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Abstract 

Double pushout (algebraic) graph rewriting, which works by first removing the part of the 
graph to be regarded as garbage, and then gluing in the new part of the graph, is contrasted with 
term graph rewriting, which works by first gluing in the new part of the graph (the contra&urn) 
and performing redirections, and then removing garbage. It is shown that in the algebraic 
framework these two strategies can be reconciled. This is done by finding a natural analogue of 
the contractum in the algebraic framework, which requires the reformulation of the customary 
double pushout construction. The new and old algebraic constructions coexist within a pushout 
cube. In this, the usual “outward” form of the double pushout appears as the two rear squares, 
and the alternative “inward” formulation as the two front squares. The two formulations are 
entirely equivalent in the world of double pushout graph rewriting. 

1. Introduction 

Graph rewriting in the double pushout approach (referred to below for brevity as 
algebraic graph rewriting) has a relatively long history and forms a mature body of 
knowledge with applications in many areas of computer science. Both the applications 
and the theory continue to expand in many directions. From the large literature on 
the subject we might mention [S-7]. See also [19]. 

Term graph rewriting arose rather more recently [3] and its application is typically 
rather more focussed, principally at intermediate and lower level descriptions of 
implementations of functional languages and similar systems; though the amount of 
work in related areas is expanding. See [18]. 

Algebraic graph rewriting works by the well-known “double pushout” construc- 
tion. In this construction, the first step of a rewrite, once a redex has been located, is to 
remove the part of the graph that is to be garbaged by the rewrite, leaving a suitable 
hole. Then the new part of the graph is glued into the hole, yielding the result. In term 
graph rewriting by contrast, the first step of a rewrite, once the redex has been located, 
is to glue into the graph some new structure, called the contracturn; then to change the 
shape of the graph by redirecting arcs. Finally, the garbage is removed. 
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Thus one goes about things in the opposite order in the two models of rewriting; 

and so one question of interest, is whether there is any relationship between the two 

approaches. Now the algebraic approach has been used to address some of the 

problems of direct interest to the term graph rewriting community [ll, 12,173, so one 

might speculate that the two approaches are not so far apart. 

The aim of this paper is to show that the strategy of the term graph rewriting 

approach can be used to reformulate the algebraic approach into a construction 

entirely equivalent to the original double pushout construction, but having much of 

the superficial appearance of the term graph rewriting construction. In particular, the 

new construction allows a precise notion of contracturn and of contracturn building to 

be formulated within the algebraic rewriting world. A contrasting approach to the 

reconciliation question may be found in [ 16,133. 

The rest of this paper is as follows. Section 2 reviews the details of the conventional 

double pushout construction for a suitable class of graphs. Section 3 describes term 

graph rewriting and highlights the contrast between it and the algebraic approach. 

Section 4 gives the new construction in the algebraic world, shows that is is entirely 

equivalent to the original construction, and argues that it displays the features 

required for it to be regarded as incorporating a convincing analogue of the term 

graph contracturn concept. Section 5 presents a short example. Section 6 examines the 

algebraic and TGR models of rewriting more closely, and argues that the analogy 

between them should not in fact be pushed too far. Section 7 concludes. 

2. Algebraic graph rewriting 

Algebraic graph rewriting originated as a way of manipulating the objects in 

a specific category of graphs; one whose objects have coloured nodes and coloured 

edges, with source and target functions mapping each edge to its source and target. 

However, the underlying algebraic construction is very general and can be adapted to 

many other categories of graph-like systems (see [7,8,10-J. Since the main point that 

this paper makes is algebraic in nature, resting as it does on the construction of a cube 

of pushouts as we will see later, it too can be adapted to many such categories - 

specifically, categories possessing finite colimits can be expected to support a version 

of the construction below. However, rather than seek the greatest possible generality 

in the presentation, by heavy use of universal algebra, we will pick a fairly simple 

category of graphs to work with, and the reader will be able to construct the 

appropriate generalisations as required. 

