Keywords:
Prediction
Discrimination
Calibration
Prostate cancer
Logistic regression
Revision
Clinical risk calculators are now widely available but have generally been implemented in a static and
one-size-fits-all fashion. The objective of this study was to challenge these notions and show via a case
study concerning risk-based screening for prostate cancer how calculators can be dynamically and locally
tailored to improve on-site patient accuracy. Yearly data from five international prostate biopsy cohorts
(3 in the US, 1 in Austria, 1 in England) were used to compare 6 methods for annual risk prediction: static
use of the online US-developed Prostate Cancer Prevention Trial Risk Calculator (PCPTRC); recalibration of
the PCPTRC; revision of the PCPTRC; building a new model each year using logistic regression, Bayesian
prior-to-posterior updating, or random forests. All methods performed similarly with respect to discrim-
ination, except for random forests, which were worse. All methods except for random forests greatly
improved calibration over the static PCPTRC in all cohorts except for Austria, where the PCPTRC had
the best calibration followed closely by recalibration. The case study shows that a simple annual recali-
bration of a general online risk tool for prostate cancer can improve its accuracy with respect to the local
patient practice at hand.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Clinical risk prediction tools are now widely available on the
internet and provide a valuable decision-aid to doctors and
patients regarding treatment choices. There are currently hundreds
of clinical risk prediction tools available online, with objectives
ranging from the prediction of onset of disease for use in screening
to prognosis of outcomes following treatment for disease [1–3].
Interestingly, despite the recent interest in personalized
approaches to medicine, the big data daily flowing into clinical
practices, and changes in patient populations and clinical practice
over time, these risk calculators have generally remained static and
applied in a one-size-fits-all fashion. For instance, 2013 US national
guidelines for the prevention of cardiovascular diseases prescribed
statins for persons with elevated risk based on a global score that
was developed using a pooled cohort of patients monitored from
the late 1980s to the early 2000s [4]. Subsequent validations on
five external cohorts showed that the recommended risk score
would greatly overestimate actual risk on contemporary popula-
tions, with up to 40–50% of the millions classified as high-risk in
fact over-prescribed [5]. The widespread availability of electronic
medical data raises the possibility that such models could instead
evolve over time, automatically changing in tandem with evolving
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global clinical practice patterns [6]. Within individual hospitals,
the ability to capitalize electronic medical record (EMR) data
would additionally permit tailoring of a global risk tool to the
hospital-specific patient population at hand, for example, allowing
a different dynamic evolution of predictions for high-risk clinically
referred versus healthy screening institutions.

As the case study to be investigated in this article, the Prostate
Cancer Prevention Trial Risk Calculator (PCPTRC) is a static risk tool
that predicts the likelihood of detecting prostate cancer if a pros-
tate biopsy were to be performed. It uses as inputs the commonly
collected clinical risk factors: prostate-specific antigen (PSA), digi-
tal rectal exam (DRE), age, race, family history of prostate cancer,
and prior biopsy history [3]. The model it is based on was devel-
oped using prostate biopsy data from participants on the placebo
arm of a very unique prostate cancer prevention trial, the PCPT
[7]. The PCPT provided the only patient population ever to be free
of selection bias because at the end of seven years on the study all
participants were requested to undergo prostate biopsy even if
they lacked a clinical indication for biopsy (n = 5519) [8]. The post-
ing of the calculator online in 2006 facilitated subsequent external
validation on a range of cohorts that differed both in terms of
patient composition and date of collection [9–21]. The latter was
important since a shift in prostate biopsy practice occurred after
the PCPT was completed: the number of sampled tissue cores on
biopsy increased from 6 cores (3 on each side) in the PCPT to the
now contemporary practice of 12 cores (6 on each side). It has been
documented that a greater number of biopsy cores retrieved at
biopsy increases the chance of detection of prostate cancer [22].

