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Abstract

We study the following well-known property of the dyadic maximal operator M; on R" (see [E.M. Stein,
Note on the class Llog L, Studia Math. 32 (1969) 305-310] for the case of the Hardy-Littlewood maximal
function): If ¢ is integrable and supported in a dyadic cube Q then My;¢ is integrable over sets of finite
measure if and only if |¢|log(1 + |¢|) is integrable and the integral of M ¢ can be estimated both from
above and from below in terms of the integral of |¢|log(1 4 |¢|) over Q. Here we define and explicitly
evaluate Bellman functions related to this property and the corresponding estimates (both upper and lower)
for the integrals thus producing sharp improved versions of the behavior of M, on the local L log L spaces.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known [13] that the Hardy-Littlewood maximal operator M on R” has the fol-
lowing property: If ¢ is supported in a ball B then M¢ is integrable over B if and only if
fB |¢|log(1+ |¢|) < +o0 and that there are constants Cy, Co, Ci, Cé > 0, depending only on B,
such that

C1/|¢|10g +l¢l) — fM¢> C2/|¢|10g +l¢l) +C) (1.1)

holds for all such ¢. An easy scaling argument shows that C, C} cannot be removed.
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Clearly the same holds for the case of the dyadic maximal operator on R”

1
Myp(x) = sup{ ol /|¢(u)| du: x € Q, Q CR" is a dyadic cube}. (1.2)
0
In this paper we will produce sharp versions of the above property for the dyadic maximal
operator. First we study the upper bound in (1.1) and we introduce the Bellman type function:

Blog(Fv fik)= Sup{

1
@ / My¢: ¢ nonnegative, measurable,
E

Avo((@+ Dlog(p + 1)) < F, Avg(¢) = f,

E C Q measurable with |E| = k}. (1.3)

The exact determination of this will give further information on the deeper analytic properties of
the dyadic maximal operator on functions ¢ supported in a dyadic cube and related to the integral
of My¢ on sets of finite measure (note that M ¢ outside the cube Q where ¢ is supported is
trivially determined depending only on f). Bellman functions relating different norms of ¢ and
M ;¢ have been studied extensively in [5]. However the one defined in (1.3) cannot be studied by
the methods there. Here we will use a combination of some of the methods from [5] with those
in Section 7 of [3] in order to determine it. For more on Bellman functions and their relation to
harmonic analysis we refer to [7-9,17]. For the exact evaluation of Bellman functions in certain
cases we refer to [2,1,3,5,6,11,12,14-16,10]. We also note the recent approach initiated in [10],
and also used in [16], to certain Bellman functions via PDE methods which has given alternative
proofs of the results in [3] plus certain more general ones.

Actually as in [3] we will take the more general approach of defining Bellman functions with
respect to the maximal operator on a nonatomic probability space (X, u) equipped with a tree 7'
(see Section 2) thus defining

Blz)—g(F, L k)= sup{ /M7¢ du: ¢ > 0 is measurable with
E
f(¢+ Dlog(@ + 1) dp < F. /¢du=f,
X X

E C X is measurable with w(E) = k}. (1.4)

We denote by Dgg(F, f) the function ng(F, f, 1) corresponding to E = X in (1.4) and we will

evaluate this first. To describe the result consider the function V : [1, +00) — [1, +00) given by

z—1

V(z) =

(1.5)
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Clearly this is strictly increasing and we let U : [1, +00) — [1, +00) denote the inverse vl
exp(U(z)—1)

of V. Moreover differentiating U =% Wweget
Uz
U= 28 (16)
zU@ -1

on z > 1. Then our first main theorem is the following.

Theorem 1. For any nonatomic probability space (X, u), any tree T on (X, ) and any F, f
with (f + 1)log(f + 1) < F the corresponding Bellman function is given by

CFIFHD

(f+ DU =1 ifF < f(f+1D).
Ff+flog™h  if f(f+D<F,

Dipg(F, f) = (1.7

where U : [1,4+00) — [1, +00) is the inverse y-1 of V.

After this theorem and since the right-hand side in (1.7) is strictly increasing in F (for each
fixed f) it follows easily that we may replace the < F' in the definition (1.4) of Dlz)—g(F , )=

ng(F, f, 1) by = F. But we have initially used < F instead of the usual = F in (1.4) for

technical reasons. Also the double formula in (1.7) for the function Dgg(F , f) is a phenomenon
not appearing in the Bellman functions studied in [3] but in those studied [5] (mixed norms)

where it is also explained.
eF/U+D

751 )< 1+ % whenever F' < f(f + 1). Thus we get
Dgg(F ,f) < F + f in this case. Of course due to scaling reasons no estimate of the form
DT

log
x =+/F/f? > 1 in the formula of the case f(f + 1) < F we have the following estimate

It is easy to see that U(

(F, f) < C(F 4+ f) can hold for all F, f. However using the rough estimate logx < x for

DL (F.f)<F+f+vF (1.8)

holding for all F, f. This shows that as F — 400 and f is fixed the main term in Dgg(F, f)is
actually F.

Moreover one can verify directly (although the computation is messy) that the function Dgg is
concave. However it is much more instructive to show the concavity using the Bellman function
dynamics of the problem (see [7]). This has to do with the way the main variables F and f as
well as D?O—g(F , f) are behaved when the space (X, ) is “split” into probability spaces on the
children of X in 7. We will describe the situation only in the case where X =[0, 1), u =[.| is
Lebesgue measure and 7 consists of all (left closed, right open) dyadic subintervals of X. This
is enough since we infer from Theorem 1 that Dgg(F , f) is actually independent of 7.

