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A b s t r a c t - - I n  this paper, a smooth interpolatory subdivision algorithm for the generation of in- 
terpolatory surfaces (GC 1 ) over arbitrary triangulations is constructed and its convergence properties 
over nonuniform triangulations studied. An immediate application of this algorithm to surface in- 
terpolation to scattered data in R n, n _> 3 is also studied. For uniform data, this method is a 
generalization of the analyses for univariate subdivision algorithms, and for nonuniform data, an ex- 
traordinary point analysis is proposed and a local subdivision matrix analysis presented.-It is proved 
that the subdivision algorithm produces smooth surfaces over arbitrary networks provided the shape 
parameters of the algorithm are kept within an appropriate range. Some error estimates for both 
uniform and nonuniform triangulations are also investigated. Finally, three graphical examples of 
surface interpolations over nonuniform data are given to show the smoothing interpolating process 
of the algorithm. 

Keywords--Triangulat ion,  Approximation, Surface interpolation, Scattered data interpolation, 
Subdivision algorithm. 

1. I N T R O D U C T I O N  

The scattered da ta  interpolation problem is one of the oldest problems in applied mathematics .  
Although there are many  ways to tackle this problem, for example, the Shepard method,  the 

polynomial spline method and other da ta  fitting methods, it seems there are still many  difficulties 
in the applications of these methods. For example, one of the disadvantages using these methods 
is their  global property. Therefore, they are not very efficient for the purpose of interactive 
computer  aided design. In order to overcome the drawbacks of these algorithms, a different 
approach, by using a recursive subdivision algorithm, is proposed here to provide a solution to 
the scattered da ta  interpolation problem. 

Recursive subdivision algorithms, which are also referred to as binary or s ta t ionary subdivi- 
sion algorithms, have been studied intensively for many years in the fields of approximation and 
computer  aided geometric design. Typical examples of such algorithms are the de Rham's  trisec- 
tion algorithm (1947), the de Casteljau's algorithm (1959) for the Bernstein-B~zier curves, the 

Chaikin algorithm (1974) for curves, the Catmull-Clarke algorithm (1978) for both  curves and 
surfaces, etc. Recently, a lot of work has been done in this area to s tudy subdivision algorithms 
systematically. This includes the works by Dyn, Gregory and Levin [1-3], Cavaret ta ,  Dahmen 
and Micchelli [4-7], Daubechies, Deslanriers and Dubuc [8-11] and others [12-22]. And interpo- 
latory subdivision algorithms for both  curves and surfaces play a very important  role in these 
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applications. In [19,22], an interpolatory subdivision algorithm is investigated and some explicit 
conditions are obtained under which a subdivision algorithm could produce smooth surfaces with 
certain prescribed properties such as interpolatory and convexity. Thus the idea of Deslauriers- 
Dubuc and Dyn-Gregory-Levin's uniform analysis [1,2,9,11] for univariate subdivision algorithms 
is generalized to surfaces. In the papers [17-19,22] a general stepwise interpolatory subdivision 
algorithm for surfaces over uniform triangulations is constructed, and then the 10-point interpo- 
latory subdivision scheme is studied in detail (cf. [19,22]). This paper is a continuation of our 
previous work [19,22] . . . .  

The outline of the paper is as follows. In Section 2, the 10-point subdivision algorithm is 
introduced briefly. In Section 3, the algorithm is generalized to arbitrary triangulations first and 
then to arbitrary networks. A convergence analysis of the scheme over arbitrary triangulations is 
presented in Section 4. And some error estimates for surface interpolation using this algorithm 
are given in Section 5. Three examples are given at the end to show the smoothing process of 
the algorithm. 

It should be emphasized that in the analysis presented in Sections 3 and 4, a local subdivision 
matrix analysis approach is employed that is different from the Cross Difference of Directional 
Divided Difference analysis used in the analysis of the algorithm over uniform data (cf. [22]). More 
detailed description of the analysis of the algorithm over uniform data can be found in [19,22]. 
Other analyses of uniform subdivision algorithms can also be found in [1-5,14,20]. 

The generalization of the subdivision algorithm to surface interpolation over arbitrary data has 
wide applications. First, it can be used to solve interpolatory-type surface fitting over arbitrary 
data problems. Second, it can be employed to generate smooth closed surface interpolants over 
scattered data, as shown in Example 2. It can also be used to generate smooth fillings over 
some curved polygonal holes (cf. [21]). Furthermore, it can be utilized to simplify and then 
solve problems like surface normal estimations and even other surface characteristic estimates. 
It is also hoped that nonuniform subdivision algorithms could be applied successfully in some 
optimization problems such as optimized data-transmission and wavelets processing, etc. 

2. T H E  A L G O R I T H M  O V E R  U N I F O R M  
D A T A  A N D  ITS B A S I C  P R O P E R T I E S  

The construction of the algorithm is, originally, motivated by the ideas described in papers 
by Deslauriers and Dubuc [9,11], Dyn, Gregory and Levin [1-3]. The scheme was formulated 
in order to solve such problems as high accuracy surface fitting and fast surface representation 
(cf. [14,16,19]). The main properties of the scheme, in addition to the properties of general 
uniform subdivision schemes, are its generation of smooth interpolatory surfaces and the repro- 
ductivity of cubic parametric polynomial surfaces provided that the shape parameters are chosen 
appropriately. 