Statistical approaches to updating an existing risk prediction
tool have been proposed, ranging from simple adjustment of the
intercept of a model to re-estimation of multiple coefficients in
the original model [23]. One-time updating approaches have been
implemented in a variety of clinical settings, resulting in improved
diagnostic or prognostic performance [24–29]. The need for contin-
ual temporal recalibration of a risk tool has been emphasized
[30,31], along with the concept of transfer learning from similar
hospitals when sample sizes at individual institutions are low [32].

In an era where patient data are housed electronically, risk pre-
diction tools could and should be automatically updated with local
data as soon as such data arrive. The objective of this study was to
challenge the ubiquitous notion of static universal risk prediction
and show via a case study how prediction can easily be adapted
to the patient data on-site, and thus improve the accuracy of pre-
diction for local patients.
2. Methods

2.1. Participants and biopsy results

Five international cohorts from the Prostate Biopsy
Collaborative Group (PBCG) were used to compare various meth-
ods for developing an institution-specific risk calculator. These
have been previously described [21]. Three screening cohorts, the
San Antonio Center of Biomarkers of Risk for Prostate Cancer study
(SABOR), Texas, U.S., ProtecT, UK, and Tyrol, Austria followed pri-
marily a 10-core biopsy scheme. Two clinical cohorts from the
U.S., Cleveland Clinic, Ohio and the Durham VA, North Carolina,
comprised patients referred for clinical symptoms. Those three
cohorts used mixed biopsy schemes, but primarily 10- to
14-cores. Not all cohorts had all of the PCPTRC risk factors avail-
able; only those risk factors that were missing in less than 15% of
the cases were used in the analysis. Biopsy records with associated
PSA values higher than 50 ng/ml or with unknown Gleason grade
were excluded. If cohorts had only few biopsies in the beginning
and ending years, those years were aggregated into the first and
last year. The number of biopsies per year in the resulting data
set ranged from 73 (Durham) to 1106 (ProtecT).
2.2. PCPTRC

A modification of version 2.0 of the PCPTRC was used for the
methods that tailored an existing risk tool [33]. While PCPTRC
2.0 provides separate estimates of the risks of low- versus
high-grade prostate cancer, for this study a logistic regression of
any prostate cancer was performed using the same dataset and
the same covariates as the PCPTRC model: PSA, age, DRE,
first-degree family history of prostate cancer, race (African
American versus not) and history of a prior biopsy. When a risk fac-
tor was missing in more than 15% of biopsies in a cohort, it was not
used in the analysis. This was the case for three of the binary
covariates: African American race, prior biopsy and family history.
Eight separate logistic regressions were run for each possible com-
bination of missing values from these three variables and the cor-
responding model was used for the cohort. The PCPTRC logistic
regression models are given in Table 1 of the Supplementary
Appendix.
2.3. Validation sets and metrics

The different statistical methods for annually updating a risk
tool were compared using each consecutive year, starting with
year 2, as the validation set, and all past years as a training set.
In this manner the training set grew cumulatively in size with each
year and the validation set changed each year. To compare meth-
ods in absence of a fluctuating validation set, the process was
repeated using a fixed validation set consisting of the biopsies in
the last three years of each cohort. The methods were compared
in terms of discrimination and calibration. Discrimination was
measured using the area-underneath-the-receiver-operating-char
acteristic-curve (AUC), which equals the probability that for a ran-
domly chosen cancer case/control pair, the case has a higher pre-
dicted risk of cancer. AUCs vary from 50% (chance
discrimination) to 100% (perfect discrimination), with higher val-
ues indicating better discrimination. Ninety-five percent confi-
dence intervals (95% CI) for AUCs were calculated using
non-parametric U-statistics as commonly implemented in statisti-
cal packages. Calibration was measured via the Hosmer–
Lemeshow statistic (HLS), which provides a single summary of
the commonly used calibration plots. For each method of estimat-
ing risk, patients in the validation set were grouped into ten decile
groups according to estimated risk: patients with the lowest 10th
percentile of risks, risks in the 10th to 20th percentile and so on
up to patients with the highest 10th percentile of risks. The
observed rate of prostate cancer in each of the decile groups was
computed (Og) and compared to the mean of the ng estimated risks

in each decile group (Eg). The HLS equals the sum
P10

g¼1
ng ðOg�Eg Þ2

Eg ð1�Eg Þ ,

with larger values indicating poorer fit; 95% CIs for the HLS were
generated from 200 bootstrapped samples stratified by outcome.
2.4. Statistical methods

Details of the individual methods follow.
2.4.1. PCPTRC
This method performed no model building or augmentation and

thus tests the value of a static model. For each individual in the
training set the PCPTRC score was computed, allowing for missing
values for some of the variables; see Supplementary Appendix,
Table 1.