We let X_ =1[0,1/2) and X1 =[1/2, 1) be the two children of X in 7 and given F, f >0
with (f +1)log(f+1) < F and ¢ > 0 measurable with [, (¢ +1)log(¢+1) = F and [, ¢ = f
we denote by ¢ the restrictions of ¢ to the probability spaces (X4, 2|.|) (which are equivalent
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to (X, |.])) and we let Fy = Zin(d’i + Dlog(¢ps + 1) and fy = Zin ¢+. Then we clearly
have

1 1
F=5(F-+Fy) and f=5(f-+/f+) (1.9)

these equations constituting the Bellman function dynamics of the problem.
On the other hand given Fy, fi > 0 with (ft + 1)log(f+ + 1) < Fy let F, f be defined
from (1.9) and for any ¢ > 0 we choose ¢+ > 0 measurable on X (respectively) satisfying

7,
Fr=2[y (px+Dlog(ps+ 1), fx =2 [y, prand2 [y, M7 ¢+ > Dloig'(Fi, f+) — &, where
7. are the subtrees of dyadic subintervals of X1. But (X4,2|.]) are equivalent to (X, |.|) so

T _ T
Dlog - Dlog

easily get

and so considering the function ¢ which is equal to ¢_ on X_ and to ¢ on X we

Dl F 0> [Mro= [y o+ [ Mmoo
X X_ X,

1 7 1 7.
> ngog(Ff, -+ EDlog(ﬂ, fy)—e¢

L T T
= 3 (DG (P ) + Dty (Fr 1)) —¢
which as € — 0% and in view of (1.9) implies that Dgg(F , f) (for this and hence for any tree 7°)
is concave.

Next, using Theorem 1, we evaluate the function Blz;g(F , f, k). Given 0 < k < 1 we define

x(x +k
LG HD)
x+1 k(x+1)

74 (x) = log (1.10)

on x > 0. Since 7, (x) = XIE)&E]—)];) >0 on x > 0 and 74(0) = 0 we let T} : [0, +00) — [0, +00)
denote the inverse function of t;. If F, f > 0 are such that F' > (f + 1)log(f + 1) it is clear
that Tk(% —log(f + 1)) < f if and only if 74 (f) > % —log(f + 1) which is equivalent to

f(% + 1) > F. If this happens we write & (F, ) = Tk(% —log(f + 1)) € (0, f). Then we
can state the following.

Theorem 2. Given F, f,k > 0withk < 1 and (f 4+ 1)log(f 4+ 1) < F we have:

R A S P (e T}
BL(F, fly={ &7 SR !

¢ (1.11)
F+f+ floghttzl) if f(E+1)<F.

It is easy to see, noting that the equation satisfied by £ =& (F, f)is & —log(§ +1) = % -
log(f + 1) that by taking k = 1 in (1.11) one obtains (1.7). However we have stated Theorem 1
first since it constitutes an essential step in proving the more general Theorem 2.

Now we turn to sharp forms of the lower estimate in (1.1). We will see that no nontrivial lower
estimate exists for all trees 7. Because of that we will restrict our attention to N-homogeneous
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trees that resemble the dyadic tree in R"” which is 2"-homogeneous (the definition is given in
the next section). Then assuming that 7 is N-homogeneous on the probability space (X, u) we
define the following function

[,T(F, ) :inf{/MTq&d,u: ¢ > 0 is measurable,
X

/(f)du:fand /¢10g+?du=F}. (1.12)
X X

Then we have the following.

Theorem 3. If the tree T is N-homogeneous and F, f > 0 then

N—-1

T _
LEE )= Nlog N

+ f. (1.13)

Thus in particular for the dyadic maximal operator in R” we get for any ¢ > 0 measurable
and supported in the cube Q¢ = [0, 1]" that the following sharp estimate holds

2" —1 ¢
Myp > ——— log™ —— . 1.14
/ P 2nn10g2/<¢ og ”¢”]>+ il (1.14)
Qo Qo

Also by taking N — oo we conclude that there is no uniform lower estimate, other than the
trivial one [y, M7¢du > [y ¢ du, holding for all trees 7.

Theorem 3 provides an example where an infimum Bellman type function is evaluated. For
another interesting example related to the dyadic Carleson embedding theorem we refer to [16].
Note however that £7 (F, f) does not satisfy the usual Bellman type dynamics (that is (1.9) in
our case) since the definition of F involves the variable f (see (1.12)).

We have chosen the growth functions in the above theorems in order to get results that are
readable (this would not be the case if we had chosen xlog(l + x) instead). Of course these
combined with the L' norm are equivalent size conditions on ¢.

In Section 2 we give a general procedure that can be used to evaluate Bellman functions
involving the integral of M7¢. We are not aiming at a general theory as in [5] but rather on a
more direct computation scheme that can be used for specific growth functions, and especially
for the ones like x logx where the theory in [5] does not apply. As applications other than the
proof of Theorem 1, which is given in Section 3, we will compute here the corresponding to
(1.12) supremum Bellman function as well as one related to the L° norm of ¢ (the last one has
been also found in [5]). Other applications of this will be given elsewhere. In Section 3 we will
also prove Theorem 2 by a detailed study of the function in (1.7) combined with certain methods
from [3]. Then in Section 4 we will prove Theorem 3.

2. Trees and maximal operators

As in [3] we let (X, 1) be a nonatomic probability space (i.e. ;£(X) = 1). Then we give the
following.



1636 A.D. Melas / Journal of Functional Analysis 257 (2009) 1631-1654

Definition 1. (a) A set 7 of measurable subsets of X will be called a tree if the following condi-
tions are satisfied:

(i) X €7 and forevery I € T we have u(I) > 0.
(ii) Forevery I € 7 there corresponds a finite subset C(/) € 7 containing at least two elements
such that the elements of C (/) are pairwise disjoint subsets of 1 and I = JC(I).
(iii) T = Um20 ’T(m) where 'T(()) = {X} and ,T(m—&-l) = UIET( C(I)
@1v) limy,— SUP/eTy,, u(l)=0.

m)

(b) A tree 7 on (X, ) will be called N-homogeneous (where N > 1 is an integer) if it satisfies
the following additional conditions:

(1) Forevery I € 7T the set C(I) consists of exactly N elements of 7 each having measure equal
to N~ (I).
(ii) The family 7 differentiates L' (X, 11).