A mathematical description of a uniform subdivision scheme over uniform triangulations, which 
is also called binary subdivision algorithm, is as follows. Suppose that the initial control points of 
a uniform triangular network in R 3 are denoted by P°a, a E Z 2, then, the refined control points 
{Pka+l, a e Z 2} are obtained from {Pka} recursively by the following formula: 

p ~ + l =  Z aa-2~pk~ ' o~EZ 2, k_~0. 
~EZ 2 

(2.1) 

Here, a uniform triangulation network means that it is topologically equivalent to the type I 
uniform triangulation shown in Figure 1. An equivalent form of this expression is 

e z 2, (2.2) pk+l ~+2a ~ k = a7_2/~ Pa+~, 
f~Ez 2 
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where 7 =: (~1,72) and ~ = 0 or 1, i = 1,2. Thus, the scheme is stepwise interpolatory if and 
only if the coefficients {aa} satisfy 

a2a = ~a,o, Vc~ E Z 2. (2.3) 

Equation (2.2) shows clearly that  the scheme is a 4-step subdivision scheme. The 10-point scheme 
is given by a special choice of the coefficients {aa} which is given explicitly in [19]. There are 
three parameters wi, i = 1, 2, 3 in these coefficients that  are used to control the shape of the 
limit surfaces. This special choice of the coefficients comes from the 3-directional symmetric 
structure of the scheme. In fact, a simpler way to describe the scheme uses only a single formula 
to characterize the scheme. Since the scheme is symmetric and interpolatory, only the inserted 
values are to be evaluated. The formula for an inserted point, Po, is given by (cf. Figure 2) 

1 (Pe + P f) + Wl (Pa + Pc + Ph + P j  - 2Pc - 2PI)  P o =  

+ w2 (Pb + P~ - Pe - P I )  + w3 (Pd + Pg - Pe - P f)  
(2.4) 

where o is the inserted new control point associated with the edge joining the vertices e and f .  
From this construction, it is obvious that  the scheme can be used (with some modifications at 
those so-called extraordinary points) to produce surfaces over arbitrary triangulations. 

J 

7 

J 

J 

J 

z 
J J J j  

J f f / / j  

Figure 1. The type I uniform triangulation. 

Pa Pc 

Pb 

P~ Pg 

Pi PJ 

Figure 2. The geometric construction of the 10-point algorithm. 

Explicitly, if the uniform control points at level k are denoted by {P~j}, and the type I trian- 
gulation is assumed, the lO-point scheme can then be written in the following compact form: 
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p k + l  = pk.  
2i,2j iJ  ' 

= - w.  ( , , j  + P f + , j )  

pk pk + pkj+ 1 + pk "r "tO1 ( i - l , j - - I  + i+l,j--1 , i+2, j+l)  
pk pk pk 

"k W2 ( i , j -1  "}" ef+l, j+l) q- w3 ( i - l , j  + i+2,j) 

(2.4a) 

Dk+l pk+l with • 2i,2j+1 a n d .  2~+1,2j+1 being duals (rotation symmetries) of the second equation. So, in 
the uniform subdivision process, formula (2.4) or (2.4a) is used to ewluate all new control points 
to produce a refined uniform triangular control net in which the triangulation of the refined 
control net is formed by the standard type I meshing shown in Figure 1. Repeated applications 
of this process will therefore result in finer and finer control nets. Studies show that if the shape 
parameters {w~} are chosen appropriately, the scheme will produce smooth interpolatory surfaces. 
In fact, the scheme has the following properties (cf. [16,19]). 

(1) The scheme is local, interpolatory and coordinate-free. 
(2) The parameters {w~} work as tension controls along the three mesh directions, respectively. 
(3) The scheme reproduces linear surfaces for all {wi}. 
(4) The scheme reproduces bivariate cubic parametric surfaces if {wi} satisfy 

9 9 1 
w 1 = t 16' w2 = -2 t  + ~ = -2Wl, w 3 = ~ - t (2.5) 

where t is any real number. 
(5) The scheme reduces to the butterfly scheme (cf. [2,3,14,16]) if the parameters satisfy 

wl :--- w, w2 := -2w, w3 := 0. (2.6) 

(6) The scheme has certain data-dependent shape preserving properties. 

The scheme produces smooth surfaces if the shape control parameters are chosen properly. 
More precisely, we have the following results (cf. [16,19]). 