Let 9% be the category of directed graphs and graph morphisms. An object G of 

98 is a pair (N,, A,), where No is a set of nodes and AG E NG x NG is a set of arcs 

built from NG, i.e. a set of ordered pairs of NC. An arrow g : G + H of CM is a map 

g : NG + NH such that 

(x, y) is an arc of G - (g(x),g(y)) is an arc of H. 
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Like many categories of graph-like systems, 9% has all pushouts. (See e.g. [4] for 
definitions of pushouts and other categorical apparatus.) Thus if f: K + X and 
g : K --) Y are two arrows, their pushout is the graph P = (Np, AP) given by 

NP=Nx&Nrlx, where ti is disjoint union, and x is the smallest equivalence 
relation such that x x y if there is a k E NK that x =f(k) and y = g(k). 

AP = UCXIP, CYIPII 3~ E Cxl p,u E [yip such that (u,u) E Ax or (u,u) E Ay), where 
we have not distinguished between u E Nx and the tagged varsion of u E [xlp. 

And the arrows f* : Y + P and g* : X + P are obvious. 
Algebraic graph rewriting is given by the double pushout construction. Rules are 

given by a pair of arrows in 92% 

with I: K --+ L injective. (For categories of graph-like systems, there is normally 
a natural notion of injectivity that is used: in our case it is ordinary set-theoretic 
injectivity). A redex for a rule L t K + R is an arrow g : L -+ G, and the rewrite 
proceeds by constructing the diagram in Fig. 1 where both squares are pushouts. The 
construction is a two stage process. 

Intuitively, the first stage of the construction removes the g image of L from G, 
except for the g 0 1 image of K, which provides the interface for the second stage. In the 
second stage, a copy of R is glued into the “hole” left behind by the first stage; the edge 
of the hole being the aformentioned go l(K). 

The first stage attempts to construct the object D and the arrows d: K + D, 
I*: D + G, such that the left square is a pushout. D is known as the pushout 
complement and is not guaranteed to exist even if (as is the case here) 999 has all 
pushouts. It is standard lore in algebraic graph rewriting theory that a unique smallest 
pushout complement exists if 

(INJ-0) 1: K -+ L is injective. 

(IDENT-0) {x, Y> G NL and g(x) = g(y) * Cx = Y, or {X,Y } E &WI. 

(DANGL-0) by) E AG - d&h and {x,Y> n s(W Z 8 

=+ Ix, Y> n dNrJ E MYd). 

L+---J-- K’R 

G-C 
1’ 

D 
r* ,H 

Fig. 1 
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(INJ-0), which we have assumed already, ensures that a pushout complement with 

unique d(K) exists if one exists at all. (In other categories of graph-like systems, 

INJ-like conditions give rise to other forms of uniqueness.) (IDENT-0) ensures that 

the pushout of 1 and d is in fact G, by ensuring that the pushout is never forced to try to 

map distinct nodes of L into the same node of G, other than as instructed by d - 

something the pushout definition above can never accomplish. (DANGL-0) ensures 

that D is actually an object of 99, so that when the g image of (L - Z(K)) is removed 

from G, no arc is left dangling without a source or target node. These remarks make 

a little more sense when we see the explicit construction of D. 

No = NG - s@k - Wd), 

AD = AG - cd.4 - 4&d). 

The arrow d : K + D is given by 

d:N,+ N,:x H g(l(x)) 

with the obvious extension to arcs. Arrow 1* : D -P G is just the inclusion on 

NG - g(NL - I(N,)) again with the obvious extension to arcs. In the sequel, it is always 

the unique smallest pushout complement that we mean when we speak of pushout 

complements in 9%. 

For examples of algebraic graph rewriting, see the literature cited in the introduc- 

tion. 

3. Term graph rewriting 

Just as most applications of algebraic graph rewriting use categories of objects with 

a richer structure than 98, so too with term graph rewriting, where normally, the 

category is that of term graphs, i.e. graphs consisting of nodes and arcs, where the 

nodes are labelled by the symbols from some alphabet, and the out-arcs of each node 

are labelled by consecutive positive integers [ 1.. .n], each node having an arity as in 

term rewriting. Other markings may adorn the nodes and arcs depending on the 

application. 

We will however continue to work with 9%‘, which contains (almost) enough 

structure to enable us to achieve our algebraic objectives for term graph rewriting, 

albeit in a more austere setting. 

