
Theoretical Population Biology 112 (2016) 33–42

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

Estimation of the HIV-1 backward mutation rate from transmitted
drug-resistant strains
J.M. Kitayimbwa a,b,∗, J.Y.T. Mugisha a, R.A. Saenz c

a Department of Mathematics, Makerere University, P.O. Box 7062, Kampala, Uganda
b Department of Computing and Technology, Uganda Christian University, P.O. Box 4, Mukono, Uganda
c Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, COL, C.P. 28045, Mexico

a r t i c l e i n f o

Article history:
Received 6 September 2014
Available online 20 August 2016

Keywords:
Backward mutation rate
Within-host model
HIV-1
Virus mutations
Kaplan–Meier estimates

a b s t r a c t

One of the serious threats facing the administration of antiretroviral therapy to human immunodeficiency
virus (HIV-1) infected patients is the reported increasing prevalence of transmitted drug resistance.
However, given that HIV-1 drug-resistant strains are often less fit than thewild-type strains, it is expected
that drug-resistant strains that are present during the primary phase of the HIV-1 infection are replaced
by the fitter wild-type strains. This replacement of HIV-1 resistant mutations involves the emergence of
wild-type strains by a process of backwardmutation. How quickly the replacement happens is dependent
on the class of HIV-1 mutation group.

We estimate the backward mutation rates and relative fitness of various mutational groups known
to confer HIV-1 drug resistance. We do this by fitting a stochastic model to data for individuals who
were originally infected by an HIV-1 strain carrying any one of the known drug resistance-conferring
mutations and observed over a period of time to see whether the resistant strain is replaced. To do
this, we seek a distribution, generated from simulations of the stochastic model, that best describes the
observed (clinical data) replacement times of a givenmutation.We found that Lamivudine/Emtricitabine-
associated mutations have a distinctly higher, backward mutation rate and low relative fitness compared
to the other classes (as has been reported before) while protease inhibitors-associated mutations have a
slower backward mutation rate and high relative fitness. For the other mutation classes, we found more
uncertainty in their estimates.

© 2016 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Administration of antiretroviral therapy (ART) toHIV-1 patients
has been greatly improved through the use of at least three drugs
in combination. However, treatment failure is reported in case of
poor adherence or drug toxicities with some patients developing
detectable viral loads during the course of ART. This is associated
with the emergence of drug resistance to one or more drugs in the
drug cocktail. Therefore, life-long ART together with emergence
of drug resistance has resulted into an ever increasing pool of
individuals who can transmit HIV-1 drug resistant strains (Cane,
2005). Mutations in the HIV-1 genome that confer resistance
during ART have been detected in plasma and cellular reservoirs
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of ART-naïve HIV-1 infected patients worldwide (Geretti, 2007).
Several of these are recognized markers of primary or transmitted
drug resistance (TDR).

The time of testing in relation to the time of infection and the
sensitivity of the resistance testing methods are crucial for proper
detection of TDR. TDR has been mainly reported in resource-rich
settings where the coverage of ART is extensive. It is estimated
that 10%–20% of new diagnoses in Europe and the USA with
HIV-1 are resistant to at least one drug. However, the reported
prevalence of TDR remains low in resource-poor settings, where
the ART coverage is still sub-optimal (Cane, 2005; Hamers et al.,
2011). One cause for concern in resource-limited settings is that
administration of ART and switching of regimens are still based
on clinical criteria since availability of assays for monitoring
patients on ART is limited and access to resistance testing is
still not possible. Thus, a person continues treatment on a failing
regimen for a longer period of time. This means that resistant virus
can continue replication under drug pressure, increasing the risk
of onward transmission of drug-resistant HIV-1 (Geretti, 2007).
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Reports indicate that 75%–80% of patients undergoing ART with
detectable plasma HIV-1 RNA levels carry viruses with reduced
susceptibility to one or more drugs (Richman et al., 2004). Such
individuals are an obvious risk group of transmitting drug resistant
HIV-1 (Pingen et al., 2011).

Resistant virions that arise during ART are quickly replaced by
wild-type strains on cessation or interruption of treatment (Kitay-
imbwa et al., 2013; Vaidya et al., 2010; McLean and Nowak, 1992).
However, unlike resistance-conferringmutations that are acquired
during ART, transmitted drug resistant HIV-1 can persist long term
in the absence of drug pressure (Little et al., 2008; Pingen et al.,
2011). One possible explanation of this occurrence is that soon af-
ter infection, a homogenous viral population is established allow-
ing for no effective competitionwithwild-type virus. Amutation of
resistant virus to wild-type (commonly referred to as a backward
mutation) may occur over time, although in some cases the resis-
tant virions become genetically fixed by compensatory mutations
and unable to revert to wild-type without a loss of fitness (Little
et al., 2008; Geretti, 2007; De Ronde et al., 2001).