Table 1
Biopsy characteristics from the five PBCG cohorts. Prostate specific antigen (PSA)
measured in ng/ml. Risk factors used in the models for each cohort (615% missing);
SABOR & Cleveland Clinic: PSA, age, DRE, race, prior biopsy; ProtecT: PSA, age, family
history, race; Tyrol: PSA, age, prior biopsy, DRE; Durham VAs PSA, age, race, prior
biopsy.

SABOR Cleveland
clinic

ProtecT Tyrol Durham
VA

N = 898 N = 3257 N = 7260 N = 4749 N = 2185

Age median
(range)

64
(36, 89)

64
(50, 75)

63
(50, 72)

62
(50, 75)

64
(50, 75)

PSA median
(range)

3.2
(0.1, 49.8)

5.7
(0.2, 49.9)

4.3
(3.0, 49.7)

4.0
(0.2, 49.6)

5.1
(0.1, 49.5)

DRE result
Normal 603

(67%)
3057
(94%)

0 (0%) 4392
(92%)

876
(40%)

Abnormal 234
(26%)

200 (6%) 0 (0%) 357 (8%) 251
(11%)

Unknown 61 (7%) 0 (0%) 7260
(100%)

0 (0%) 1058
(48%)

Family
history

– – – – –

No 244
(27%)

1679
(52%)

5692
(78%)

0 (0%) 0 (0%)

Yes 295
(33%)

371 (11%) 453 (6%) 0 (0%) 0 (0%)

Unknown 359
(40%)

1207
(37%)

1115
(15%)

4749
(100%)

2185
(100%)

African origin
No 794

(88%)
2799
(86%)

6878
(95%)

0 (0%) 1110
(51%)

Yes 104
(12%)

412 (13%) 31 (0%) 0 (0%) 963
(44%)

Unknown 0 (0%) 46 (1%) 351 (5%) 4749
(100%)

112 (5%)

Prior biopsy
Yes 305

(34%)
1089
(33%)

0 (0%) 1417
(30%)

548
(25%)

No 593
(66%)

2168
(67%)

7260
(100%)

3332
(70%)

1637
(75%)

N cancer cases
(%)

285
(32%)

1265
(39%)

2507
(35%)

1281
(27%)

963
(44%)
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Fig. 1. Yearly cancer rates for the five PBCG cohorts.
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2.4.2. Recalibration
This method performed a logistic regression on the training set

using the PCPTRC linear predictor predPCPTRC;i ¼ b0PCPTRCXi as the only
variable. The intercept and slope of the resulting linear predictor
lpupdate;i ¼ aupdate þ bupdatepredPCPTRC;i indicated how well the
PCPTRC was calibrated to the training sample. An intercept of 0
and a slope of 1 corresponded to perfect calibration. The risk of
prostate cancer in the test set was 1=f1þ expð�lpupdate;iÞg:

2.4.3. Logistic regression
For this method a new logistic regression model was built using

the training data and all PCPTRC risk factors age, race, PSA, DRE,
family history, and prior biopsy history that were available in the
training set (a ‘‘clean-slate’’ approach).

2.4.4. Revision
In this method, not only the PCPTRC risk factors, but also the

linear predictor of the PCPTRC was allowed to enter the logistic
regression as a potential variable [23]. Model selection was per-
formed using the stepwise Bayesian Information Criterion (BIC)
to arrive at a logistic regression model with linear predictor
aupdate þ b0updateXi; where Xi is a vector of predictors that contains
predPCPTRC;i and any other available PCPTRC risk factors. Stepwise
regression was initiated separately with an intercept only model
and with the model including all possible variables. The model
with lower BIC was selected for estimation of the risk of prostate
cancer in the test set.