In fact we will work with the category 9@*), whose objects and arrows are those of 

99, except that each nonempty object G, optionally has a distinguished node, the root 

of G, rootG. In fact 9% occurs as full a subcategory of SK@*! Each object G of 9% 

occurs both “as is” in S&9(*), and also in a collection of objects with roots, once for 

each choice of root from NG. We can write such objects as (G, rootG) when we want to 

highlight the root, writing (G, E) if we want to emphasise that G does not have a root. 
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An arrow g : G -+ H in PZZ(*) is like an arrow in 9% except that if G has a root root(;, 

then H must have one, rootH, and we must have 

g(root6.) = root,. 

Under these circumstances, readers can check that P#*) has all pushouts off: K + X 
and g : K + Y, unless if X and Y both have roots, rootx and rooty, and rootx, rooty do 
not both occur in the same equivalence class in the usual formula for the set-theoretic 
pushout off: NK + Nx and g : NK --, Nr, (see the appendix). This is more than adequate 
for our needs in the rewriting construction. 

A rule Q is now given by a pair (incl : L + P, Red). The first component is the 
inclusion of an object L of 9% (*) into another object P. Neither L nor P may have 
a root. Red is a set of pairs (x,y) of nodes, such that x E NL and y E NP. 

A redex for a rule Q = (incl: L + P, Red) is an arrow g : L + (G, root,), where 
G must have a root, rootc; except that we must have 

(LIVE) Each node g(x) occurring in the image of a redex 

g : L + G is accessible from rootc. 

When we say that x is accessible from r, we mean of course that there is a directed path 
from r to x in the graph. Consequently, all arcs in the redex image are also live. 

Rewriting is a three-stage process. Intuitively, the first stage of a rewrite glues a copy 
of P into G along L. This is just an honest pushout of g and incl which always exists by 
our remarks above. (By an “honest” pushout, we mean one that arises in the usual 
manner as a colimit of a pair of arrows, rather than by construction of a complement.) 
The second phase, redirection, takes all in-arcs of nodes g(x) where (x, y) E Red, and 
redirects them so that they become in-arcs of g’(x) (where g’ is the extension of 
g provided by the pushout of the first stage). (Note that unlike the original reference 
[3], we are permitting multiple simultaneous redirections. There is no technical 
reason why we should not.) Having performed the redirections, the third phase 
removes everything not accessible from the root, completing the rewrite. 

In more detail, stage one constructs the following pushout, whose existence is 
unproblematic in 9@*), since of the three graphs involved in incl and g, only G has 
a root. Obviously G’ has a root, such that incl’(root,) = rootc, (see Fig. 2). 

G 
id’ 

,G’ 

Fig. 2. 
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P - L, which generally contains dangling arcs, is called the contracturn of the rule, 
and the pushout construction just mentioned, is called contracturn building, as up to 
isomorphism, the pushout is just the process of gluing a copy of the contracturn into 
G. This paper is mainly concerned with finding an analogue of this process in the 
algebraic world. 

The second stage requires a further condition to hold. Let 

Red’ = { (g’(x), g’(y) > I (x, Y > E Red}. 

The condition is that Red’ is the (set-theoretic) graph of a function. 

(FUNC) (xl, y’ > E Red and (x’, z’ ) E Red’ =z. y’ = z’. 

(Actually there is an alternative approach, where one nondeterministically selects 
a maximal functional subrelation of the general relation Red’, and subsequently works 
with that; but we will ignore such a possibility in this paper.) Assuming (FUNC) holds, 
it makes unambiguous sense to redirect all in-arcs of LHS members of Red’, and make 
them point to the corresponding RHS nodes. This give a graph G”. 

rootg, = If (roo&,, y) E Red’ for some y E NG, then y 

else root,,, 

where 

A;:$ = {(t, g’(x)) E AG, 1 f or some g’(y), there is a (g’(x),g’(y)) E Red’}, 

Aif$? = {(t, g’(y)) ) there is a (t, g’(x)) E Ai$!j and (g’(x),g’(y)) E Red’}. 