The mutational process of HIV-1 within a host is in essence the
result of a stochastic process in which a single mutation appears
more frequently than double or multiple mutations (Keulen et al.,
1996). Emergence of a fitter viral strain with a higher replicative
capacity leads to overgrowth of the parent viral strain (McLean
and Nowak, 1992). Thus, this process of selection results in
the appearance of mutants with the highest fitness in a given
environment. A stochasticmodel is then suitable for such a process
since, even though all possibilities of what happens when a
person is infected with a resistant strain cannot be generated,
individual simulations form part of an ensemble of possibilities,
i.e., a collection ofmicro states of the system.We use this ensemble
to visualize the probability distribution over the set ofmicro states.

In this study, we estimate the backwardmutation rates and rel-
ative fitness of various mutational groups known to confer HIV-1
drug resistance. We do this by fitting a stochastic model to data for
individuals who were originally infected by an HIV-1 strain car-
rying any one of the known drug resistance-conferring mutations
and observed over a period of time to see whether the resistant
strain is replaced. To do this, we seek a distribution (generated
from simulations of the stochastic model) that best describes the
replacement times of a given mutation, from clinical data, using
the Kaplan–Meier estimation of the survival function.

2. Methods

2.1. Datasets

Clinical data for individuals with acute and/or early HIV-1
infection enrolled in two prospective studies, taken from supple-
mentary information in Jain et al. (2011), were used. The two
prospective cohort studies were the Options Project (San Francisco
General Hospital, University of California, San Francisco [UCSF])
and an acute and/or early HIV-1 infection cohort in Sao Paulo,
Brazil.

The Options Project was a prospective cohort study in which
individuals were enrolled within 12 months after HIV-1 antibody
sero-conversion (restricted to 6 months after sero-conversion).
Participants were enrolled after screening for acute and/or early
HIV-1 infection. In the case of the Sao Paulo cohort, patients who
had experienced seroconversion within the previous 6 months
and had evidence of acute and/or early HIV-1 infection were
recruited. For both studies, participants were ART-naïve patients
whopresented TDRon initial genotyping,with 6 ormoremonths of
follow-up without ART and with one or more follow-up genotype.
Only mutations that are known to be selected by ART were
considered with common polymorphic mutations excluded (Jain
et al., 2011).

In both sets of data, follow-up genotypes were obtained,
every 3–4 months, to estimate the time at which baseline TDR
mutations became undetectable by population sequencing. For
individuals that started ART, the last available specimen before
ART initiationwas genotypedwhile for ART-naïve patients, the last
available specimen was genotyped. For individuals with baseline
TDRmutations still present at the last time point, it was noted that
replacement of resistant mutations had not occurred. However, if
no baseline TDR mutations were detected at the final time point,
specimens closest to the midpoint of the prior 2 specimens was
genotyped.

The drug resistance-conferring mutations studied are grouped
into six different categories:

(i) lamivudine/emtricitabine-associated mutations M184V/I
(ii) thymidine analog-associated (TAM) mutations M41L, D67N,

K70R, L210W, T215Y/F, and K219Q/E
(iii) T215 partial revertant mutations T215C, T215D, T215E, T215I,

T215S and T215V
(iv) other nucleoside reverse-transcriptase inhibitor (NRTI) muta-

tions
(v) nonnucleoside reverse-transcriptase inhibitor (NNRTI) muta-

tions
(vi) protease inhibitor (PI) mutations.

Details of these categories can be found in Jain et al. (2011).

2.2. Modeling framework

2.2.1. The mean-field dynamics
Wemodel HIV-1 dynamics within a host by considering explic-

itly the concentrations of the uninfected target cells T , cells in-
fected with the sensitive strain Is, cells infected with the resistant
strain Ir , sensitive virus Vs and resistant virus Vr . System (1) de-
scribes the interactions between these various cell and viral pop-
ulations. System (1) is similar to the one described in Kitayimbwa
et al. (2013) but with the forward mutations (i.e., mutations from
the sensitive to the resistant strains) considered to be negligible
since there is no drug pressure.

dT
dt

= λ − γ T − βTVs − k1βTVr

dIs
dt

= βTVs + zk1βTVr − δIs

dIr
dt

= (1 − z)k1βTVr − δIr

dVs

dt
= aIs − cVs

dVr

dt
= k2aIr − cVr .

(1)

In System (1), the target cells T are constantly recruited from
the thymus at a rate λ and die at a rate γ . Since the drug-resistant
strain is generally less fit than the sensitive strain, resistant virus
infects target cells at a rate k1β where β is the rate of infection of
the target cells by the sensitive strain and k1 ∈ (0, 1) is the relative
fitness of the resistant strain on infectivity. Due to the HIV-1
replication process being error-prone, resistant virus mutates to
sensitive virus at a rate z (backward mutation acts as the source
for any arising sensitive strain). Cells infected by either resistant
or sensitive virus die at an infection-induced death rate δ. Cells
infected with sensitive virus release new virions at a rate a. The
cells infected with resistant virus release new virions at rate k2a
where k2 ∈ (0, 1) is the relative fitness of the resistant virus in
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Fig. 1. Schematic diagram showing infection dynamics of System (1). CD4+ T-cells
are classified into uninfected T and infected with ART-sensitive or ART-resistant
virus, Is and Ir , respectively. Virus strains are either sensitive, Vs , or resistant, Vr , to
ART. See text for details.

terms of viral productivity. Resistant and sensitive virus is cleared
from the system at a rate c . Fig. 1 shows the flow diagram of
the compartmental deterministic model as described above. In the
limit of large population numbers present in all compartments, the
HIV-1within-host dynamics for a transmitted drug-resistant strain
can be described by the mean field equations in System (1). Such a
systemneglects all the stochastic aspects presentwithin a host and
only focuses on the evolution of the mean population numbers.