2.4.5. Bayesian method
This approach was based on a logistic regression model

assumed for the training data to form the data likelihood, and with
a prior p(b) for the vector of log odds ratios. The set of participants
and variables were reduced so that all patients had all variables
measured and the models could be fit using Markov Chain Monte
Carlo (MCMC), which is implemented as part of the MCMCpack
package in the R statistical software. The prior for b for each year
was assumed to be multivariate normal. The prior mean was set
to be the PCPTRC estimated coefficients. The prior variance matrix
was set to be the estimated variance–covariance matrix of log odds
ratios from the PCPTRC multiplied by the sample size of PCPTRC to
dilute the information and yield a unit-information prior [34].

2.4.6. Random forests
Random forests are a combination of many ‘‘trees’’, where each

regression tree starts with a root node containing the most influen-
tial covariate, finds the optimal cut point split on that covariate, and
continues splitting subsequent branches by other covariates [35].
Trees are built from random bootstrap samples from the data set.
We used the R package random forest which implements the
Breiman algorithm, using the default settings, including 500 trees.
All available PCPTRC risk factors were allowed for the building of
individual trees. We investigated an option whereby the PCPTRC lin-
ear predictor was also allowed, making this method a form of
non-parametric revision. However, this turned out not to perform
well due to the high correlation between the PCPTRC linear predictor
and PSA, and the PCPTRC predictor was subsequently not allowed for
inclusion. For prediction of cancer for a new individual, the percent
of trees classifying the individual as a cancer case was used.

3. Results

The five PBCG cohorts collected between 898 (SABOR) and 7260
(ProtecT) biopsies in the years 1994–2010 (Table 1). The two clin-
ically referred cohorts, Cleveland Clinic and Durham VA, showed
higher cancer rates, 39% and 46% respectively, than the three other,
primarily screening, cohorts (27–35%) (Fig. 1). As expected, the PSA
values were also higher in those two cohorts. Some biopsies in
SABOR and almost half of the biopsies in Durham had missing
DRE. ProtecT did not collect DRE results at all. Family history was
not present for Durham and Tyrol and the other three cohorts
had missing values in 15–40% of the cases. In the Austrian cohort,
no information was available on the ethnicity but participants can
be assumed to be primarily of Caucasian origin. Compared to the
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other cohorts, Durham VA had a remarkable representation of
patients with African American origin (44%). In 20% of the cases
patients had more than one biopsy. This fact was accounted for
by the introduction of the risk factor prior biopsy. The data collec-
tion spanned timeframes between 8 years in ProtecT and 16 years
in Durham VA. The yearly number of biopsies ranged from 73 to
1106.

The six methods for dynamically updating a risk calculator were
applied cumulatively to all years past in the cohort as a training
set, with AUCs and HLSs evaluated on the next year as validation
set. There were some large differences in validation performance
for any given method. Focusing first on discrimination (Fig. 2),
the AUCs of methods evaluated on the SABOR data oscillated by
up to 10 points across validation years and were almost at random
performance (50%) in some years. Our expectation was that the
prediction model would become more accurately trained to the
cohort and the AUC would increase each year, but this was not
the case for most of the cohorts. The logistic regression and the
Bayesian updating exhibited almost identical performance
throughout the cohorts. The AUCs of the revision method were
comparable to the logistic regression method and the Bayesian
approach, outperforming those in some years while not in others.
Random forests were the worst performer in most cohorts, as they
were consistently over-fitting the training data. Varying the tuning
parameters did not help (data not shown). The static PCPTRC
lagged behind the other 3 methods, all of which tailor to the insti-
tution, but was not statistically significantly inferior at the 95%
level. The AUCs of the static PCPTRC and the recalibration were
identical because recalibration is a monotonic transformation of
the risk predictions. Differences in AUCs across cohorts were larger
than differences among methods within any single cohort. The
overall performance of all methods was worst on Cleveland
Clinic and best on the Durham VA cohort.