Note that where an arc (t, g’(x)) in G’ is redirected to (t, g’(y)) and there was already 
a (t, g’(y)) arc in G’, the two become one arc in G”. (This is at variance with the usual 
situation in term graph rewriting.) Note also that, unlike in algebraic graph rewriting, 
where the only nodes and arcs of G manipulated by the rewrite are in the redex, there 
is no (DANGL)-like condition to prevent the node t in an arc (t, g’(x)) which is to be 
redirected, from being outside g’(L). This is because the removal of arcs and introduc- 
tion of new ones implicit in redirection, do not involve any removal of nodes, the only 
origin of any threat of dangling arcs. 

Thus far, rewriting can only increase the size of a graph. To enable graphs to shrink, 
i.e. for rewriting to be able to garbage collect, the third stage defines the graph H by 

NH = {x E NGP, ) x is accessible from rootc,,}, 

AH = ((x,y)~A~,,I{x,y} s NH), 

root* = root(;~~. 
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Thus the third, or garbage collection stage, discards anything not accessible from the 
root of G”. H is the result of the rewrite. Note that H is such that any redex h: M + H 

for first stage of the next rewrite automatically satisfies (LIVE). 
It is worth noting at this point that whereas garbage collection is a purely local 

phenomenon in algebraic graph rewriting - the garbage is collected during the 
construction of the pushout complement; in term graph rewriting garbage collection is 
a global phenomenon - being defined by a condition over the whole of G”. We will 
return to this in Section 6. 

For examples of term graph rewriting, see the literature cited in the introduction; 
further examples appear in [2]. 

4. The algebraic contractum and the pushout cube 

The basic differences between algebraic graph rewriting and term graph rewriting 
should now be clear. The former collects garbage first, and then replaces it with the 
new stuff, while the latter glues in the new stuff first, and only after redirection does the 
garbage get collected. 

To bring the two styles of rewriting closer together, we recast algebraic graph 
rewriting into a form where the basic sequence of steps conforms more closely to that 
in term graph rewriting. Essentially we point out how contractum building can be 
done in the algebraic style. 

To do so we employ a simple trick. Let L A K G R be an algebraic rule. It 
consists of two arrows of ,999 with common domain K. Therefore, we can form the 
pushout shown in Fig. 3. In brief, we show that we can reformulate conventional 
algebraic graph rewriting using rules of the form L L K L R, into a new construc- 

tion, using rules of the form L 2 P g R, and that this new form embodies a credible 
version of contractum building as the first stage of the rewriting process, allowing 
a closer comparison with term graph rewriting. We will call the original form of 
algebraic rules and the rewriting construction that goes with them, the outward form, 
and the new form and construction, the inward form. Both are named after the 
direction of the horizontal arrows. The whole thing turns on the construction of the 
pushout cube shown in Fig. 4. 

In this cube, the colimit of 1: K + L, r : K + R and d : K + D, in which all squares 
are pushouts, we see the conventional construction in the two rear faces, while the new 
construction will emerge as the two front faces. In each case we start with G, construct 
an intermediate graph (either D or C) and then finally construct H. 

Fig. 3. 
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I_/--_ 
r* 

------,H 

(i 
lP* 

) f/* 

c 

h 

Fig. 4. 

Since we work from left to right through the cube in both cases, the first stage of the 
inward form will be an honest pushout of the redex g : L + G, and of the LHS branch 
of the inward rule lp: L -+ P. This is the algebraic equivalent of contracturn building, 
comparable to the first stage in term graph rewriting. As in Section 3, we can call 
P - Zp(L) which in general will contain dangling arcs, the contracturn of the rule; and 
the graph C constructed by the pushout, is the analogue of the graph G’ in term graph 
rewriting. 

After this “contracturn building” the inward form of the algebraic rule forms 
a pushout complement of c : P + C and rp : R + P, to give the result of the rewrite H. 
The conditions for this to work, are similar to those needed in constructing D in the 
outward form of the rule. 

We will discuss the analogy between term graph rewriting and algebraic rewriting 
some more in Section 6. For now we turn to the technical details of the new 
construction. 

Because 9% has all small colimits, up to isomorphism, the pushout cube given 
above really does commute as required. A particular consequence of this is that the 
choice of unique smallest pushout complement in the outward form of rewriting 
corresponds to a similar choice of unique smallest pushout complement in the inward 
form. 

The main facts about inward and outward rewriting are the following. 