2.2.2. Analysis of the mean-field dynamics
The System (1) has two feasible equilibrium points:

(i) The infection-free equilibrium

E0 =


λ

γ
, 0, 0, 0, 0


.

(ii) The sensitive strain dominated equilibrium E1 = (T ∗, I∗s , 0,
V ∗
s , 0) where

T ∗
=

λ

γ R0

I∗s =
γ c
βa

(R0 − 1)

V ∗

s =
γ

β
(R0 − 1)

where

R0 =
λβa
γ δc

.

Therefore, whenever R0 > 1, there exists a unique endemic
equilibrium E1 with no resistant virus present. From the definition
of E1, it is observed that drug resistant strains will always be
replaced as long as the backward mutation is positive (i.e., z >
0). The fact that a resistant strain is always replaced is due to
the assumption that mutation only occurs in one direction, from
the resistant to the sensitive strain, and the fitness cost of drug
resistance. If forward mutations (i.e., mutations from sensitive to
resistant strains) are also included, there will be coexistence of
strains with the dominant strain determined by the competition
between the two strains (Kitayimbwa et al., 2013; McLean and
Nowak, 1992; Rong et al., 2007; Vaidya et al., 2010).

The following stability results can be easily proved by lineariz-
ing System (1).

Proposition 2.1. The infection free steady state E0 is locally asymp-
totically stable if R0 < 1 and it is unstable if R0 > 1.
Proposition 2.2. The endemic equilibrium E1 exists if and only if
R0 > 1. E1 is locally asymptotically stable whenever it exists.

Therefore, for all parameter values, whenever R0 > 1, the
endemic equilibrium E1 is locally asymptotically stable. We would
therefore expect that given enough time, all TDR viral strains
would be replaced by the sensitive strain.

2.3. Stochastic formulation for the population dynamics

The ODEs described by System (1) can be numerically
integrated to obtain the mean-field population evolution. So long
as the population size of each compartment is large enough,
stochastic changes are negligible. For consideration of transmitted
drug resistance, we assume that an individual is initially infected
with a resistant strain. Subsequent replacement of the resistant
strain by a sensitive strain requires de-novo mutations within the
host. Therefore, the replacement of the resistant strain is expected
to be greatly affected by stochastic changes. For this reason, the
analysis of the replacement times for the resistant strain by the
sensitive strain for HIV-1 patients initially infected by a resistant
strain requires a stochastic analysis. Such an analysis provides
not only the mean-field evolution of the population numbers but
also the evolution of its variability. In a deterministic setting, one
would expect that with time, all the drug resistant strains would
be replaced by the sensitive strain because of differences in fitness.
However, in a stochastic setting, variability plays a key role at very
low numbers. In this case, not all resistant strains are observed to
be replaced in our period of observation.

2.3.1. Stochastic model formulation
To study the replacement times of HIV-1 drug resistance-

conferring mutations, we develop a stochastic model. The model
used is the stochastic version of the deterministic model given
by System (1). The stochastic model tracks discrete changes over
time in population sizes for the target cells (T ), cells infected
with sensitive virus (Is), cells infected with resistant virus (Ir),
sensitive virus (Vs), and resistant virus (Vr). We express changes
in T , Is, Ir , Vs and Vr in an arbitrarily small interval (t, t + ∆t) as
∆T , ∆Is, ∆Ir , ∆Vs, and∆Vr , respectively. Here, a stochastic process
is defined by the probabilities at which different events occur in
the time period∆t . The possible events for the various populations
modeled are as follows: recruitment of CD4+ cells and production
of new HIV-1, death (CD4+ and HIV-1), and infection of target
cells by either virus (including mutations). The probabilities that
any of the above events occur in the time interval (t, t + ∆t) are
given by their corresponding rates in System (1). Table 1 shows
the rates for the various events in the model with total rate Φ =

λ+γ T +βTVs + k1βTVr + δIs + δIr + aIs + k2aIr + cVs + cVr as the
scaling factor guaranteeing that all the probabilities are between 0
and 1.

2.3.2. Parameter values
For all simulations, we use parameter values as outlined in

Table 2. We make the assumption that the resistant virus is just
as infectious as the sensitive strain (k1 = 1) and only account for
its fitness disadvantage at the viral production stage of its life cycle
(varying k2). If on the other hand, we fix k2 = 1 and vary k1, very
similar results would be obtained. This is not surprising since the
combined effect on fitness at both viral production and infection
stages of theHIV-1 life cycle ismultiplicative (k = k1k2). Therefore,
for this work, we only estimate k2.

