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Human isolates of Aeromonas possess Shiga

toxin genes (stx1 and stx2) highly similar

to the most virulent gene variants of

Escherichia coli
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Abstract

Strains producing Shiga toxins, encoded by stx1 and stx2 genes,

can cause diarrhoea, haemorrhagic colitis and haemolytic uremic

syndrome. PCR screening of 80 clinical Aeromonas strains

showed that 19 were stx1-positive and only one was positive for

both stx1 and stx2. PCR bands were very faint for some strains

and negative results were obtained after subculturing. The
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obtained sequences of Aeromonas stx1 and stx2 genes were

highly similar to those of the most virulent stx gene variants of

Shiga toxin-producing Escherichia coli. These results may lead to

a better understanding of the potential pathogenicity and viru-

lence mechanisms of Aeromonas.
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ències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21; 43201
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Shiga toxins (Stx1 and Stx2) are important virulence factors

in the pathogenesis of gastroenteritis, hemorrhagic colitis

and haemolytic-uremic syndrome (HUS) [1–3]. They are usu-

ally encoded in the genome of bacteriophages (highly mobile

elements) that play a role in Stx expression and horizontal

gene transfer, leading to the emergence of new stx-variants

or stx-producing pathogens [4]. Several variants of stx1 and

stx2 genes have been recognized [2,3], with stx2 (the proto-

type) and stx2c being considered the most important because

they are more frequently associated with HUS than stx1 and

stx2dactivatable [2,3,5]. The stx genes show instability in vivo

and in vitro as a result of the mobility of stx-phages [4,6],

leading to the loss of stx genes after subculturing and/or

infection [1,4,6–8].

Despite Shiga toxins being typical of Shigella dysenteriae

and Shiga toxin-producing E. coli (STEC), they have also been

described in species of other genera, including Aeromonas [7–

12]. In Aeromonas, the presence of stx1 gene has only been

detected in five strains [11,12] but never sequenced, and it is

not known whether they have the stx2. Despite that, several

cases of HUS associated with Aeromonas have been reported

[13]. The present study investigates the stx genes (stx1 and

stx2) in 80 human Aeromonas strains by PCR and sequencing.

All investigated strains (33 from extra-intestinal infections

and 47 from diarrhoea) were genetically identified [14]. The

strain of Aeromonas veronii bv. sobria associated with a case

of HUS [13] was also tested. DNA was extracted from single

colonies grown on sheep blood agar (24 h at 30�C) using

InstaGene� Matrix (Bio-Rad, Hercules, CA, USA). Separate

PCRs for the detection of stx1 (350 bp) and stx2 (406 bp)

with primers EVT-1&2 and EVS-1&2, respectively (TaKaRa

Biomedicals, Tokyo, Japan) with positive and negative

controls were employed [11]. PCR products were purified

using GFX PCR DNA and the Gel Band Purification Kit

(Amersham Biotech, Little Chalfont, UK) and sequenced on

both strands using the TaKaRa primers (3.2 pmol/lL) in an

ABI PRISM 310 genetic analyzer (Applied Biosystems, Foster

City, CA, USA). Using CLUSTAL W, the stx1 and stx2 obtained

sequences were independently aligned with those available in

the GenBank to establish their similarity. Their genetic rela-

tionships were graphically represented as phylogenetic trees

using the neighbour-joining method, as described previously

[14].

Nineteen of the 80 Aeromonas strains showed a band of

the expected size (350 bp) for the stx1 and one of them also

the band (406 bp) of stx2. However, in 15 of the 19 strains,

the stx1 bands were faint as was also the stx2 band (Fig. 1a,

b). The strain of A. veronii bv. sobria associated with a case

of HUS [13] did not show even faint bands. To verify the

results, the same DNA of the 19 stx1-positive strains was

evaluated again under identical conditions and only four

(875c, 883c, 885c and 887c) strains were positive for the

stx1. Negative results corresponded with strains showing

faint bands in the first analysis. The 19 Aeromonas strains

were grown again from the glycerol stock and stx1 was

amplified from a new DNA extraction. The results obtained

reproduced the initial finding, with the appearance of the

same 15 strains with faint stx1 bands and four with intense

bands. The PCR for the stx2-positive strain (819c) was per-

formed five times from four different DNA extractions from

the same frozen stock and the expected band (406 bp) was

only observed on two of five (40%) occasions as a faint band

(Fig. 1c). These faint bands can be explained by the number

of copies of stx genes in the template DNA [7] and their loss

after subculture or infection agrees with previous findings

[1,4,6–8], and may also explain the lack of amplification in

the HUS isolate of A. veronii bv. sobria.