PROPOSITION 2.1. The scheme produces C ° surfaces if the parameters {w~} satisfy 

I1 - w 2  - 2Wl + 2 IT21 + 2 IT31 + lwl - w31 < I, 

1 
41w~l + 21~21 + 21wsl < 3" 

(2.7)  

A simple symmetric solution to (2. 7) is given by 

1 
5 Iwll + 3 Iw21 + 3 Ww31 < 3" (2.8)  II 

REMARK 2.2. For the cubic precision scheme, (2.7) becomes 

1 37 
- < t < ~ .  
2 64 

(2.9) 

PROPOSITION 2.3. I f  W2 = --2Wl, then there ex/sts a piecewise quadratic function such that 

C~ ÷2 ~_ B (wi, w3) C k, Vk > 0, (2.1o) 

where 
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. .  C k 
~3~frt ,ft, 

and 
C .k . " -  2kAmAnP[j ,  Vi, j 

and B(wl, w3) < 1 provided that  the shape parameters wl, w2 

Z, 

and wa satisfy 

(2.11) 

(2.12) 

w2 + 2wl -- 0, 

wl#0,  
Wl + 7W3 <_ 0, 

8(Wl + 0.07) -- 3(W3 -- 0.01) > 0, 

(Wl -~- 0.10) + (W3 + 0.07) _> 0, 

10Wl -- 7W3 _< 0. 

(2.13) 

In the above proposition, the forward difference operators {Ai}, i = 1, 2, 3, along the mesh 
directions are defined as 

A1 := i0k+l,j _/~k 

A2 := P.~j+I - Rk~,3, (2.14) 
k p.k. A3 : :  Pi+l,j+l - ~,3" 

PROPOSITION 2.4. The lO-point scheme produces C 1 surfaces if the shape parameters sat- 
isfy (2.13). Especially, the cubic precision scheme produces smooth surfaces if the tension para- 
meter t satisfies 

49 54 
< t < - - .  (2 .15)  | 

100 - - 100 

3. THE A L G O R I T H M  OVER A R B I T R A R Y  N E T W O R K S  

In this section, we generalize the 10-point scheme to nonuniform triangulations first and then to 
arbitrary networks. The main requirement of the construction is that  for general initial data, the 
limit surface should be smooth even at the extraordinary points, provided that  the parameters 
are chosen properly at these points. Here an extraordinary point is defined as a vertex whose 
valency is not equal to 6. 

3 . 1 .  T h e  A l g o r i t h m  o v e r  A r b i t r a r y  T r i a n g u l a t i o n s  

From construction of the algorithm over uniform data, it can be easily modified to refine 
arbitrary triangular networks which leads to the generation of surfaces on arbitrary triangular 
networks. Depending on the local topology (more explicitly, the valency of the vertex), the 
10-point scheme can be modified to refine arbitrary triangular networks. 

For simplicity, we assume also, without loss of generality, that  the initial data  is locally uniform 
except one extraordinary point V. In fact, this situation can be achieved locally after the first 
subdivision. However, the smooth properties of the limit surface do not depend on the first 
subdivision of the initial data  although the limit surface depends on the first subdivision. 

In the following formulation, the index i is a cyclic integer in the range: i = 0, 1, 2 , . . . ,  n - 1 
where n is the valency of the vertex. For simplicity, it is also assumed in scheme that  the 
cubic precision parameters are used, i.e., {wi} satisfy (2.5). The symbols P i  k, Q k, R k denote the 
corresponding initial or refined control points in R 3 (or in R d, d > 3) near the extraordinary 
vertex V at level k in the way shown in Figures 3a and 3b. In the figures, the solid triangulation 
is at level k and the dashed triangulation is the refined one at level k + 1. For clarity, only 
part of the refined triangulation is shown. Using the above notation and configuration at the 
extraordinary points, the local schemes can be described as follows. 
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R~ 

q0 ~ 

-uL 

g • I 

°.° 

(a) The geometric construction of the algorithm for n = 3. 

R~ 

V 

R~_ 2 ~ ~ - ~  

R~ 

q~ 

(b) The geometric construction of the algorithm for n _~ 4. 

Figure 3. 

CASE I. n---- 3. 

In this case, there are several choices that can be used. One of them is given by the following 

(cf. Figure 3a): 
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= p k  k pk+1 tV+(w1+t)P~+(Wl+w3)Q k+w2R~+wIPLI+waRLI+wl ,-I+w2R,-I, 

Qk+1 k (3.1) i =Pi, 

k k ~2R~ ~PL1 ~ ~3RL1 + 2~1PL1 +~3R~1 R-k+l = w2V + tP~ + w~Q~ + + + w l Q i + l  + 

where {w~} are recommended to be chosen by the cubic precision conditions (2.5) and t is a local 
tension control parameter. However, other choices are also acceptable if they produce smooth 
surfaces. 

CASE II. n > 4. 
In this case, the scheme is just the 10-point scheme, that is, formula (2.4) or (2.4a) is applied 

for the evaluation of every new point. Since in this case the scheme also produces surfaces (to be 
shown later in Section 4), it is not necessary to construct more complicated schemes at this vertex 
although other choices may also be used. In fact, a cubic precision scheme can be constructed 
but the the coefficients of the formulae are quite complicated. For simplicity, (2.6) is assumed in 
the following analysis. However, from the proof in the next section we know that the method is 
also valid for w3 # 0. Applying the scheme near the extraordinary point, we obtain the following 
subdivision formulae (Figure 3b): 

pk+l 1 V 1 k wRik 2wVik+l + wVik+2 _ 2wVik_l + wRik_l + wPik_2, = 2  + 2 P ~ +  - 
Qk+l k i = P~, (3.2) 

1 k 1 k 
= _ + wQi+l + wPi+2 + R/k+l - 2 w V  + ~Vi + wQi k 2IoR/k + ~Vi+l k k z0p/k_l 

where w is the local tension control parameter. 