2.3.3. Simulations
In order to speed up the simulations, the stochastic model

is implemented using the τ -leap method (Gillespie, 2001). The
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Table 1
Events and corresponding probabilities for the stochastic model.

Event Change in population size t → t + ∆t Probability

Recruitment of T T → T + 1 λ∆t/Φ
Death of T T → T − 1 γ T∆t/Φ
Infection by Vs T → T − 1, Is → Is + 1 βTVs∆t/Φ
Infection by Vr T → T − 1, Ir → Ir + 1 (1 − z)k1βTVr∆t/Φ
Infection by Vr mutating to Vs T → T − 1, Is → Is + 1 zk1βTVr∆t/Φ
Death of Is Is → Is − 1 δIs∆t/Φ
Death of Ir Ir → Ir − 1 δIr∆t/Φ
Production of Vs Vs → Vs + 1 aIs∆t/Φ
Production of Vr Vr → Vr + 1 k2aIr∆t/Φ
Death of Vs Vs → Vs − 1 cVs∆t/Φ
Death of Vr Vr → Vr − 1 cVr∆t/Φ
Table 2
Parameter values used in simulations.

Parameter Definition Value Reference

T0 Initial target cell count 1.5 × 104 cells/ml Buckley and Gluckman (2002)
γ Death rate of target cells 0.01 d−1 Mohri et al. (1998)
λ Recruitment rate of target cells 1.5 × 102 cells/ml d−1 Defined as γ T0
β Infection rate of target cells by Vs 6.5 × 10−7 ml d−1 Perelson et al. (1993)
k1 Relative fitness of Vr infectivity 1 –
δ Death rate of infected cells 0.39 d−1 Vaidya et al. (2010)
a Rate of virus production 850 (cells/ml)−1d−1 Vaidya et al. (2010)
k2 Relative fitness of Vr replication varied –
c Clearance rate of free virus 3 d−1 Ramratnam et al. (1999)
z Backward mutation rate varied –
virus–cell dynamics are simulated effectively in a volume of 1 ml,
as in previous studies (Cadosh et al., 2012; Pearson et al., 2011;
Ribeiro and Bonhoeffer, 2000). In a volume of 1 ml of blood, the
target population size was taken as 104 cells. Such a large census
population size does not imply the absence of stochastic effects
during the evolution of HIV-1 within an infected host. For the
study of replacement times for resistance-conferring mutations,
the effective population size, Ne, is indeed considerably smaller
than the census population size (Kouyos et al., 2006).

Every run starts with a population of target cells at the carrying
capacity (T0 = λ/γ ), an inoculum of 500 resistant virus, 10 T-cells
infected with resistant virus, and no sensitive virus at all at the
beginning assuming that initially, all infections are by a resistant
strain, i.e., transmitted drug resistance. A simulation is allowed to
run for a maximum simulation time of 3000 days, which covers
all available clinical data. If the viral load for the resistant strain
falls below the detection limit of 50, the simulation is stopped
and the time at which this happens is recorded. This time is then
considered as the replacement time for the resistance-conferring
mutation. For the simulations that run for the entire 3000 days,
we know that the drug-resistant strain survives up to the end of
the simulation but do not know the exact time when it is replaced
(right censoring). This procedure is done for 1000 replicates for
each parameter combination. The generated data is analyzed and
compared to the clinical datasets derived from the two prospective
cohort studies (Section 2.1).

2.4. Estimation of backward mutation rate and relative fitness using
a survival function

One of the major challenges in analyzing the backward
mutation rate is the difficulty in getting a comprehensive dataset
of patients with transmitted drug resistance followed periodically
over a long period of time. In most of the observations available,
follow-up ends before the replacement of all the resistance-
conferring mutations. To make matters worse, the loss to follow-
up varies from patient to patient. Thus, information is available
about whether or not certain mutations were still present up to
a certain time point with no accurate information on when exactly
they were replaced.

We seek to define a distribution that can best describe the
replacement times of each mutation group. We do this by defining
a survival function, S(t), for each mutation group at a given time
point. The survival function, S(t), is defined as the probability of a
certain resistant mutation surviving at least to time t , that is, the
probability that a given resistant mutation is not yet replaced at
time t .

We obtain an approximation for the survival function using the
Kaplan–Meier estimation (Goel et al., 2010). This estimator makes
use of survival times,whichmeasure follow-up time from infection
with a resistant virus up until the resistant virus is replaced by a
wild type virus. The graph of S(t) against t is called the survival
curve. One key advantage of the Kaplan–Meier method is that
it can be used to estimate the survival curve from the observed
survival timeswithout the assumption of anunderlying probability
distribution.

A Kaplan–Meier analysis allows for the estimation of the
survival over time even when mutations are studied for different
lengths of time. At each time point, the survival probability is
calculated as follows:

S(t)

=
Number of individuals still carrying a given mutation at time t
Number of individuals carrying a given mutation at time t = 0

.

The number of mutations that have been replaced, lost to follow
up or not reached the time point yet are not counted as being at
risk. Mutations that are lost to follow up are considered censored
and are not counted in the denominator. The probability of a
mutation surviving to any time point is estimated from the
cumulative probability of surviving each of the preceding time
interval (calculated as a product of preceding probabilities). It is
noted that even though the probability at any given interval is not
very accurate due to the small number of replacement events, the
overall probability of surfing to each point is more accurate.