We remark that the above definition can be given under the assumption that the elements of
each C([) are only pairwise almost disjoint, thatisif A, B € C(I) and A # B then u(AN B) =0.
However by considering X \ E(7), where E(T) = ;.1 UJI»«IZEC([)» A (J1 N J») clearly has
measure 0, the above makes no difference.

Examples. 1. If Qg is the unit cube R"” we let E be the union of all the boundaries of all dyadic
cubes in Qg thenlet X = Q¢ \ E and 7 be the set of all open dyadic cubes Q € Q¢. Here N = 2"
and each C(Q) is the set of the 2" subcubes of Q obtained by bisecting its sides. More generally
for any integer m > 1 we may consider all m-adic cubes Q € Q¢ with C(Q) being the set of the
m'™ open subcubes of Q obtained by dividing each side of it into m equal parts.

2. Given the integers dy,...,d, > 1 and m > 1 we can define 7 on X equal to Q¢ minus a
certain set of measure 0 by setting for each open parallelepiped R the family C(R) to consist of
the open parallelepipeds formed by dividing the dimensions of R into m?, ..., m% equal parts
respectively. For example if n =2, m =2, d; = 1 and d» = 2 we get the set of dyadic parabolic
rectangles contained in [0, 112.

3. The family of rectangles {[0, 1) x I: I is a dyadic subinterval of [0, 1)} on the probability
space [0, 1) equiped with the Lebesgue measure is a tree that satisfies condition (i) of Defini-
tion 1(b) with N = 2 but is not 2-homogeneous since it does not satisfy condition (ii) of the same
definition.

An easy induction shows that each family 7, consists of pairwise disjoint sets whose union
is X. Moreover if x € X \ E(7) then for each m there exists exactly one I, (x) in 7, contain-
ing x. For every m > O there is a J € 7, —1) such that /,,(x) € C(J). Since then x € J we must
have J = I,,,_1(x). Hence the set A(x) ={I € 7: x € I} forms a chain Ip(x) =X 2 I1(x) 2 ---
with I, (x) € C(I,;,—1(x)) for every m > 0. From this remark it easily follows that if I, J € 7 and
I N J is nonempty then / € J or J C I. In particular for any I, J € 7 we have either / N J is
empty or one of them is contained in the other. The condition (ii) in Definition 1(b) can now be
described as follows:

“For any ¢ € LY (X, 1) we have lim,,_ o m f],,,(x) Y du =y (x) for p-almost every x
in X.”



A.D. Melas / Journal of Functional Analysis 257 (2009) 1631-1654 1637

This condition will be needed only in Theorem 3 (see Section 4) and all other results in this
paper hold without this assumption. In Example 3 above it is easy to see that one can construct
functions ¢ with fol ¢ (x,y)dx =1 for all y but with f[o,l)z ¢ log™ ¢ arbitrary large. Thus Theo-
rem 3 cannot hold in this case. However Theorems 1 and 2 hold.

The following lemma gives another property of 7 that will be useful later. For a proof see [3].

Lemma 1. For every I € T and every a such that 0 < o < 1 there exists a subfamily F(I) C T
consisting of pairwise disjoint subsets of I such that M(UJE]_—(,) J) = ZJE}—(,) w(J) =
(I —oyu().

Next let S be a finite subset of 7 such that X € S. For any I € S with I # X we let I* denote
the unique minimal ancestor of / in S (i.e. the minimal element of {J € S: I ¢ J}) and setting

ar=1\ |J 7 ar=u@n, .1
JeS: J*=I
we easily get
I= U A; andso wu(l)= Z ay (2.2)
S>Jcl S>Jcl

for any I € S (if 1 is a minimal element of S then clearly A; = I).
Then we will need the following (this is a special case of Theorem 1 in [3] but we include it
here since its proof is much simpler).

Lemma 2. For any finite tree S and any increasing and convex function ¥ : [0, 400) — R we
have

IeS 1cJ

ayj —u
Za;lP(Z u(J)) <fW(u)e du. (2.3)
0

Proof. Since
W (x) =¥ (0) + ¥/ (0)x + f (x —0taw () (2.4)
0

where x* = max(x, 0) and ¥, denotes the right derivative of ¥, it suffices to prove (2.3) when
W (x) =W (x) = (x — 1)1 where A > 0 is fixed. In this case (2.3) reads

+
Zcu(Z MCEJJ) —,\) <e (2.5)

IeS 1cJ

We will now prove (2.5) for all A by induction on the size of S.
If S = {X} then ay = 1 and so (2.5) becomes (1 — 1)t < e~ which holds since e >
1 — x whenever 0 < x < 1. Now assuming (2.5) for any A > 0 and any tree (on any (X, u, 7))
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having less elements than S we let {J1, ..., Ji} be all the elements J of S with J* = X. Then
when A > ax the induction hypothesis applied to the subtrees of S with tops Ji, ..., Jr on the
probability spaces (J;, ﬁ ) and with A —ax > 0 instead of A gives

+
B; = Z a]( Z ,ucz-j]) —(A—ax))

1eS 1CJCJ;
1CJ;
< u(Jp)e Mrax (2.6)

for any i and so

+ k
Zal<z MCEJJ) —)») =ax(ax _)\)++ZBi

1eS 1€J i=1
k k
=Y B <Y p(l)e U =1 —ay)e X <e7h (27)
i=1 i=1

On the other hand if 0 < A < ay < 1 the left-hand side in (2.5) becomes

Lo Tatn )= Tao 5 B

1eS 1cJ JeS 1cJ 1eS
:Za‘]—)\.zl—)\‘<€_)L (28)
JeS

and this completes the induction. 0O

Now given any tree 7 we define the maximal operator associated to it as follows
M7y (x) =sup{Av;(ly]): x el € T} 2.9)
for every ¥ € L'(X, v) where for any nonnegative ¢ € L'(X, n) and for any I € 7 we have

written Av;(¢) = ﬁ [;edu.
Given an integer m > 0 and Ap > 0 for each P € 7, we consider the function ¢ given by