In terms of calibration measured by the HLS, the random forest
method performed so poorly that its values fell off the cohort
graphs in Fig. 3. The PCPTRC also performed statistically worse
for the Cleveland Clinic, ProtecT and Durham VA cohorts. The
PCPTRC performed better than the tailored approaches (logistic
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Fig. 2. AUCs using all past data as training and the next year as the validation year (x-ax
The recalibration method gave identical results to the PCPTRC method.
regression, Bayesian and revision) for some specific years in the
SABOR cohort. In the early years of Tyrol, the static PCPTRC even
outperformed recalibration. Typically these were the years where
the cancer prevalence dramatically changed; see Fig. 1. The tai-
lored methods performed substantially worse after the abrupt
change but adapted quickly so that performance was back to nor-
mal afterwards. By measuring calibration, closeness of expected to
observed risks, on a squared loss scale rather than discrimination
on a rank-based scale, the HLS was more sensitive for detecting
changes in prediction that arise from sharp changes in prevalence
or other characteristics.

When fixed validation sets comprising the last 3 years were
considered, the AUC increased with size of the training set for most
cohorts, but the gain in AUC was small (Supplementary Appendix
Fig. 1). Revision, Bayesian and logistic regression performed
equally well and consistently outperformed the static PCPTRC. In
terms of calibration measured by the HLS, the static PCPTRC
performed substantially worse than all other methods in the
Cleveland Clinic, ProtecT and Durham VA cohorts
(Supplementary Appendix Fig. 2). HLS decreased for increasing size
of the training set in the SABOR, Tyrol and Durham VA cohorts. In
most cohorts, the recalibration method performed best.
4. Discussion

In this report we have investigated alternative approaches for
solving two problems facing contemporary clinical risk tools at
once: the need for such tools to evolve over time to adapt to
changes in clinical practice patterns, and the need for such tools
to be tailored to accommodate local differences in
patient-populations. What we have observed is that compared to
static use of a global prediction model for prostate cancer predic-
tion, recalibration often improved calibration but had little impact
on discrimination both in terms of temporal evaluation within an
institution as well as across different institutions.

A large number of prior studies have evaluated the advantages
of one-time revisions to update long-standing clinical models for
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new patients at the same institution or network of institutions. To
give a few examples, in the context of predicting the risk of postop-
erative pain, the recalibration approach significantly improved cal-
ibration beyond that obtained by more complicated revision
methods, but also had no effect on discrimination, as found here
[24]. Update of a static coronary artery disease model in a contem-
porary network of 14 institutions increased calibration and main-
tained discrimination [26]. A one-time temporal recalibration of
a mortality model following colorectal surgery improved calibra-
tion [28]. Recalibration of a pediatric mortality tool enhanced cal-
ibration in subgroups, which diminished discrimination [29].
Discrimination in all of these studies was measured by the AUC.
Based on ranks of observations, the AUC has been notoriously pro-
ven to be difficult to budge [36]. The failure of the AUC to increase
over time in all cohorts as training data accumulated over the years
could be that the current risk factors collected for prostate cancer
have reached their discrimination potential; it has often been
noted that new markers are needed to substantially improve cur-
rent risk prediction tools for prostate cancer [37].

There have been up to recently relatively fewer investigations of
repeated temporal updates to existing clinical prediction models.
Temporal quality control charts were used to monitor an intensive
care unit score to monitor quality of care, with recalibration insti-
gated when control measures exceeded bounds, and later extended
to classification trees [30,31]. This hinges on an interesting aspect
not covered in this report – of diagnostic measures for assessing
and only implementing recalibration when it is really needed.
For a risk score predicting the mortality from cardiac surgery,
repeated updates were performed to overcome the issue of calibra-
tion drift [38,39]. Changes in the coefficients of the risk model were
monitored for different temporal updating schemes, but perfor-
mance measures for discrimination and calibration were not inves-
tigated. Recently in the informatics field approaches to transfer
learning for adapting risk tools from one hospital to another have
developed [32,40]. These rely on global maximization of an objec-
tive function that sums over individual hospitals, allowing individ-
ual hospitals to collect different predictors. These were developed
for the case of rare diseases, where the incidence is so low as to
demand synthesis of information across multiple hospitals, as well
as to where no static risk calculator built on a single cohort is
available.