When interpreting Kaplan–Meier curves, it should be noted
that the precision and accuracy of such curves is heavily reliant
on the number of observations. In particular, estimates at the left
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Fig. 2. Heatmaps for the distancem as a function of the relative fitness k and backwardmutation rate z for the drug resistancemutation groups: (a)M184V, (b) TAM, (c) T215
partial revertants, (d) NRTI, (e) NNRTI, and (f) PI. The colors of boxes correspond to the smallest 5%, 10%, 15%, and 50% values of the distance m, for each (k, z) combination,
in a red scale (the darker the box, the smaller the value of m). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
hand side are more precise than at the right hand side because of
small numbers due to mutations being replaced or lost to follow
up. Kaplan–Meier curves also give often the impression that a
mutation replacement occurs more frequently early on than later
in time. This is due to the high survival rate and the large number
of mutations at the very beginning.

In order to estimate values for the backward mutation rate z
and the relative fitness k2 for a specific category of mutations,
we compare the probability distribution of the replacement times
from the data (given by the Kaplan–Meier estimation of the
survival function) with that from the stochastic simulations. For
given values of z and k2 at each time point, the survival function
is defined as the proportion, out of the total 1000 replicates, of
simulations where the drug-resistant strain is still present.

In order to select the survival function that best fits the data, we
define two measures:

(i) m, which represents a (normalized) distance between the
survival function for the simulated data and the observed data.
It is calculated as

m =
1
N

T
i=1

(Sd(ti) − Ss(ti))2 (2)

where N is the number of times that replacement events are
accounted for during the entire duration of observation, Sd(ti)
is the value of the survival function estimated from the clinical
data, Ss(ti) is the value of the survival function estimated from
the simulation of the stochastic model for a particular pair
of values of z and k2, and tT is the first time at which no
individual in the simulated data carried a particular mutation.
For mutations that were not replaced completely amongst the
individuals represented by simulated data, we set tT = 3000.
(ii) n, which represents the percentage of the estimated survival
curve from simulated data that is found outside the 99%
confidence interval of the observed survival curve, calculated
as

n =
No. of time points with Ss(t) outside the confidence interval
No. of time points with replacement events in clinical data

× 100%. (3)

It is important to note that it is indeed confidence intervals
that are considered, one at each of the times where there are
replacement events in the clinical data, rather than confidence
bands (for all time points in the window of study). This means
that the confidence intervals represent uncertainty in the
estimate of the survival function estimated from simulated
data at timepointswith replacement events in the clinical data.
Therefore, the validity of these confidence intervals hold only
at those timepointswhere replacement events occur in clinical
data rather than holding simultaneously for many points.

Both measures, m and n, provide error functions between
observed data and simulations. Parameter values that optimize the
metrics m and n are found. Given that the metrics are defined
in such a way that they measure how close the simulations are
to the observed data, such optimized parameter values are good
estimates for the optimal parameter values from the data.

3. Results

Fig. 2 shows heat maps for the distance m, defined in (2),
between the survival curves estimated from clinical and simulated
data for several combinations of values of the relative fitness (k)
of a resistant strain and the backward mutation rate (z) for each
of the mutation groups. The darker (in a red scale) the box is, the
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Fig. 3. Heat maps for the percentage n of the estimated survival curve outside the 99% confidence interval as a function of the relative fitness k and backward mutation rate
z for the drug resistance mutation groups: (a) M184V, (b) TAM, (c) T215 partial revertants, (d) NRTI, (e) NNRTI, and (f) PI. The colors of boxes correspond to the smallest 5%,
10%, 15%, and 50% values of n, for each (k, z) combination, in a red scale (the darker the box, the smaller the value of n). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
smaller the value ofm (colors show the smallest 5, 10, 15, and 50%
values of m). The smaller the value of m, the better the estimates
of the backward mutation rate and the relative fitness.

On the other hand, Fig. 3 shows heat maps for the percentage n
of the survival curve estimated from simulated data (defined in (3))
that is found outside the confidence interval of the survival curve
estimated from clinical data for different values of the backward
mutation rate, z, and the relative fitness, k, of the resistant strain.
The darker (in a red scale) the box is, the smaller the value of n
(colors show the smallest 5%, 10%, 15%, and 50% values of n). A
smaller value of n represents better estimates of the backward
mutation rate and the relative fitness.