¢= D Apxr (2.10)

PeT(m)
(where xp denotes the characteristic function of P). For every x € X we let I;(x) denote the

unique largest element of the set {I € 7: x € [ and M7¢(x) = Av;(¢)} (which is nonempty
since Av;(¢) = Avp(¢p) whenever P € 7,y and J C P). Next for any I € 7 we define the set

Ar=A@p, D={xeX: Iy(x)=1} (2.11)
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and we let S = Sy denote the set of all 7 € 7 such that A; is nonempty. It is clear that each such
Ay is a union of certain P’s from 7(,,) and moreover

Mo =) Avi($)xa, 2.12)
IeS

We also define the correspondence I — I* with respect to S as before. This is defined for
every I in S that is not maximal with respect to C. We also write y; = Av;(¢) forevery I € S.
The main properties of the above are given in the following (see also [3] and [4]).

Lemma 3.

(i) Foreveryl € Swehave I =|Jg5,;c; Ay
(ii) Forevery I € S we have Aj = I\U_JES: Jeeg Jandso w(Ap) =) =Y jes oy t(J)
and Avi(¢) = ﬁ Yses: st Ja, pdm
(iii) Foran I € T we have I € S if and only if Avg(¢) < Avi(¢) whenever I C Q €T, I # Q.
In particular X € S and so I — I* is defined for all I € S such that I # X.
@iv) IfI,J € S are such that J* = I then

w(F) v
w(J)

yr<yj< (2.13)

where F is the unique element of the whole tree T such that J € C(F). In particular if T is
N-homogeneous then y; < yj < Nyj.

Proof. (i) Clearly X = UJeS Ay. Fix I € S. Supposing that x € A(¢, J) N I for some J
we have x € I N J # ¢ and so either I € J or J C I. Suppose now that I & J. Then also
Av;(¢) = M7¢(x) > Av(¢) and so I cannot be an I4(z) for any z € I. Therefore A(¢, ) =0
contradicting the assumption / € S. Hence we must have J C I and this easily implies that 7 is
the union of all A;’s for J C I.

(ii) Follows easily from (i).

(iii) One direction follows from the definition of the I’s. For the other assume that / € 7
satisfies the assumption. Since

ZFGC(]) w(F)Avr(9)
> recc) M(F)

Avjy(g) = (2.14)

we conclude that for each J € 7 there exists J' € C(J) such that Av;/ (¢) < Avy(¢). Starting
from [ and applying the above m — s times we get a chain [ = Iy 2 I1 2 -+ 2 I, such that
Iy € T(54r) for each s and moreover Avy,  (¢) < Avy, () <--- < Avy (@) < Avy (@) =
Av;(¢). Now from this and the assumption on [/ it s clear that /5(x) = I for every x € I, and
therefore I € S.

(iv) The inequality y; < y; follows from (iii). For the other first note that clearly F C I. We
claim that Avgp(¢) < y;. Indeed I € S implies that Avg(¢) < yr whenever I € Q, I # Q and so
if Avp(¢) > ys there would exist F' € 7 such that F C F' C I, F' # I and Avp/ (¢) > Avg(¢)
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whenever F’ C Q, F' # Q. But this combined with (iii) implies that F" must be in S contradict-
ing our assumption J* = I. Thus we get since J C F

1 1 w(F) w(F)
= — dp < —— dy=——A <
yJ “(J),/(p j M(J)F/¢ iz VE (@)

2.15
(7 u(?! @13

which completes the proof. O

The above lemma shows that this linearization M7 ¢ may be viewed as a multiscale version
of the classical Calderon—Zygmund decomposition.

Now writing a; = u(Ay) and x; = a;l fAz ¢ du forevery I € S the above lemma and (2.12)
imply that:

1
MT¢=Z<W > a,x,>XA, and fd)du:Za,x]. (2.16)
res W\ Je§S,Jcl X IeS
Nextlet G : [0, +00) — [0, +o0] and ¥ : [0, +00) — [0, +00) be two convex and increasing

functions such that G(0) = ¥ (0) = 0 and G is the Legendre transform of ¥, that is for every
x > 0 we have

G(x) = supo(xy - (). (2.17)
y>

Note that G is allowed to be extended-valued (but ¥ is not). We thus have

xy <G +¥(y) (2.18)

for all x, y > 0. Moreover we define E[/_L :R — [0, +00) to be the function which is equal to the
right derivative ¥/ of ¥ on [0, +00) and to 0 on (—oo, 0). Noting that for any x, z > 0 we have
xW¥/(z) — ¥ (x) < z¥/(2) — ¥ (z) we conclude that

ut WL () =v(ut)+G(¥Lw) (2.19)

forall u € R.
We define also the following Bellman function related to G

Dg(F, )= sup{ / Mrtodu: ¢ >0 is measurable,
X

fGoqbdugF,/qbdM:f} (2.20)
X

X

when 0 < fand G(f) < F.
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Using the decomposition of M7¢ (and ¢) given in (2.16) we can now prove the following:

Lemma 4. Given a nonnegative function ¢ of the form (2.10) with |, x®du = f and
fXG o¢pdu < F and given any ¢ > 0, A € R we have

o
F 1
/MT¢dM<—+—/w c(u+n)")e ™ du — if. 2.21)
C

0

(9}

Proof. Using the above notation we note that by Jensen’s inequality

Yacen<y. [c@rdusr. 222)

IeS IeSAI

Now if A > 0 we use (2.18) and Lemma 2 to write
arxy Z arxy +cif

c(/Mﬂbdu—i-kf)ch 4
X JeS M(J) JeS,ICJ

gl T o)

IeS JeS,I1cJ

gZaIG(xl)—f-Za[lI/(c Z )
JeS, I1CJ (J)

1eS I1eS

<F+ / w(cu+r)e . (2.23)
0

If A <0 then we write S* ={I €S: ) ;.5 c; % > —A}and f* =), g+ arx; to get as
in (2.23)
|

Saa( X )

1eS* JeS, Iy

< Z a;G(xy) + Z allll(c Z CZ';) +CA)

1eS* 1eS* JeS,I1CJ

gl 5 )

1eS JeS, I1CJ

<F+ / U(cw+r)")e " du (2.24)
0
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using Lemma 2 for the convex increasing function x — ¥ (c(x + A)*"), whereas

¢y a1x1< 3 CEJJ)) —er Y apx=—en(f - f*). (2.25)

1eS\S* JeS, ICy 1eS\S*

Adding now (2.24) and (2.25) and using the first equality in (2.23) we get (2.21). O
Using this we have the following.