REMARK 3.1. It will be seen later in our analysis that the key role in the construction of the 
local algorithms at the extraordinary points is the reproductivity of constants and the spectrum 
(contraction) conditions (4.1) and (4.3). 

3.2. M a t r i x  Rep re sen t a t i on  of  the  Algor i thm at  an  Ex t r ao rd ina ry  Po in t  

Writing (3.2) in a matrix form, we obtain: /:o!),.+1, 
o [QLII 

-[- ~ I W ~kSk_l_l/ 

( w2 0 

0 0 

w 0 

()v 

lo)) / p k + l ~  ~ 0 [ p k  

[ Q f + l )  = 1 0 / Q i  k 
\ Ri k+1 1 \ R~ 

W W2 

+ o o | Q L ~ / +  
0 \ R L 2 /  

+ o [QL2I + 
o \ R L 2 /  

.) o [QL1 
o \RL1 

(3.3) 

From this expression, we introduce the following basic matrices: 

1 

Co:-- 1 0 0 , C1 :-- 0 0 
1 1 ' 

(:Ooo). (!o!) C3:= 0 , C4:= 0 
0 0 

C2 "~--- 

(!o 
0 
0 i) (3.4) 
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and the local control point vectors: 

F k := (V, P0k, nk Dk uk nk uk pk nk R~ 1)T k > 0. (3.5) ~O, '~ 'O ,~ I ,~ I ,L '~ I ,  " ' ' ,  n - l , ' ~ n - 1 ,  - , - -  

Here, F k is a vector of length 3n + i. Thus, the subdivision process (3.2) at V can be written in 
a more compact form: 

F k+1 = A.F k, k = 0, 1, 2,... (3.6) 

where A is called the local subdivision matrix. More explicitly, the matrix is given in the form 

(a O) 
A := A t  " (3.7) 

Here, a is a vector of length 3n and A'  is a block circulant matrix defined by 

A '  = Bcirc (Ao, A1, A2,..., An-l) I Ao A1 A2 ... An- l )  
A,~ Ao A1 ... An-2 

:= An-1 An -4o ... An-3 

\ AI A2 A3 ... Ao 

(3.s) 

and {Ai} are some 3 x 3 matrices defined by {Ci}. More precisely, for n = 4, we have 

Ao := ~o, 

A1 :=C1, 
A2:=C2+C4, 
A3 : :  C 3 ,  

(3.9) 

and for n _> 5, we have 
Ao := CO, 

A1 :=C1,  

A2:=C2, 
(3.10) 

A~ :-- 0, i-- 3, 4 , . . . , n -3 ,  

An-2 := C3, 

an_l := C4 . 

Similarly, for n -- 3, using the same notation, the subdivision process (3.1) can also be written 
in the form (3.6)-(3.8), with the basic subdivision matrices given by 

io Ao:,X 0 0, A,:= 0 0 0  
"1.01 W 2  'UJl W 3  / \ 2Wl  0 W3 

(3.11) 

3.3. T h e  Algor i thm over Arbi trary  Networks  

Since the algorithm works on all triangulations, for scattered data with an arbitrary topology, 
it suffices if a triangulation can be formed from the data. A straightforward way to form a 
triangulation from the given scattered data with its topology (i.e., a polygonal network) is to 
add more edges such that all the polygons are partitioned into triangles. However, because the 
interpolant depends very much upon the initial triangulation of the data, much care should be 
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taken in forming the initial triangulation. In order to produce a proper interpolant, we propose 
the following strategies in the generation of the initial triangulation. 

A (Point insertion). New points near the centres of polygons can be introduced to form a 
local star-like triagulation for that polygon. 

B (Edge removal). Some edges of the given topology can be removed to form a better 
triagulation of the vertices. 

C (Optimum valency). The best value for the valency of each vertex is 6. Therefore, in the 
process of forming the triagulation, the valency of each vertex should be made close to 6. 
From experiments, a good range of valency is 5-8. 

D (Symmetric preserving). The symmetry of the data should be preserved. Thus symmetric 
formulae should be used in the generation of new points and edges. 

E (Shape preserving). Both the convexity and monotonicity of the data should be preserved. 
F (Qu~i-uniform). The triangulation is "quasi-uniform," that is, the sizes (i.e., both edges 

and areas) of adjacent triangles do not vary too much. 
G (Boundary considerations). For surface patches, boundary properties and conditions must 

be considered in the refinement process of the data so that the resulting interpolant satisfies 
the given boundary conditions. 

H (Iteration). If necessary, the above strategies A-F should be applied repeatedly and 
interactively to obtain good triangulations. 

An application of these strategies is shown in Example 3, Section 6. 