Because of the large numbers of years and cohorts to make
comparisons, we used only crude single number summaries, the
AUC and HLS, to evaluate discrimination and calibration, respec-
tively. In practice, more extensive detailed analyses should be
implemented for investigating the performance of risk prediction
tools. The AUC and HLS statistics summarize the more detailed
and informative graphical displays, the receiver-operating charac-
teristic curve (ROC) and calibration plot. The way risk predictions
are used in practice is that a risk threshold is chosen, above which
the patient is referred to further diagnostic testing or treatment.
The ROC specifically reports the sensitivity (number of true cancer
cases correctly referred) versus specificity (number of non-cancer
cases that are correctly not referred) for every possible choice of
a threshold. Evaluation of risk tools should rather be based on opti-
mizing specificities/sensitivities for feasible thresholds than by
optimizing the threshold-free AUC measure. Calibration plots are
preferred over the HLS as they may show more detailed
patterns of performance which can be summarized by Cox
recalibration statistics, specifically an intercept reflecting
calibration-in-the-large, and a calibration slope reflecting the over-
all strength of the predictors in the model [41]. There are many
more methods for evaluating risk prediction tools, including the
Brier score and net-benefit curves [23]. The Brier score is an inte-
grated measure of discrimination and calibration. We repeated
all analyses here using the Brier score as the outcome and arrived
at nearly the same conclusions as to those based on the AUC (Fig. 3
in the Supplementary Appendix). Net-benefit curves are geared
toward finding optimal models for basing clinical decisions based
on thresholds – they ultimately revert to combinations of sensitiv-
ity, specificity and prevalence, and so are also combined measures
[42]. We have chosen the base measures of discrimination and cal-
ibration here because they represent the two pure most orthogonal
components of model validation [43].

It has been established that shrinkage of regression coefficients
or penalized regression may improve calibration of a
risk-prediction tool by reducing the range of prediction values;
see Chapter 13 of [23] for an overview. There are many possible
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options for performing shrinkage, but they all require an internal
bootstrapping or cross-validation strategy to optimize tuning
parameters. Shrinkage works similarly to the Bayesian method
here, but estimates the amount of shrinkage from the data directly,
instead of from a prior distribution. We tried a common method of
shrinkage, the Lasso, which penalizes the regression by the
L1-norm of the parameter vector. Discrimination performance
was similar to the revision and Bayesian methods, and calibration
performance was slightly worse than that of the recalibration
method. These results were not surprising, because shrinkage has
a bigger effect on calibration than on the AUC (a robust
rank-based statistic that is difficult to move) and because our
cohorts had only a small number of predictors (ranging from 3 to
5). However, a more thorough investigation of shrinkage methods
is advisable for future applications.

Even though the validation sets used to evaluate the perfor-
mance of the updating methods were taken from the same institu-
tion and chronologically in close proximity to the training sets, we
still encountered large variations in cancer prevalence and other
patient characteristics between training and test sets. In order to
investigate if the sudden changes in cancer prevalence are accom-
panied by similar changes to the patient characteristics, we made
plots for each cohort where we overlay cancer prevalence over
time along with the prevalence of high covariate values
(Supplementary Appendix Fig. 4). However, we could not find clear
associations between the spikes in cancer prevalence and changes
of other characteristics. These unexpected variations in case-mix
make it even harder to automatically evaluate model performance
which is a key part of implementing unsupervised updating of risk
scores in clinical practice. Recent efforts to create a framework for
interpreting the results of external validation in the context of clin-
ical prediction models may eventually lead to improved automa-
tion of the updating process [44].

In conclusion, a commonly available risk tool may provide
adequate discrimination, but tailoring a risk model with
institution-specific data may improve calibration. We recommend
further implementation of updating methods to increase the accu-
racy of prediction models that are used in clinical practice.
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