Proposition 1. Let f, F > 0 be given such that G(f) < F. Assume that ¢ > 0 and ) € R satisfy
o0 o
/ lI/ c(u + A) “Hdu=f and / Go W_L(c(u + )L))e_“ du=F. (2.26)
0 0

Then we have

o]

DI(F, f) = / u¥’ (c(u+21))e ™" du. (2.27)

0

Proof. Taking any 6 > 0 we define a =a(#) =1 — e~ € (0, 1) and as in [3], using Lemma 1,
we choose for every [ € 7 a family F(I) € T of pairwise disjoint subsets of I such that
Zle]_—(” w(J) =1 —a)u(l). Then we define S = S, to be the smallest subset of 7 such
that X € S and for every I € S, F(I) € S. It is clear that defining the correspondence
I — I'* with respect to this S we have J* =1 € § if and only if J € F (/) and so writing
Ar=1\Ujcs jo—;J we have aj = u(Ap) = u(I) =Y jcs oy (J) = ap(l) for every
I € S. We define rank(/) =7 (/) of any I € S to be the unique integer m such that I € S,y and
we define the x;’s by setting

(m+1)6
X] =VYm = ; 1 (c(u + k))e_" du (2.28)
a(l —a)m +
mo
for every I € S where m = rank(/) and let
P9 = ZXIXA,~ (2.29)
1eS
For every I € § and every m > 0 we have
b (1) = Z u(J) =1 —a)" () (2.30)

S>JCI
r(J)=r(I)+m

hence
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/¢0 dp=Y apxi=y_ Y ymap()=a Y Yubu(X)
X

1eS m=01eS m>=0
(0.¢]
=a ) yu(l—a)" = / Vi (cu+r)e ™ du=f (2.31)
m=0 0

and by Jensen’s inequality

/G(¢9)du =Y aGxp=a) Gyl —a)"

o0
< / G (cu+n))e ™ du=F. (2.32)
0

On the other hand if 7 € S and m = rank([)

1
Avigo)=—- Y ajxy

wi) JeS:Jcl
a
= () ZV£+rank(1) Z u(J)
=0 S>JcI
rank(J)=rank(/)+¢
1 o0
= Z Verm(1—a)’ = d—aym / Vi (cu+M1)e ™ du (2.33)
€20 mo
and so
/ Mrgodp > ar Avi(gp)
X 1eS
1 oo
—_ /! + —
m=0 mo
o0
=Y (1-¢7) / i (cu+M)F)e ™ du
m=0 mo
o0
1—e" u , N
=— (|51 i (cu+1)F)e ™ du (2.34)
0

where [.] denotes the integer part. Therefore taking § = 6; =27 — 0T (s integer), and using
the monotone convergence theorem we get
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oo

limsup/M7—¢9 du > /ulll_;_(c(u+)»)+)e_” du

0—0t
0

which proves the lower bound in (2. 27)
Next given a nonnegative ¢ € L' (X, ) satisfying Jxbdu=f and [ Go¢du <
consider the sequence (¢,,) where ¢, = 1€Tim Avy(¢)xs and set

b, = Z max{Av;(¢): [ CJ €T }x;=Mrdn
1€T(m)

since Av;(¢) = Av(¢,) whenever I € J € T when I € 7, and note that

/¢mdu=/¢dﬂ=ﬁ Fm=/G<¢m>du<fG<¢>du<F
X X X

X

(2.35)

F we

(2.36)

(2.37)

for all m and that @,, converges monotonically almost everywhere to M7 ¢. Also since each ¢,
is of the form (2.10) we can apply (2.21), using the values of ¢ and X satisfying (2.26), and then

combining this with the monotone convergence theorem we get

o0
. F 1 + ot
Mropdu = lim Dpdu < —+ - ll’c(u—i—)») du — Af.
m— 00 C c
0

But now using (2.26) and (2.19) we have

o
F 1
—+ —/W(c(u—i—k)"‘)e_“du —Af
c c

0

[+ =AW (cu+2))e™ du

ud (cu+1r))e " du

0\8 0\8

(2.38)

(2.39)

the last equality holding since lI/jr(c(u +A)) = 0 whenever u + A < 0. This combined with (2.38)

and (2.35) completes the proof of the proposition. O

To illustrate the applicability of the above proposition we will give two examples before turn-

ing to the case in Theorem 1.
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First let us consider a o > 0 and define

0 if0<x <o,

+o0o ifx>o0. (2.40)

W(x)=cx whichimplies that G(x) = |
Then we can easily compute the corresponding functions from (2.26) when A < 0 to be oe* and
0 respectively. Thus with f suchthat 0 < f < o and F = 0 the system has always a solution with
A <0given by A = log(g). Hence we need not examine it for A > 0 and we infer from (2.27)
that Dg(O, fl=o(—r+De*=f+ flog(%). Examining what Dg(O, f) means we have an
alternative proof of the following formula proven also in [5]

(o2

sup{[IM7 el L1y 10100 = fo b~ =0} =f+ flog<f)- (2.41)

Next we take

) fo<x <1, L. . . +
v(x)= { el ifx s 1, which implies that G(x) =xlog™ x, (2.42)
one computes that again the corresponding functions from (2.26) when A < 0 are e*[1 +

W] and cek% valid only for 0 < ¢ < 1. Then with f =1 and F > 0 the cor-

responding system of equations is equivalent to A = —log[l + W] (which is always
negative) and to