REMARK 3.2. Since the interpolant is almost determined by the initial triangulations and the 
initial data may contain errors, many things should be taken into account in order to construct 
a good interpolant or approximant. In paper [23], some methods and are proposed for the 
preprocessing of the initial data and its associated topology so that the modified data and topology 
can be used to produce better results. 

4. CONVERGENCE OF THE ALGORITHM 
OVER ARBITRARY NETWORKS 

In this section, we show that the algorithm generates smooth surfaces over arbitrary triangula- 
tions if the parameters {w~) are well chosen. The analyses of the scheme here are different from 
the previous analyses of the scheme over uniform data (cf. [16,19]). In fact, the analysis presented 
here is an extraordinary point analysis. The block-circulant matrix theory is used here. This 
technique is quite suitable for the nonuniform analysis (cf. [10]). 

4.1. Spectrum Properties of the Subdivision Matrix 

To study the C ° and C I properties of the scheme over arbitrary triangulations, it is sufficient 
to prove that the limit surface of the schemes is C o or C I at the extraordinary point since 
from [19] we know that the limit surface is C I everywhere else provided that the tension parameter 
satisfies (2.13). Since the eigenproperties of the subdivision matrix play a very important role 
in the convergence analysis (cf. [i0,16]), we first study the eigenproperties of the subdivision 
matrix A. It should be stressed that all the eigenvalues and their corresponding eigenvectors 
of A can be evaluated analytically since the matrix is a block-eirculant matr~, composed of 
3 × 3 submatrices; therefore these eigenvalues are roots of cubic polynomials which can be found 
explicitly by Cardino's formulae. 

Let the eigenvalues and their corresponding (generalized) eigenvectors of A be denoted by 
{A~, #i), where IA~I > IAiq-ll for all i. Then, by direct evaluations, we have the following results. 

THEOREM 4.1. The subdivision matr/x A defined by (3.7) has the following properties: 

AI = 1, #I = (1, 1,1,...,1)' (4.1) 

[A~[ < 1, i = 2 ,3 , . . . ,3n ,  3n + 1 
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provided that 

Furthermore, we have 

ff 

0.3125 < t < 0.6000, for n = 3, 

1 
-1-2 < w < O, for n > 4. 

(4.2) 

0 < A2 : A3 < A1, [Ai[< A2, i _> 4, d i m  s p a n { ~ 2 ,  ]~3} : 2 (4.3) 

0.5275 < t < 0.5500, for n = 3, 

1 (4.4) | 
- - - < w < 0 ,  ?orn> 4. 

12 

REMARK 4.2. The eigenvalue A2 is a double eigenvalue of A and has two linearly independent 
eigenvectors. This can be shown explicitly by using the block-circulant matrix theory or the 
Fourier Transform technique (cf. [10]). 

4.2. Convergence Analysis 

From the above results, it can be shown that  the limit surface has tangent plane continuity 
at the extraordinary point. Thus, the surface is smooth everywhere. Since the number of ex- 
traordinary points in a triangulation is a constant and the 10-point scheme is used at  all these 
regular (uniform) points, the C O and C 1 properties of the limit surface at these regular points 
are obvious. By using a pointwise analysis, the following C O and C 1 convergence results can be 
obtained. 

THEOREM 4.3. The limit surface is CO ff (4.2) holds. 

PROOF. If the conditions are satisfied, all the local control points in the vector F k will converge 
uniformly to the control point V as k approaches infinity. Hence the result follows from the 
corresponding C O convergence in [16,19]. Moreover, the control net sequence converges to the 
limit surface uniformly due to the fact that  the total number of extraordinary points is fixed. ] 

THEOREM 4.4. The limit surface is GC 1 (smooth) for nondegenerate data ff (4.4) holds. 

PROOF. It suffices to show the limit surface is smooth at the extraordinary point V. First, we 
consider any secant plane, 1-I s, i.e., a local linear interpolant to the limit surface at V, of the 
surface at the point V determined by three control points El ,  E~. and V on the control net ps  
at level s. Therefore, E~ and E~ will be in the local control point vector F k for some k provided 
E~ and E~ are closed to V enough. Without loss of generality, we may assume k -- s. Hence the 
unit normal of YI 8 can be written as 

N8 = (E~ - V) x (E~ - V )  (4.5) 
II(E  - v )  × - v ) l l 2 .  

From (3.5), (3.6) and (4.3), we have the following expansion: 

F s = V + s + s G4A~/z4 + . . .  (4.6) G2)~2~2 G3~3]23 -~- 

where {G~} E R 3 are determined by the initial data  and the tension parameters. Thus, E~ - V 
and E~ - V can be written in the following form: 

c2G2A~ + c3G3A~ + c4G4A~ + " "  (4.7) 

where {c~} are some constants determined by the eigenvectors. Therefore, for general initial data, 
the normal vector (4.5) becomes 

G2 x G3 f A4 ~s (4.8) 
N" = fIG2 × G3[[2 + O ~A"22] 

which converges uniformly to the constmlt unit vector Nv defined by 
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G2 X Ga 
N .  := ]IG2 x Gall2 (4.9) 

as E~ and E~ approach V, i.e., as k goes to infinity. 
For an arbitrary secant plane H k of the surface determined by pk, p~ and V on the surface 

close enough to V, because the algorithm is interpolatory, there exist two points E~, E~ k on the 
control net of level k such that 