For the Lamivudine/Emtricitabine-associated mutations, the
best fitting pairs of values of the backward mutation rate and the
relative fitness are found to be (1 × 10−4, 0.60), (1 × 10−4, 0.55)
and (1 × 10−4.2, 0.50) as they correspond to 5-percentiles of
measures m or n (darker boxes in Figs. 2(a) and/or 3(a)). These
results are shown in Table 3. Therefore, a backward mutation rate
of 1 × 10−4 and a relative fitness between 0.55 and 0.60 is a
good estimation. Alternatively, a lower backward mutation rate
of 1 × 10−4.2 would require a reduced relative fitness of 0.5 to
achieve a comparable survival curve. This means that for lower
values of the backward mutation, lower relative fitness values
would be required. Fig. 4(a) shows the Kaplan–Meier estimation
of the survival function over time from clinical data and from one
of the best fitting simulations (z = 1 × 10−4 and relative fitness
of 0.55) for the Lamivudine/Emtricitabine-associated mutations.
The best fitting values of the backward mutation and relative
fitness capture the data very well given the fact that a 99%
confidence interval is considered for the simulations and the entire
simulated curve is found within the confidence band. The general
trend of the survival curve of the Lamivudine/Emtricitabine-
associatedmutations is also well captured, with a 100% probability
Table 3
Estimated backward mutation rates and relative fitness for the different mutation
classes. Estimates shown correspond to smallest 5% values of either measure m or
n.

Mutation class Backward mutation rate Relative fitness

Lamivudine/emtricitabine- 1 × 10−4
[0.55, 0.60]

associated mutations 1 × 10−4.2 0.50

TAM 1 × 10−5
[0.45, 0.65]

1 × 10−4.8
[0.70, 0.75]

1 × 10−4.6 0.80

T215 partial revertant 1 × 10−5
[0.85, 0.90]

mutations 1 × 10−4.8 0.90

NRTI mutations 1 × 10−5
[0.40, 0.90]

1 × 10−4.8
[0.55, 0.90]

1 × 10−4.6
[0.70, 0.90]

1 × 10−4.4
[0.85, 0.90]

1 × 10−4.2 0.90

NNRTI mutations 1 × 10−5 0.80
1 × 10−4.8

[0.80, 0.85]
1 × 10−4.6

[0.85, 0.90]
1 × 10−4.4 0.90

PI mutations 1 × 10−5
[0.75, 0.85]

1 × 10−4.8 0.85

of Lamivudine/Emtricitabine-associated mutations being replaced
during the time of observation (Fig. 4(a)).

For the TAM group, there are several parameter combinations
that provide a good fit to clinical data (Figs. 2(b) and 3(b)). These
values are summarized in Table 3. In particular, we observe a
trade-off between the parameters where a faster rate of backward
mutationwould require a higher value of relative fitness for a good
fit of the data (Figs. 2(b) and 3(b)). Fig. 4b shows the Kaplan–Meier
estimation of the survival function over time from clinical data and
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Fig. 4. Kaplan–Meier estimation of the survival function over time of the data (solid black; confidence bands as broken curves) and one of the best fitting simulations (purple)
for the drug resistance mutation groups: (a) M184V (z = 1 × 10−4, k = 0.55), (b) TAM (z = 1 × 10−5, k = 0.65), (c) T215 partial revertants (z = 1 × 10−5, k = 0.90), (d)
NRTI (z = 1 × 10−4.6, k = 0.75), (e) NNRTI (z = 1 × 10−4.8, k = 0.85), and (f) PI (z = 1 × 10−5, k = 0.80). Simulations are drawn for 3000 days, even though in some
cases available data correspond to shorter period.
survival curve resulting from one of the best fitting simulations
(z = 1 × 10−5 and relative fitness of 0.65) for the TAMmutations.
The best fitting values of the backward mutation and relative
fitness capture the data well given that the entire simulated curve
is found within the confidence interval. The general trend of the
survival curve estimated from clinical data for the TAM mutations
is also well captured (Fig. 4(b)). It is predicted that not all TAM
mutations will have been replaced by tT = 3000 days.

For the T215 partial revertant mutations, a value of 1 × 10−5

for the backward mutation rate and relative fitness lying between
0.85 and 0.9 are found to give a good fit of the clinical data
(Figs. 2(c) and 3(c)). Similarly, a backward mutation rate of 1 ×

10−4.8 and a relative fitness of 0.9 fits well the observed clinical
data. Fig. 4(c) shows the Kaplan–Meier estimation of the observed
survival function over time and the survival curve derived from the
best fitting simulations (z = 1 × 10−5 and relative fitness of 0.90)
for the T215 partial revertant mutations. Although only around
65% of the simulated curve is found within the confidence interval
(because of the size of the available dataset), the general trend of
the survival curve of the T215 partial revertant mutations is well
captured (Fig. 4(c)). More than 60% of the T215 partial revertant
mutations are predicted not to have been replaced by day 3000.
This could be mainly the result of having only three replacement
events during the entire period of observation for this particular
mutation group. Having few replacement events means that the
rest of the data is right censored.

For the NRTI mutation group, there is a large combination of
parameters that provide a good fit to the observed survival curve
(Figs. 2(d) and 3(d)). These values are shown in Table 3. Fig. 4d
shows the Kaplan–Meier estimation of the observed survival
function over time and one of the best fitting simulations (z =

1× 10−4.6 and relative fitness of 0.75) for the NRTI mutations. The
simulated survival curve fits the observed survival curvewell given
that a big portion of the simulated curve lies within the confidence
interval (Fig. 4(d)). By day 3000, it is predicted that at least 20% of
the NRTI mutations will still be present. However, there is a wide
range of possible values for the backward mutation rate and the
relative fitness due to the fact that only two replacement events
take place during the entire period of observation. Therefore, in
estimation of the observed survival curve, the rest of the mutation
events are right-censored.