Theorem 4.1. Inward and outward rewriting are dual in the following sense. Let 

g : L + G be an arrow of 93, serving as redex. Then statement (I) below which ensures 

the existence of an outward rewrite, and statement (II) below which ensures the existence 

of an inward rewrite, are equivalent. 

(I) There is an outward rule 1: K -+ L, r : K + R satisfying 

(INJ-0) 1: K + L is injective. 

(IDENT-0) {x,Y> E NL and g(x) = g(y) * Cx = Y, or {x, y} c WK)~. 
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(DANGL-0) (x9 y) E AC - d&,), and fx7 Y> n dNd f 8 

==a {% Y > n s(K) E SWK)). 

(II) There is an inward rule lp : L + P, rp : R --) P satisfying 

(SURJ-I) P = (&,4) = (Ip(N,)urp(N,),Ip(A,)urp(A,)). 

(INJ-I) rp : R -_) P is injective; lp : L + P is injective on L - lp- ’ (rp(R)). 

(IDENT-I) {x,Y> c K and g(x) = s(Y) * Cx = Y, or {UP, IP( E v(Wl. 

(DANGL-I) (x7 y) E AG - d-h), and ixyY> n g(k) + 8 

* {x,Y> n g(K) c g(lp-‘(rp(W)). 

Proof. Before proving that (I) o (II) we show that the conditions quoted in (II) are 
sufficient for guaranteeing that an inward rewrite of g : L + G exists. Since 9% has all 
pushouts, we merely need to show that the analogous conditions for the smallest 
pushout complement of rp : R + P and c : P + C hold. These are: 

Clearly (INJ-I) 

rp : R + P is injective. 

{x. y} E & and c(x) = c(y) * Cx = Y, or {x,y> E v(Ndl. 

(x, y) E & - c(h), and {x, Y 1 n c(h) + 8 

=- {x, Y > n c(h) E c(rp(&)). 

* (INJ-I)C. 

For (IDENT-I) 3 (IDENT-I)C suppose c(x) = c(y). If x = y we are done, so sup- 
pose not. Now C is the pushout of g and lp, and for nodes, this is just a pushout in 92. 
Thus for some ce, lp*-l(cO) and {x,y} E c-‘( ce are all in the same equivalence class ) 
of G \t, P under x in the explicit pushout construction. Therefore there are distinct 

elements {y1,y2 ,..., m} c G, {x,rc1,rr2 ,..., x~-~,Tc.,Y}sP, {A 1 il 1 1x7 119 123 22~***~ 

A._ ln,lZ.., A,,} s L such that 

s(&) = Yl? 

d41) = 713 

lP@lJ = x 

lP(Jll) = 7119 

St&j) = Yi, 

g(&-1”) = Yn-13 lP(h- In) = %, 

g(U = Y., lP(M = K> 

g(AW) = Yn, lP(U = Y. 

Evidently, each yi is the g image of a pair of distinct 2’s 1i- li and ,$i. Thus by 
(IDENT-I) lp(Aij) E rp(N,J for all i, j, and in particular {x, y> E rp(N,). 
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For (DANGL-I) * (DANGL-I)C, let (x, y) E Ac - c(Ap) (we say that (x, y) is dangl- 
ing in C with respect to P), and say x E c(&). Then if Ip* ((yX, yY)) = (x, y), then (yX, y,) 
dangles in G with respect to L, otherwise chasing its preimage under g through L and 
P would force a contradiction. So yX E g(&). By (DANGL-I), yX E g(lp-‘(rp(&))), 

whence x E c(rp(N,)). This is sufficient as the argument for y E c(&) is similar. 
We have shown that the smallest pushout complement of rp : R + P and c : P + C 

exists under the conditions stated. These will later turn out to be equivalent to the 
conditions (II), so the latter will form a set of conditions for the existence of inward 
rewrites, expressed solely in terms of the redex and the arrows in the rule. Now for the 
main part of the proof. 

(I) * (II). Suppose we have the hypotheses of (I). Form the pushout of 1: K + L, 

r : K + R giving Ep : L + P, rp : R + P. Then (SURJ-I) is immediate, and (INJ-I) follows 
from (INJ-0). 