II k = span ( q ~  - V,  q~  - V }  

and 
Q/k = ( 1 -  0~) E/k + 0~E'~, 0_<0~_< 1, i = 1 , 2  

for some control points {E~, E'~} at level k since the limit surface is continuous and the interpo- 
latory points are dense on the limit surface. Hence by using expansion (4.6) again and assuming 
that the initial data is a general data, we have 

Nk = (q~ - V)  × (q~ - v )  
]](Q~ - v )  × (Q~ - v)l]2 

+ v ) ×  + - v )  

+ - v ) ×  + - v ) ,  

-- IIG2 x G3112 + O ~22 

which converges uniformly to the same unit vector N .  defined in (4.9) which is the unit normal 
of the surface at V. This competes the proof. | 

REMARK 4.5. It can be shown that a necessary condition for the limit surface to have a unique 
tangent plane at the extraordinary point is that the local subdivision matrix has the properties: 

(i) ~1 = 1, #t = (1 ,1 , . . . ,  1)T; 
(ii) there exists No _> 3, such that 0 < A2 = A3 = A4 . . . . .  ANo < 1, 

d i m  span  {#2, #3 , . . . ,  #No} = 2; (4.10) 
(iii) IAil<A2, i = N 0 + l , . . . , 3 n + l .  

REMARK 4.6. Formulae (4.5), (4.8) and (4.9) can be used to estimate the unit normal directions 
of surface interpolants from scattered surface data at extraordinary points. It should be noted 
that these estimates depend not only on the parameters {wi} and the intial data, but also on the 
triangulation of the data. 

From the above expansion and the uniform convergence analysis, the following uniform conver- 
gence result can be concluded. This can also be obtained from the error estimates (5.6) and (5.6a) 
in the next section. 

THEOREM 4.7. The convegence of the control net sequence of arbitrary triangulations to the 
//m/t surface is uniform and simultaneous with the unit normal vector sequence; that/s,  the unit 
normal of the control net convergences uniformly to the unit normal of the limit surface. 1 

5. E R R O R  E S T I M A T E S  

In this section, we study the approximation properties of the surfaces generated by the algo- 
rithm. It is shown that over uniform triangulations, scheme (2.4a) with cubic precision has the 
power of approximation O(h 4) or otherwise it has a lower power of approximation O(h2). It 
is also shown that the approximation is simultaneous with their (partial) derivatives. However, 
over nonuniform triangulations, scheme (2.4a) with modifications (3.1) and (3.2) at extraordinary 
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points has only the power of approximation (9(h). This lower order of approximation is caused 
by the simplicity of the modification formulae (3.1) and (3.2). If linear precision modification 
formulae are used, then the the power of approximation will be (9(h2). 

First, by using the bivariate polynomial interpolation, the reproductivity of the 10-point 
scheme, and the Taylor expansion for bivariate functions, we can obtain the following result. 

THEOREM 5.1. Suppose F(u,v), u,v • R, is a regular and C 4 surfelce in R m, m >_ 3. Let 
P(u, v), u, v • it ,  be the limit surface generated by the lO-point scheme (2.4a)/rom the initial 
data (uniform) P( i , j )  := F(ihl,jh2), i • Z, 0 < hi, h2 < 1 with the parameters satisfying (2.5) 
and (2.13). Then, on any finite rectangle [a,b] x [c,a~, we have the following error estimate: 

IIF (hlU, h2v) - P(u, v)ll  < M4(F) h4 = O(ha), (5.1) 
- 24 

where 
h := max{hi, h2} 

and the number M4(F) depends only on the fourth-order partial derivatives o / F ( u ,  v). For gen- 
era/ parameters {wi} satisfying (2.13) but not necessarily satisfying (2.5), we have the foflowing 
lower order esthnate: 

IIF (hlu, h2v) - P(u,v)H~ < M2(F) h2 = O(h2 ) (5.2) 
- 2 

where the number M2(F) depends only on the second-order partial derivatives of F(u, v). Fur- 
thermore, for estimates (5.1) and (5.2), the corresponding approximations of the first-order partial 
derivatives are (9(h 3) and O( h), respectively, provided the parameters {w~} sat/sfy (2.13). 

PROOF. Without loss of generality, we assume a = c = 0, b = d = 1 since the algorithm is 
a local algorithm. From the local property of the scheme, we know that the patch P(u,v) ,  
0 < u, v _< 1 is completely determined by the points P~,j, i , j  = - 6 , - 5 , . . . ,  7. Let Q3(u, v) be 
any cubic polynomial which interpolates ten of the above points, say Pi,j, i , j  = O, 1,2, 3, j <_ i 
at the corresponding nodes (u, v) = (hli, h2j). Then from the Lagrange polynomial interpolation 
formula and the corresponding error representation formula, we have the following estimate over 
the square [0, 112: 

M4(F) h4 
IIQ3(u,v)-F(u,v)lloo _< 2(4)! "" = (9(h4), (5.3) 

where the number M4(F) depends only on the fourth-order partial derivatives of F(u, v), and an 
explicit upper bound of it is given by (5.5). 