=1 ! et 1—1 2.43
Q(Z)_<_Z>((Z_ )€+)—F (2.43)

where z = % > 1. Observing that ¢ is strictly decreasing, g(1) = 0 and lim,_, { o ¢ (z) = +00 we
conclude that the system has always a solution ¢, A with A <0, 0 < ¢ < 1 and then computing
the integral in (2.27) to be equal to % + 1 — A we have found the value of I/ T(F , f)ywhen f =1
where

Z/lT(F, D) =sup{ /MTqbd,u: ¢ > 0 is measurable,
X

/q&d,u:fand /q&log*?dug F} (2.44)
X X

is the corresponding to (1.12) supremum Bellman function. But since it is easy to see that
UT(F, f)= fZ/{T(?, 1), denoting by W the inverse function of g, straightforward manipula-
tions with Eq. (2.43) give the following.

Corollary 1. For any tree T and any F, f > 0 we have

/
F

UT(F, f)=f+ FW( (2.45)

)+ flog[1+ eXp(—l/W(f/F))].

W(f/F) =1
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The above provide examples where the corresponding Bellman type function for any F and
for a fixed f is given by a single formula coming from solutions (c, 1) with A < 0 always. This
is the exact opposite of what happens in the Bellman function for the (p, p) inequality in [3]
(where the single formula comes from solutions (c, A) with A > 0 always, see [5]).

3. The upper estimate
To prove Theorem 1 we take in Proposition 1
¥(x)=¢*—x—1 which implies that G =x+1) log(x +1) —x (3.1
(this makes certain computations easier) and note that Jf’ (x) = (e* — 1)*. Also if ¢ satisfies the
conditions in (1.4) then f X Go¢du < F— f.Moreover one easily computes that when 0 < ¢ < 1

and A € R the corresponding functions a; (c, A) = fo lI/jr (cu+1MHe “du,ar(c, ) = fo Go
W (c(u+2)T)e ™ du and b(c, 1) = [ u¥ (c(u+ 1) T)e™ du are given by

€ —1 ifa>0,

ai(e, M) =11 . (3.2)
s if A <0,
ce”‘ .
( +A)—ai(c,A) ifaA>0,
a(e, =115 , (3.3)
m—al(c,)\.) lf)\.go,
and
e ifA>0
bc,r) =] 0-¢* ’ (3.4)

el p1-2) ifa<o.

These functions are infinity when ¢ > 1. The corresponding system of Eqgs. (2.26) with F — f
replacing F', which thus is equivalent to a;(c, ») = f and az(c, A) + a1 (c, L) = F, can be solved
as follows.

. . . vy ok
If this system has a solution with A <0 then = = f, =%

-2 —

(0, 1) and so e* = Ff ’ 7 However to have A < 0 we must assume that F > f2 + f. On the other

hand when F > f2 + f the above values furnish a solution to the system for which we have

F thus ¢ = £ which is in

A

ce 1 F—
b(c,k):l_c(l_c—i-l—)»):F—}-f-i-flog 5

f .

(3.5)

e

Next if the system has a solution with A > O then f =f+1, 1= c(l — + A) = F thus
T tch= % Thus setting z = 1—16 > 1 we get zexp(fJrl z+ 1) =f+1thus V(z) =

w. This has always a unique solution z > 1 since F' > (f + 1) log(f + 1) thus the right-
hand side is greater than 1. Thus z = U(W) and so cA = % +1-— U(W).
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But we must have A > 0 for this to work which is equivalent to V(% +1) > %j_]ﬁm which

in turn is equivalent to F < f2 4 f.If this happens the solution is unique and we have

cA

b(C, )\.) = m

oF/(FHD)
) -1 (3.6)

The above complete the proof of Theorem 1. Note also that the corresponding system has always
a unique solution. This holds in much more general situations as derived in [5]. However we will
not need this here.

Next to prove Theorem 2 we consider the convex function G(x) = (x+ 1) log(x + 1) and argue
in a similar as in Section 7 of [3] manner. The basic ingredient here is the fact that, as explained in
the Introduction, the function Dgg (x, y) given in Theorem 1 is concave (and independent of the

tree 7). To proceed further we let ¢, E be as in the definition of Dgg(F, f, k) where 0 <k < 1
and choose u > 0 such that

n(IM1¢ > u)) <k < (M7 > u}) (3.7)

and then choose a measurable D such that Vi = {M7¢ > u} C D C{M7¢ > u} =V, and
(D) = k. Since M7¢ <u on E\ Vi it is easy to see that [ Mr¢du < [, Mr¢du and
defining s € [0, 1] by w(D) = s (V1) 4+ (1 —s)u(Va) we also have (since M7¢ =u on Vo \ V1)

/MT¢dM=S/MT¢dM+(1 —S)/M7¢du- (3.8)
D

Vi Va

Now each of the V;, V; is a union of families {/ (1)}, {1,(2)} consisting of pairwise disjoint ele-
ments maximal under Av;(¢) > u (resp. > u) and we clearly have M7¢ = M7 ;)¢ (where T (1)
is the subtree of 7 with top I on the probability space ([, ﬁ w)) for each of those I’s. Hence,
using Theorem 1 for all these trees, arguing as in [3] and using the concavity of the function in
Theorem 1 we get

(A B
E
where
A:s/Goq&d,u+(l—s)/Goqbdu<F (3.10)
Vi V2
and
B=S/¢du+(1—S)/¢dM<f- (3.11)

Vi Va
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Letting n = s xy, + (1 — ) xv, Jensen’s inequality implies that

B fx¢’7dﬂ> fX(GO¢)77dM A
Gl—)=G < = — 3.12
<k> (fxndu Sy ndu k 612
and
G(f—B)=G<fx¢(1—fl)dM)<fX(GO¢)(1—77)dM=F—A' (3.13)
1—k T (I=n)dp T (I —nydu 11—k
Thus
1-06(L=8) k(B < F 3.14
(1—-k) (ﬁ)_l_ (E)\ (3.14)

and since Dgg(x, y) is strictly increasing in x, (3.9) and (3.13) imply that

Mrodu <kDL ! F—(1-kG f-B ,E . (3.15)
log\ k 1—k k
E

Conversely supposing B is in (0, f) and satisfies (3.14) we fix § < 1, choose, using Lemma 1,
a family {I;, I,...} of pairwise disjoint elements of 7 such that Z/’ n(lj) =k, we write

E = Uj Ij,A=F—(1- k)G(];fo) > kG(%) and using Theorem 1 for each j we choose
a nonnegative measurable ¢; on /; such that Avy, (G o ¢;) = %, Avy (¢)) = % and

A B
/ M7y (@) dp > 8#(1,)9@(;, ;>. (3.16)
[.