For (IDENT-0) * (IDENT-I), let g(x) = g(y) and x # y. Since {x, y} E I(N,), 
let l&r) = x and I(k,) = y. Then /p(x) = rp(r(k,)); similarly for y, whence 

{lp(x), Ip( E rp(Nn). 
For (DANGL-0) = (DANGL-I), let (x, y) dangle in G with respect to L, and 

x E g(A5.). By (DANGL-0) x E g(l(NK)), say x = g@(k)). Then since Ip(l(k)) = rp(r(k)), 

l(k) E IP-‘(rp(Nn)) and x E g(lp-‘(rp(NA)). 
(II) * (I). Suppose we have the hypotheses of (II). From (SURJ-I) and (INJ-I) and 

Theorem A.1 from the appendix, we can clearly form an essentially unique pushout 
kernel in 5“& of lp : NL + Nr, rp : NR + Nr; it is just the pullback of the two arrows in 
92. This yields 1: Nk + NL, r: NK + NR. There is an arc (x, y) E AK whenever both 
(I(x), Z(y)) E AL and (r(x), r(y)) E AR. We get finally 1: K + L, r: K + R. Since rp is 
injective, we get (INJ-0). 

For (IDENT-I) * (IDENT-0), it is clearly sufficient to show (IDENT-I)C =z. 
(IDENT-0). So suppose g(x) = g(y) and x # y. Since by (IDENT-I)C, 

(E~(x),l~(y)} E rp(NA there are {P~,PZ) s NR with rph) = lp(x), rp(pA = IP(Y). 
Since LKRP is a pushout (and pullback), there must be (kl,kz} E Nk such that 
l(k,) = x, I(k,) = y, r(k,) = pl, r(k,) = p2; whence {x, y} E I(N,). 

For (DANGL-I) = (DANGL-0), it is clearly sufficient to show (DANGL-I)C 
* (DANGL-0). So suppose (x, y) is dangling in G with respect to L, and x E g(NL). 
Clearly (Ip*(x), Ip*(y)) dangles in C with respect to P, and Ip*(x) E c(Nr). By 
(DANGL-I)C, Ip*(x) E c(rp(N,)). If 2 E g-‘(x), then Ip(l) E rp(N,), so since LKRP is 
a pushout (and pullback), there must be a k E N, with 1= I(k), and so x E g(l(N,)). We 
are done. q 

We immediately find: 

Theorem 4.2. Let g : L + G be a redex. Let r” be an outward rule satisfying Theorem 

4.1(I), and let rt be an inward rule satisfying Theorem 4.1(11), and such that r” and rt form 

a pushout in 9%. Then H can be derived from G using r” if H can be derived from 

G using rt. 
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5. Example 

We present a short example of the preceding considerations. Fig. 5 shows outward 
rule L t K --f R of .%J, with numbered nodes carrying the morphism information. 

Forming the pushout of these two arrows, we arrive at the corresponding inward 
form of the rule shown in Fig. 6. 
When we apply this to graph G we get the sequence shown in Fig. 7. In this two- 
step sequence (the completion of the pushout G t D --t H in conventional outward 

L< K >R 
1 r 

Fig. 5. 

6 00 
2 2 2 

L > PC R 
@ rp 

Fig. 6. 

lP* 
2- cc H 

v* 

Fig. 7 
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rewriting, as the reader can check), we first bolt in the contractum, and then remove 
what needs to be removed in terms of the image of the LHS graph L. Note that the 
inward form embodies a small optimisation compared with the outward form, namely 
that the outward form first removes the arc (1,2) in the construction of D, and then 
replaces it when the pushout with R is performed; this does not happen in the inward 
form. Of course one can prevent this inefficiency in the outward form by including the 
arc (1,2) in K, but this essentially says that outward rules ought to have the property 
of being a pullback image (see the appendix), as well as what we already demand of 
them. 

6. More on the algebraic contractum and inward rules 

We have pointed out in Section 4 how the first pushout, of g : L + G and lp : L + P 
in the inward form of an algebraic rewrite, can be viewed as the algebraic analogue of 
the contractum building process in term graph rewriting. This is a largely accurate 
intuition, but there is one property of contractum builiding in TGR that is not 
necessarily shared by its algebraic cousin, namely the injectivity of inch : L -+ P. In such 
a case, part of the job of the TGR redirection phase is being done by the algebraic 
contractum building phase. (The rest of redirection may be viewed in the algebraic 
world as being done by replacement of (copies of) arcs in L by (copies of) arcs in R.) 