For the NNRTI mutation group, there is also several parameter
combinations that provide a good fit of the clinical data (Figs. 2(e)
and 3(e)). Table 3 shows these values. A trade-off between the
backward mutation rate and the relative fitness is found in this
mutation group. Fig. 4(e) shows the Kaplan–Meier estimation
of the observed survival function and one of the best fitting
simulations (z = 1 × 10−4.8 and relative fitness of 0.85) for the
NNRTImutations. The best fitting values of the backwardmutation
and relative fitness capture the data fairly well given that over
98% of the simulated curve is foundwithin the confidence interval.
The general trend of the survival function of the NNRTI mutations
is also well captured (Fig. 4(e)). We cannot say much about the
replacement times since the survival curve does not reach zero,
with over 40% of the NNRTI mutations predicted to still be present
after 3000 days.

Similarly for the PI mutation class, there are several combina-
tions of parameter values that fit the observed data well (Figs. 2(f)
and 3(f)). These estimates are shown in Table 3. Once again, a trade-
off between the parameters is observed. Fig. 4(f) shows the Ka-
plan–Meier estimation of the survival function over time from the
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Fig. 5. Sensitivity of the infection rate parameter β on the distance m for each of the drug resistance mutation groups: (a) M184V, (b) TAM, (c) T215 partial revertants, (d)
NRTI, (e) NNRTI, and (f) PI. The markers in the graphs correspond to smallest 10% values of the distance m for a 50% decrease (black diamond), no change (red box), and a
50% increase (yellow circle) of the baseline value of the parameter β .
clinical data and from one of the best fitting simulations (z =

1× 10−5 and relative fitness of 0.80) for the PI mutations. The best
fitting values of the backward mutation and relative fitness cap-
ture the data well given that the entire simulated curve (at points
of replacement) is found within the confidence band. The general
trend of the replacement of the PI mutations is also well captured
(Fig. 4(f)). It is worth noting that approximately 30% of the PI mu-
tations are predicted to still be present after 3000 days.

3.1. Sensitivity analysis

The choice of baseline values (Table 2) for some of the
parameters were studied. A sensitivity analysis was performed
for the infection rate parameter β , where the model’s simulations
were run after changing the value of β by either a 50% decrease
or a 50% increase of its baseline value. Results for measure m are
shown in Fig. 5 (a similar graph was obtained for measure n; see
supplementary figure 1). A small shift of the parameter estimates
is observed when reducing β by 50% for some of the mutation
groups, but not when increasing the value of β . Similarly, for
virus production parameter a there is only a small shift of optimal
parameter estimates when the value of a is decreased to 50% of its
baseline value (supplementary figures 2 and 3).

Our choice of initial conditions is similar to values used in
previous literature (Cadosh et al., 2012). To study the effect of
one of these initial conditions we performed a sensitivity analysis
on the inoculum size Vr(0). Fig. 6 shows the best estimates,
corresponding to measure m, when the baseline value for Vr(0)
is decreased 50% or increased 50% (similar results are obtained
for n; supplementary figure 4). In general, there is no significant
change on the best estimates for the backward mutation rate and
the relative fitness when Vr(0) is varied.
4. Discussion and conclusions

In cases of TDR, the replacement of the drug-resistant HIV
strain by drug-sensitive HIV as the dominant strain, over time, has
been attributed to viral evolution rather than emergence of a pre-
existing wild-type variant (Jain et al., 2011). Several transmitted
drug resistance-conferring mutations have been reported to
persist over a long period of time while others have been reported
to be replaced easily by wild-type strains (Barbour et al., 2004;
Little et al., 2008). The rate at which a given strain is replaced could
depend on a number of factors, both at patient level and at viral
level. Viral evolution therefore cannot be assumed to be driven
exclusively by selective events (relative fitness and backward
mutation) but also by some stochastic forces. By accounting for the
stochastic forces, the rate of backward mutation and the relative
fitness for each drug mutation class could be good predictors
of how quickly, the resistant mutations are replaced. Comparing
survival curves derived from clinical data for patients with TDR
with survival curves for data generated from a stochastic model of
HIV viral dynamics, we have been able to estimate the backward
mutation rate and relative fitness of six HIV mutation classes
(Table 3). Although for some of the mutation classes, the estimates
have considerable uncertainty due to the small datasets.