J

Next we choose a nonnegative measurable ¥ on X \ E such that |’ X\E GoyYdu=F—-—A>0
and fX\E Y du = f — B > 0 which is possible by (3.14) and defining ¢ = ¥ xx\g + Zj bjxi;
we have [, Gogpdu=F, [, pdu= f and

y r (A B
Tédu > kD, . 7 ). (3.17)
E

Letting now § — 1~ we have proved the following:

T

Proposition 2. Blog

(F, f, k) is equal to the supremum of the function

1 —B\\ B
Rk(B):kDgg<%<F—(l—k)G(%)),E> (3.18)

on the set of B in [0, f] that satisfy the estimate (3.14).
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To proceed further we fix F, f, k and define the following functions on [0, f]

f—B B f-B
h(B)—(l—k)G< k>+kG(;>, A(B):F—(l—k)G(m) (3.19)

and y(B) = B Smce h(B)=-G' ( ) + G ( ) the convexity of G implies that 4’(B)
has the same 31gn as B — kf and smce h(k f) = G( f) < F we conclude that the set of all
B in [0, f] satisfying (3.14) is a closed interval of the form [By, B>] where 0 < By < kf <
By < f. Moreover By = f if h(f) < F otherwise B> < f and h(By) = F and similarly B; =0
if h(0) < F otherwise B; > 0 and h(By) = F

Since Dlzg(x, y) is given by a double formula one must also compare A(B) with B (% +1).
Hence we also consider the function

B)=(1-kG f_B) B(B 1) 3.20
o(B)=(1—-k) (ﬁ + E-i— . (3.20)

Now using Theorem 1 it is easy to see that on y> + y < x we have

aDT oD _
)= 50 and — % ypy=—— 4l 32
dx xX—y dy xX—y y2 xX—y

so since A’(B) =G’ ( ) =1+4log(y(B)+1)>1 we get R/ (B) > 0 for every B € [Bq, B>]
such that o (B) < F.

Next on the set where (y 4+ 1)log(y + 1) < x < y? + y we compute using Theorem 1 and
(1.6)

Digg U@ 9Digg U() x

where z = exp(x/(y + 1)). Comparing (3.21) and (3.22) at x = y2 + y we conclude that D?O—g

and hence Ry is actually C L Also it easily follows from (3.22) that if B € [By, B2] is such that
o(B) > F then R,/C(B) has the same sign as the expression

U(kexp(A(B)/(B+k))> _AB) +log(y(B) + 1) (3.23)

B+k B+k
which since V is strictly decreasing has the same sign as

kexp(A(B)/(B +k)) exp(A(B)/(B+ k) —log(y(B)+1))

B+k 2B +1—log(y(B) + 1)

(3.24)

if A(B) > (B + k)log(y(B) + 1) and is positive otherwise. But A(B) > (B + k) log(y(B) + 1)
holds if and only if

F > (f +1)log(y(B) + 1) (3.25)
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and if this also holds we conclude now that R,’{ (B) has the same sign as

B+k)(B—k
F—b(B)=F — (f +1)log(y(B)+1) — ]f(ftr 1)(— 3 _J;)) (3.26)

where b(B) is defined by the above equality. But now comparing (3.25) and (3.26) and also since
R,/{ (B) is positive if o (B) < F we conclude that R,/C(B) > 0 on the whole interval (By, kf).

Next if B € (kf, f) then it is easy to see that b'(B) = (B_]]:{‘;ﬂf;l);)f_k) > 0 and so since

bkf)=(f + l)log(f + 1) < F we conclude that if b(By) < F then R;(B) > 0 for every
B € [Bj, B>] hence 10g(F f, k) = Ri(B2).

Assume now that b(B;) > F. Then there exists a unique By € (kf, By) such that b(By) =
By (3.26) this By clearly satisfies (3.25). We will show that By satisfies also the following
F < 0(By) and therefore R; (Bo) = 0. Indeed it suffices to prove that 5(B) < o (B) for every
B e (kf, f). But writing B =kf + (1 — k)x where 0 < x < f straightforward calculations show
that b(B) < o (B) is equivalent to

f+1

7f+1_x+k10g(f+1—x)<(1—k)x+kf+1 (3.27)

glx)=

which holds since g is convex and trivially (3.27) holds at the endpoints x =0 and x = f. Using
the same substitution we also have b(B) > h(B) on (kf, f) since this can be easily computed to
be equivalent to the inequality log(f + 1 — x) + k(},fﬁ > log(f + 1 — x + ) which clearly
holds. '

Hence if By < f then o (B2) > b(B2) > h(B) = F and so By exists and since Ry is C! we
get that By is its absolute maximum on [Bj, B>] thus B]Zg(F , [ k) = Ry (Bp). Considering also
the case B, = f (thatis when (f + k) log(£ +1) < F) and since b(f) = f(% + 1) we get using
Proposition 2 the following (noting that if B, < f then f(% + 1> (f+k) log(% +1)>F)

R(Bo) if F<f(f+1D),

LL(F, fih) =
Biog(F. f.K) Ri(f) iff(%—i—l)SF

(3.28)