Since the scheme reproduces cubic polynomial surfaces if (2.5) is satisfied, then using the error 
formula we have, over the domain [0, 1] 2, 

liP(u, v) - F (hlu, h2v) llo o 

-- IIQ3 (hlu, h2v) - F (hlU, h2v) + P(u, v) - Q3 (hlU, h2v)Hoo 

-< HQ3 (hlu, h2v) - F (hlU, h2v)lIc ~ + HP(u,v) - Qz (hlU, h2v)Hoo 

= IIQz(hlu, h 2 v ) - F ( h l u ,  h2v)lloo + max I I P ( i , j ) -  Q3(hli, h2j)Hoo 
--6~_i,j~_7 

:HQ3(h lu ,  h 2 v ) - F ( h l u ,  h2v)Hoo + max HF(hli, h 2 j ) - Q 3 ( h l i ,  h2j)Hoo (5.4) 
-6<_i,j<_7 

---- 2 IIQ3 (u, v) - F (hlu, h2v)llc ~ 

M4(F) ha < 

For general parameters, the scheme is only exact for linear surfaces, and therefore, by a similar 
argument, estimate (5.2) will follow. 
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For the error estimates of the partial derivatives, the results follow from the classical error 
estimates. This completes the proof. | 

REMARK 5.2. The finite conditions on the domain in Theorem 5.1 can be removed since the 
concerned schemes are all local schemes. Therefore both the approximation and convergence are 
local and uniform. 

REMARK 5.3. The approximation order of an interpolatory subdivision algorithm with a finite 
mask depends on its precision for polynomials. By Taylor's expansion, it can be shown that the 
approximation order of an interpolatory subdivision algorithm, either univariate or multivariate, 
is at least N + 1 if it reproduces polynomials of degree N. 

REMARK 5.4. Explicitly, the number M4(F) can be bounded by 

M4(F)_<2 .16 .7  4 F (4) oo (5.5) 

where [IF (4) [[oo denotes the maximum value of all the fourth-order directional and mixed partial 
derivatives of F(u, v). Similarly we have the following estimates for the bounds: 

M3(G) < 2.8.73 G (3) oo' M2(G) < 2.4.72 G (~) oo' M1 (G) < 2.7 G O) oo (5.5a) 

where it is assumed that G(u, v) has the required smoothness, and the number 7 comes from the 
local property of the algorithm. 

For nonuniform triangulations, using a similar proof, we can obtain the following weaker esti- 
mates. 

THEOREM 5.5. Suppose F(u, v), u, v E R, is a regular and C 2 surface in R m, m _> 3. Let 
P(u, v), u, v E It, be the limit surface generated by the lO-point scheme (2.4a) with modifica- 
tions (3.1) and (3.2) at the extraordinary points, from a nonuniform triagulation of the initial 
data F(u~, vi), i E Z on the surface with the parameters satisfying (2.13) and (4.4) at the regular 
points and extraordinary points, respectively. Then, on any finite rectangle [a, b] x [c, d], we have 
the following error estimates: 

dist (F - P) < M2(F) h2 + MI(P)h = O(h), 
- 24 

dist  (NF - Np) _< o(h), 
(5.6) 

where the d/stant norm is defined as 

[ 
dist  (F - P ) : =  sup ~inf IF(u, v) - P(r, s)l 7,  

J 

and NF, Np are the unit normal vectors of the surfaces F and P, respectively, and h is the size 
of the triangulation (mesh size) and the number M2(F) depends only on the second-order partial 
derivatives of F(u, v), and M1 (P) depends only on the first-order partial derivatives of P (u, v). 

PROOF. The proof is similar to the proof of Theorem 5.1 but we can only introduce a linear local 
interpolant Ql(U, v) instead of the cubic local interpolant Q3(u, v). The first term (M2(F)/24) h 2 
in estimate (5.6) comes from the fact F(u, v) and Ql(U, v) are C 2 surfaces, and the second term 
MI(P)h in the estimate comes from the fact P(u,v) is only C 1 surface. 

The estimate for the unit normal vector comes from the Taylor expansion of the surfaces with 
local parameterizations, interpolation property of P and the convergence result of Theorem 4.4. 

The distant norm dist  (F - P) is used here since for nonuniform triangulations, the parame- 
terizations of the surfaces F(u, v) and P(u, v) are quite different. | 
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The above weaker estimates for nonuniform triangulations can be improved which requires the 
following lemma. 

LEMMA 5.6. The lO-point scheme (2.4a) can be modified properly at the extraordinary points, 
so that it reproduces linear or even cubic surfaces from any triagulations of uniform data. 

PROOF. In fact, the refinement formulae at the extraordinary points can be such derived that 
they produce the same points as a local cubic or linear interpolant to the data points if the 
same parameterization is used. Therefore, using such a modification at the extraordinary points, 
the algorithm will reproduce cubic or linear surfaces from any triangulations of uniform data. 
It should be noted that the cubic precision local algorithm is quite complicated, and thus it is 
seldom used in practice. | 

From this lemma and a similar argument to the proof of Theorem 5.1, we can obtain better 
error estimates for well modified algorithms over arbitrary triangulations. 