Where lp : L + P is not injective in the algebraic world, we can search for a closer 
correspondence by attempting to factor Ip thus 

Ip : L -+ P = (IpO : p’ + P) 0 (Ip’ : L + p’), 

where Ip’ : L + P’ is injective and image(Zp”) = image(lp). In general there is no unique 
way to do this. For example, if nodes x and y in L are distinct, and map under Ip to 
a node p in P, then if p is the head or tail of an arc in P, there are normally several ways 
of placing arcs in P’ so that a suitable factorisation holds with Ip’ injective. 

Sometimes, as in the category 99, there is a “best way” of choosing these arcs, 
namely if there are several pre-images of p E P under Ip’, called p;...pk say, they all 
receive a copy of every arc incident on p E P. This amounts to constructing a weak 
final object Zpg : Pk -t P in the category of factorisations of lp with first factor injective 
(and the condition on images); where there is an arrow 

II,,:(lpi:P;+ P)+(zp;:P;+ P) 

if there is a factorisation 

IPi 1112 1R 

L-Pi-Pi-P. 

In the specific category 93, Ipg : P’ -+ P collapses all the copies of an arc incident on 
p back down to a single arc in P. 
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On other occasions, notably in the category f of jungles [ll, 121, there is no such 
weak final object, due to the existence of certain invariants which have to hold for 
objects or arrows. (In the case of y, this is that a node may occur as the (single) 
in-node of at most one hyperedge.) 

The presence of invariants for objects, as in 9, may preclude certain pushouts from 
existing, and this may apply to the top square of the pushout cube itself, giving rise to 
the situation where the outward form of a rule is legal, but the inward form is not. In 
such cases it is usually clear how to generalise the definition of the category so that 
both forms are legal, but often at the price of admitting objects and arrows (and 
rewrites), that were considered undesirable before. Usually the situation can be 
reformulated by recasting the rewriting mechanism in an opfibration framework, 
divorcing the objects and arrows in the base, from the rewrites themselves, allowing 
different invariants to hold in different parts of the description. See [2] for such 
a treatment of term graph rewriting. 

So our analogy between algebraic graph rewriting and term graph rewriting is not 
a perfect one. This should not be surprising. Algebraic graph rewriting is “equational” 
in a way that term graph rewriting is not. Specifically, if in an algebraic rewrite, node 
x is to be merged with node y, and node y is to be merged with node z, then a pushout 
will ensure that in-arcs to all three nodes end up at the same node of the result. 
However, in term graph rewriting, if (x, y) and (y,z) are two redirections, then the 
in-arcs of x end up at y, and the in-arcs of y and z end up at z. To emulate the algebraic 
behaviour we would need (x, z) and (y, z). Thus there are phenomena in term graph 
rewriting that do not correspond to algebraic graph rewriting. 

This is further enhanced by the observations on garbage, in Section 3. In algebraic 
graph rewriting, the garbage in a rewrite is always locally and deterministically 
deducible from the redex. (However an element of nondeterminism does creep into 
rewriting because a redex does not guarantee the ability to do a rewrite, un-less the 
conditions for a pushout complement are satisfied; although this can sometimes be 
forced by syntactic restrictions, it is usually inconvenient). By contrast in term graph 
rewriting, it is easy to arrange that each redex will lead to a rewrite but the garbage is 
now determined nonlocally; a search of the whole graph, not just the redex, is needed 
to separate the live part from the garbage. 

In undemanding cases, such as the rewriting of acyclic graphs corresponding to 
well-behaved term rewrite systems, these more obscure phenomena are not called 
upon, and good agreement can be reached between TGR and algebraic descriptions of 
the rewriting process. Nevertheless, one should not expect such good agreement in all 
cases. 