Obviously Ry (f)= F + f + flog @ and on the other hand if By exists then as we have

seen DL (A(B o) B 22) is given by the first part of the formula in (1.7). But now writing

log
By — kf

T m = (3.29)

we observe that & satisfies the inequalities 0 < &y < f (since By € (kf, f )) and since By + k =
%, y(Bog)+1= Sf the equation b(Bg) = F becomes 1% (§p) = f+1 —log(f +1) thus
& = & (F, f). Then substituting F with b(By) in R (Bp) = leZg( (F—(1-— k)G(f BO)) 0)
and using & it is straightforward to get that Ry (Bp) is equal to the second expression in (1.10).
This completes the proof of Theorem 2.
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4. The lower estimate

Here we will prove Theorem 3. Assuming that 7 is N-homogeneous we let ¢ be a nonnegative
function of the form (2.10) such that

/qﬁd,u f and /¢log ( )du F 4.1

and let S = Sy be the corresponding subtree of 7. Using the notation from Section 2 we make
the following two simple observations. First, by Lemma 3(iv), we have y;+ < y; < Ny for all
I € S\ {X} and second, by condition (ii) in Definition 1(b), ¢ (x) < y; whenever I € S and
xeA I

We consider the function G(x) =x log"‘(?) which is convex on x > 0. The second remark
combined with the convexity of G gives

—/ (@) dpx) < %G( Ddu(x) = —jé(yl) (4.2)

A1

forall / € S. Now Lemma 3 implies that

f Mr¢du="7 ary = Z(uu)— > u(J))yl

I1eS I1eS Je§S: Jr=I
=f+ > wr—ym (4.3)
1€S, I#X
and by using (4.2) we get
:/(j)log*(g) dp < Zapc] GO
f = VI
X
=Z<M(1)y1— > M(J)y1>10g+<y—l>
I1eS JeS: J*=1 f
YI* VI
= Y M(I)yl(log( ) lg( )): > M(I)y110g<—> (4.4)
1€8,1#X f f 1S, I#X Y+

since by Lemma 3 ayx; = u(Dy; — Y jcs: r= yu(Nyyand y; > yx = f forall 1.
Next forany I € S, I # X we have 1 < T < N and so usmg the easy to verify fact that

1 log - is increasing for 7 € (0, 1) we obtain by taking 7 =1 — € ©0,1— N) the following

)i Nlog N
y110g<y )< o £ =1 = yr): 4.5)
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Using (4.5) in (4.4) and in view of (4.3) we get

N-1
Mrpdu > F 4.6
/ THdu NlogN +f (4.6)

for functions ¢ of the form (2.10).
Now for the general case, given ¢ > 0 measurable satisfying (4.1) we define ¢,,, @, as in the
proof of Proposition 1 and for each ¢,, we can apply (4.6) to get

N—1 ¢m
/M7¢du>/a>mdu>NlogN/¢m1 <f )du+f @)
X X

X

We will now show that the sequence ¥, = ¢y, log+(¢m) is uniformly integrable. Since ¢, — ¢
almost everywhere, by the second condition in the deﬁmtlon of the homogeneous trees, we get
the estimate (4.6) for the general measurable ¢.

To show the uniform integrability of v, we note that for any A > e and any m the set where
Y > Af is contained in the set where ¢, > A AA and therefore in E) = {M71¢ > 16g A} On the

log
other hand given any I € 7, Jensen’s inequality implies that

Om 1 + ¢
Y = P 1o +<—) <—— [ plogt( = )du (4.8)
nTERE ) e A
on [ thus integrating and summing we get for any m the following
¢ ¢
Ymdp < /¢10g (;) dp < /¢log+<?> dp (4.9)
Wn>f) ! ET(m) I€E E,

which tends to 0 as A — 400 since ¢ logﬂ?) is integrable and u(E;) < lo%k

These prove that L:T(F, = N]\ll(;glN F+f.
To prove the reverse inequality we let X = lp 2 1 2 --- I D I;41 2 - - - be a chain such that
Iy € T(5) forall s > 0 (and so () = N~°). We write

F Ly
—mo + —x 4.10
flogN 0 ]; Nk (4-10)
for the expansion of ——— in base N, thus mg, €1, ..., £k, ... are nonnegative integers such that

flogN logN
£r < N for all k > 1, and we define the strictly increasing sequence of integers mo <mj < --- <
my < --- by the rule my — my_1 =€, + 1 > 0 for all k£ > 1. Then we define

o0
d=F> N K\l 4.11)

k=0
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We have
/d)du:fZNm"_k(N_m" —mi=T) fZN‘k< - —) =f (4.12)
X k=0
/¢1og Zdp= fZN’"k (N — N7 (my — k) log N

=f10gN<Z ka l—k—i-l)

k=0 k=1
[} o
=f10gN<mo+Zm>=F (4.13)
k=1
and if my_1 < s < my then
w .
Avi (@) =N*fY N™ /(N7 = N~ ) = fN*F (4.14)
j=k

and this increases as s increases (if s = my then Avj (¢) = Avy, (¢)). We next claim that
MT1¢(x) = Avy (¢) whenever x € I, \ I;11 and s > 0. Indeed suppose that x € I \ ;11 and
let J be the unique element of 7(s4 1 such that x € J (clearly J € C(Iy) and J # I). Then the
set of all I’s in 7 containing x consists of Iy, ..., Iy and J and certain subintervals of it. But
Avy (¢) = Avy, (¢) for all 0 <r < s and since ¢ is either 0 on J (if s is not an my) or if s = my
it is equal to Avy (¢) on J we get that M7¢ (x) = Avy (¢). Hence

o0
Mro=fY NFx0., (4.15)
s=0

where k(s) is the smallest integer k with m; > s and this implies that
1 o0
Mrpdp=f(1-— N
[ mroan=r(1-5) >
e s=0

1 N\ Mg — Mg—1 SN -1) N+ 1

k=1 k=1

_ N-1
" NlogN

+f (4.16)

by (4.10). This completes the proof of Theorem 3.
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