THEOREM 5.7. Suppose F(u,v), u,v E It, is a regular and C 4 surface in R m, m > 3. Let 
P(u,v) ,  u,v  E It, be the limit surface generated by the lO-point scheme (2.4a) with cubic or 
linear modifications at the extraordinary points, from a nonuniform triangulation of the initial 
data F(u~, vi), i E Z on the surface with the parameters satisfying (2.13) and (4.4) at the regular 
points and extraordinary points, respectively. Then, on any finite rectangle [a, b] x [c, 4 ,  for the 
cubic precision modification we have the following error estimate: 

dist  (F - P)  < M4(F_____)) h4 = O(h4), (5.7) 
- 24 

and for the linear precision modification we have the following error estimate: 

dist  (F - P)  < M2(F____)) h2 = O(h2), (5.8) 
- 2 

where h is again the size of the triangulation (mesh size), and the numbers Ma(F) and M2(F) 
have similar meanings as in Theorems 5.1 and 5.5. Furthermore, for estimates (5.7) and (5.8) 
the corresponding approximations of the unit normal vector are O(h 3) and O( h ), respectively, 
provided the parameters {w~} satisfy (2.13) and (4.4). | 

6. CONCLUSIONS A N D  E X A M P L E S  

The 10-point interpolatory subdivision algorithm for surfaces is generalized for smooth surface 
interpolation over arbitrary networks, and its convergence properties over nonuniform triangula- 
tions is studied. In the convergence analysis, the local subdivision matrix analysis is used and 
it is proved that the algorithm produces smooth surfaces over arbitrary triangular networks if 
the shape parameters are chosen properly. It is also shown that the power of approximation 
using the algorithms is O(h2), and it can be made much smaller if the data is accurate and the 
shape control parameters are well chosen. Numerical examples have shown that generally the 
subdivision method produces quite satisfactory interpolants. 

The analyses of the scheme here are different from the uniform analyses discussed in our 
previous work about the scheme over uniform data. In fact, the analysis presented here is a 
pointwise analysis and matrix approach is applied here. This technique is quite suitable for the 
nonuniform analysis. 

One problem that still remains unsolved is the optimum choice of the parameters and the initial 
triangulation of the scattered data such that the generated surface has some desired properties 
such as convexity and minimum energy. 

The smoothing process of the algorithm for surface interpolation over nonuniform data is shown 
by the following graphical examples. 
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k=O. k = l .  

k = 4 .  k = 5 .  

Figure 4. The control nets for k = 0, 1, 4, 5 generated by the algorithm for n = 5. 

EXAMPLE 1. In this example, 6 points in R 3 are given and the initial triangulation is formed 

by 5 triangles in a star-like configuration shown in Figure 4 for k = 0. The  initial triangulation 
is nonuniform since the center point is of valency 5, i.e., n -- 5. The subsequent control nets for 

k -- 1, 4, 5 are also shown in Figure 4. For the computat ion of the refined points, some boundary  
scheme is used to provide near-the-boundary points, and the control parameters  are given by the 

following special cubic precision choice: 

1 
Wl = 16' w2 = -2Wl,  w3 = 0. (6.1) 

EXAMPLE 2. In this example, 8 points in 1% 3, which in fact are the vertices of the unit cube, are 
given and the initial triangulation is formed by 12 triangles tha t  form a configuration shown in 
Figure 5 for k = 0. The triangulation is nonuniform since all the 8 points are not of valency 6, 
i.e., either n = 4 or n = 5. The subsequent control nets for k = 2,4,5 are also shown in Figure 5. 
For the computat ion of the refined points, the control parameters  are given by the following: 

1 1 
Wl = - ~ ,  w2 = - 2 w l ,  w3 - 30" (6.2) 
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k=0.  k=2.  

k=4 .  k = 5 .  

Figure 5. The interpolants to the cube produced by the algorithm at different levels. 

EXAMPLE 3. Similar to Example 2, the given data  are the 8 vertices of the unit cube in R 3 with 
all the 12 edges of the cube. The initial triangulation of the data is formed by introducing 6 
more "face-points" which are obtained by using the formula (2.4) with a proper choice of the 
parameters. The 6 points are the symmetries of the point 

(00 ) 
Thus, an initial triangulation with 14 vertices, 24 triangles form a configuration shown in 

Figure 6 for k = 0. The triangulation is nonuniform since 6 of the 14 points are not of valency 6, 
in fact, n = 4. The subsequent control nets for k = 1, 2, 3 are also shown in the figure. The 
following control parameters are used in the computations of the refined points: 

1 1 
W l  ----- - -  2""5 '  W2 = --2Wl, W3 -- 50" (6.4) 

It  is obvious that  this interpolant is better than that  obtained in Example 2. 
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k=O. k = l .  

k = 2 .  k = 3 .  

Figure 6. The interpolants to the cube data at different levels in Example 3. 
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