7. Conclusions 

In the previous sections, we have reviewed double pushout algebraic graph rewrit- 
ing and term graph rewriting, both from a conveniently uncluttered perspective, that 
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of the category 9%. By an algebraic trick, we were able to reformulate the former 
construction from its original outward form, into a new inward form, that bore 
comparison with term graph rewriting. However, in Section 6 particularly, a closer 
inspection revealed that one should not try to push the analogy between the two 
rewriting models too far. 

This being the case, one is tempted to ask if there is any real use for the new version 
of the algebraic construction, other than the rather minor optimisation we noticed in 
the example of Section 5. The answer turns out to be yes. In fact the inward form can 
yield facts about rules and rewrites that are rather more obscure when using the 
conventional form. Particular instances occur in the hypergraph rewriting formula- 
tion of the rewriting model for interaction nets [14,15,1], in the hypergraph formula- 
tion of multiplicative linear logic, and when arguing about acyclicity more generally. 
These phenomena will be described in other papers, as they would take us on an 
excessively lengthy detour from our main point if presented here. 

Appendix. Pushout kernels and pullback images in Lf~?t 

If f: K + X and g : K 4 Y are arrows in %t, it is well known that their pushout 
s:X+P,t:Y+Pisgivenby 

P=XbYy/x, where ~5 is disjoint union, and z is the smallest equivalence 
relation such that x z y if there is a k E K such that f(k) = x and g(k) = y. 

and s : X + P, t : Y + P takes each x or y to its equivalence class in P. We can write an 
alternative form for the pushout - up to isomorphism. Let xK be the smallest 
equivalence relation on K such that kl =K k2 iff(k,) =f(kd or if g(k,) = g(kd 

Let [IF& be the set of equivalence classes of K under zzK. Then the alternative form 
reads 

P = (X -f(K)) & (Y - g(K)) & [KIK. 

It is also well known that if s : X + P and t : Y + P are two arrows of 984, their 
pullback f: K + X, g : K + Y is given by 

K = { (x,y) ( 3p E P such that s(x) = p = t(y)) 

and f: K + X, g : K + Y are projections that take each (x, y ) E K to its left and right 
component, respectively. Again there is an alternative form which reads 

K = U(s-‘(p)xt-‘@)lpm(X)nt(Y)j. 

Now we ask the questions: when is a pair of arrows s : X + P. t : Y + P a pushout of 
some pairf: K + X, g : K + Y which we call a pushout kernel of s and t; also when is 
a pairf:K+ X, g:K+ Y a pullback of some pair s:X+ P, t: Y+ P which we call 
a pullback image off and g. The answers are provided by the following results. 
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Theorem A.l. Let s : X -+ P, t : Y -+ P be arrows in 9%. Then 
(1) Zf P # s(X) u t(Y), or s is not injectiue on (X - s-‘(t( Y))), or t is not injective on 

(Y - t- ‘(s(X))), then there is nof: K + X, g: K + Y, of which s and t are the pushout. 

(2) Else s and t do have a pushout kernel, but it is not unique. 
(3) lf s and t have a pushout kernel and t (say) is injective, then there is a unique 

smallest (up to isomorphism) pushout kernel of s and t, f: K + X, g : K + r; f is injective, 
and the pushout kernel is the pullback of s and t. 

Theorem A.2. Let f: K + X, g: K + Y be arrows in 944. Then 
(1) f and g have a pullback image s : X --) P, t : Y + P ifl 
(a) ForxEX,yEY,I{klf(k)=xandg(k)=y}I<l,and 
(b) For X’GX, (X’IG2, and Y’S Y, (Y’IG2, ((kEKIf(k)=xEX’, and 

g(k)=yE Y’)l #3. 
(2) Zf f and g have a pullback image s and t, then up to isomorphism they have 

a smallest one; given (predominantly) by the pushout off(K) and g(K) 

P = Cf (K) & g(K)1 b R 

where D = 8 iff and g are both surjective, D is a singleton zfonly one off or g is surjective, 
and D is a doubleton if neither f nor g is surjective. The maps s and t are as for a pushout 
except that if neither f nor g is surjective and D = {a, b} then s(X -f(K)) = {a} and 
t( Y - g(K)) = {b}, the other cases being degenerate versions of this. 

The proofs of both of these theorems may be easily reconstructed from the facts 
established in [9], which deals with similar material. 
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