For the stochastic model, the population size of target cells
was taken as 104 cells, which corresponds to modeling the viral
dynamics in a volume of 1 ml. This is in agreement to previous
modeling work (Cadosh et al., 2012; Pearson et al., 2011; Ribeiro
and Bonhoeffer, 2000). However, the effective population size for
stochastic within-host models of HIV is still debated (Kouyos et al.,
2006). Nevertheless, our definition of replacement (extinction) of
the DR strain is constrained by the clinical test sensitivity, which
is 50 cells/ml (that is, scaled by ml). Therefore, we do not expect a



J.M. Kitayimbwa et al. / Theoretical Population Biology 112 (2016) 33–42 41
Fig. 6. Sensitivity of the initial viral load Vr (0) on the distancem for each of the drug resistance mutation groups: (a) M184V, (b) TAM, (c) T215 partial revertants, (d) NRTI,
(e) NNRTI, and (f) PI. The markers in the graphs correspond to smallest 10% values of the distance m for a 50% decrease (black diamond), no change (red box), and a 50%
increase (yellow circle) of the baseline value of the parameter Vr (0).
big difference on the distribution of replacement times as a scaled
up of the volume would require a scaled up of the number of
cells needed for extinction. Other modeling frameworks different
to our approach, e.g. (Heffernan and Wahl, 2005), that consider
the stochastic nature of the emergence and persistence of a DS
strain and the eventual replacement of the DR strain might also
be applicable to study our question.

For the decision of the best fitting survival function to
the observed data, we used the distance measure, m, and the
percentage of the estimated survival curve from simulated data
found outside the 99% confidence interval of the observed survival
curve at points of replacement. In general, similar values of the
backward mutation rate and relative fitness were predicted by
both measures. However, generally the percentage measure, n,
had more uncertainty in the estimates. Moreover, we employed
the Kaplan–Meier estimation of the survival curve which has
the advantage that no probability distribution is assumed for
the replacement times of the resistance-conferring mutations.
This allowed us to estimate parameters without any unrealistic
assumptions on the probability distribution of the replacement
timeswhich is still largely unknown.Weexpect very similar results
with alternative measures like the Kullback–Leibler divergence.
However, other possibilities, like the log-rank (Mantel–Cox) test,
were not ideal as for most of the mutational classes being studied,
the replacement events in the clinical data are very few.

Most of the mutation classes had more than one best-fit pair
of values for backward mutation rate and the relative fitness, that
is, there is uncertainty in the estimates. In particular, we found a
trade-off relationship between the backward mutation rate and
the relative fitness, where a higher rate of backward mutation
requires a higher value of relative fitness to explain the observed
data (Figs. 2 and 3). A faster backward mutation could lead to
a faster emergence of the wild-type strain. Therefore, a more fit
resistant virus is in better position to compete and slow down the
emergence of this new strain.

Compared to the other classes, it has been established that the
Lamivudine/Emtricitabine-associated mutations have a distinctly
higher backward mutation rate and low relative fitness. The
higher backward mutation rate and therefore faster replacement
is consistent with earlier findings (Barbour et al., 2004; Jain et al.,
2011; Little et al., 2008). Similarly for the predicted low relative
fitness, as this particular mutation class has been associated with
reduced fitness in the absence of treatment (Jain et al., 2011;
Paredes et al., 2009).

For the PI mutation group, a high relative fitness (of about
0.08–0.85) was found. This is somewhat surprising due to the
fact that, like Lamivudine/Emtricitabine-associated mutations, the
PI mutations are associated with reduced viral fitness (Croteau
et al., 1997; Martinez-Picado et al., 1999). However, such a
finding is consistent with other published reports (Jain et al.,
2011; Little et al., 2008). Van Maarseveen et al. (2005) propose
compensatory fixation as amechanism to explain the observed low
rate of mutation replacement. Viruses withmultiple PI-resistance-
conferring mutations partially compensate for the initial loss of
fitness.

The fact that PI mutations are replaced at almost similar rates
to NNRTImutations is of clinical significance. It is often argued that
in a resource-poor setting, where treatment is initiated without
prior resistance testing, a protease inhibitor should be part of
the cocktail in the first line treatment options. This is because
it is assumed that with its reduced fitness, mutations arising
from it can be easily replaced by wild-type strains presenting a
lower risk of TDR propagation. However, having a high fitness, as
our findings suggest, may in fact increase the risk of TDR. This
would be the result of the resistant strain persisting long enough
in treatment-naïve patients, increasing the chances of being
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spread through populations. Resistance propagation is worsened
in resource-limited settings where ART is initiated without drug
resistance testing. In such settings, patients could be initiated on a
treatment regimen that is partially effective and exposed to it over
a prolonged period, whichwould lead to the spread of the resistant
strain and the possibility of additional drug resistance-conferring
mutations being selected, resulting into having limited options for
second-line treatment.

Having knowledge of the backward mutation rate for different
mutation groups could help clinicians interpret resistance tests
performed during the chronic stage. While interpreting the
resistance test results, it could be important to note that some
mutation classes such as the Lamivudine/Emtricitabine-associated
mutations could have been greatly reduced due to the faster
replacement with the wild type at the time of testing (Jain
et al., 2011). They could still be present at minority levels that
are undetectable by standard tests. Even for mutation classes
such as NNRTI and PI with high relative fitness predicted, it
should be noted that these can also be replaced over time given
the background rate of backward mutations that can lead to
emergence of a slightly fitter wild-type strain. Once a fitter strain
has emerged, it is then a question of competition between the two
strains that determines the dominant strain (Kitayimbwa et al.,
2013; Rong et al., 2007; Vaidya et al., 2010).
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