Snowden et al. [12] detected stx1 in only one environmen-

tal strain of A. veronii using other primers [15]. We evaluated

the same primers, although the expected 121 bp band of

stx1 could not be amplified in any of the 19 stx1-positive

strains.
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We found more stx1-positive Aeromonas strains (23.75% 19/

80) than in previous studies (10.25% 4/39) [11] and (9.1% 1/

11) [12]. They were predominantly encountered in Aeromonas

caviae (42.1% 8/19), Aeromonas hydrophila (31.6% 6/19) and

A. veronii (10.5% 2/19), which are species commonly associated

with gastroenteritis and even with a dysentery-like syndrome

and HUS [13,16,17]. The only stx1-stx2-positive strain (819c)

belonged to A. caviae and was isolated from a urine sample.

Sequences (350 bp) of stx1 of the four Aeromonas strains

with intense bands were identical and showed 99.71% simi-

larity (one different nucleotide) to the corresponding region

of this gene of E. coli O157:H7, whereas a 99.51% similarity

(two different nucleotides) was shown for the stx2 sequence

of strain 819c (406 bp). The analysis showed that our stx1

sequences clustered with those from S. dysenteriae, Shigella

sonnei, E. coli O157:H7 and other STEC human isolates

(Fig. 2a), whereas A. caviae stx2 sequence clustered (Fig. 2b)

with those of the most virulent human variants (stx2 proto-

type and stx2c) that are commonly associated with HUS

[2,3]. This may suggest an equally potential role of both

genes in Aeromonas and horizontal gene transfer [4] among

those microorganisms, which is not surprising because they

inhabit the same environments.

To determine whether the observed instability of stx1 was

a result of its extra-chromosomal DNA location, this DNA,

from strains 535c representative of strains with a faint band,

and 887c with a strong band, was extracted using Ultraclean

6 minute mini plasmid prep kit (Mo Bio, Carlsbad, CA, USA).

A single band (approximately 3.2 kbp) of extra-chromosomal

DNA was obtained from both strains. This DNA was used as

a template for stx1-PCR amplification [11] and a band of the

expected size (350 bp) for stx1 as intense as the positive

control (E. coli O157:H7) was only observed from strain

535c (Fig. 1c). This indicated that, at least in strain 535c and

in the four strains reported by Haque et al. [11], the stx1 is

not chromosomally encoded. These results corroborate

the mobility of the stx-phages that can be lost by subculturing

[4].

To determine the production of Stx1 and Stx2 toxins by

the PCR positive strains, a rapid immunochromatographic

test (Duopath Verotoxin test; Merck, Darmstadt, Germany)

was used. Only strains 885c (which showed an intense stx1

band by PCR) and 535c (with a faint PCR band) showed a

weak Stx1 signal, although none of the strains showed a Stx2

positive reaction. In conclusion, 10.53% (2/19) of the

Aeromonas strains that possessed stx1 produced the Stx1

toxin. Similar values (using the same test) have been

reported from STEC strains (6.7% produced Stx1 and 6–7%

produced Stx2) from human wastewater [18]. However,

the results obtained in the present study could be influenced

by the fact that this test is specifically designed for STEC

toxins.

M

(a) 

(b) (c)M 1 2 3 C– M 1 C+ C–

5 6 7 8 C MM 1 2 3 4 C

FIG. 1. Examples of PCR amplifications

demonstrating the presence of stx genes

in Aeromonas strains. 25 lL of PCR

product electrophoresed in 1% agarose

gel. (a) stx1 strong and faint bands. Lane

1, 875c; lane 2, 883c; lane 3, 885c; lane

4, 887c; lane 5, 194c; lane 6, 361c; lane

7, 191c; lane 8, 24c. (b) stx2 faint bands.

Lane 1, 875c; lane 2, 819c; lane 3, 819c

(duplicate PCR product). (c) stx1 ampli-

fied from plasmid DNA. Lane 1, 535c.

Lane C+, positive control Escherichia coli

O157:H (CECT 4076). Lane C–, nega-

tive control (Milli-Q water as template

DNA; Millipore, Billerica, MA, USA).

Lane M, Ladder 100 bp. Aeromonas cavi-

ae strains: 535c, 819c, 875c, 883c and

885c; Aeromonas hydrophila strains: 24c,

191c, 194c and 887c; Aeromonas salmoni-

cida strain 361c.
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To our knowledge, this is the first report to provide

Aeromonas stx1 and stx2 sequences that establish their

high similarity with those of STEC. This is of particular

importance because these genes have been poorly studied

in Aeromonas and they may have a role in inducing

diarrhoea and HUS.

The sequences of the stx1 and stx2 genes have been

deposited in GenBank under accession numbers GU130282-

GU130285 and GU130286, respectively.
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