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Abstract

We consider the damped-driven KdV equation:

0 — Vityx + tyyx — Ouuy = /v 0(t,x), xeSl, /udxz/ndxzo,

where 0 < v < 1 and the random process n is smooth in x and white in z. For any periodic function u(x) let I = (1, I, ...) be
the vector, formed by the KdV integrals of motion, calculated for the potential u(x). We prove that if u(z, x) is a solution of the
equation above, then for 0 < ¢ < v~ ! and v — 0 the vector I(t)=U1(u(t,-)), I(u(t,")),...) satisfies the (Whitham) averaged
equation.

© 2007 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons I’équation Kdv avec amortissement :

W — Vitxx + txxx — Ouny = /v (1, x), xeSl, /deE/ndeO,

ol 0 < v < 1 et le processus aléatoire 7 est régulier en x et blanc en 7. Pour toute fonction périodique u(x), soit I = (I1, I, ...)
un vecteur, de composantes les intégrales KdV du mouvement correspondant au potentiel u(x). Nous démontrons que si u(z, x)
est une solution de 1’équation ci-dessus, alors pour 0 < ¢ < vl et v— 0, le vecteur 1(t) = (I1 (u(t, ), L (u(t,-)), ...) vérifie
I’équation moyenne de Whitham.
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0. Introduction

It is well known since the pioneer works of Novikov and Lax that the KdV equation,
U+ Uypy — Ouu, =0, (0.1)

defines an integrable infinite-dimensional Hamiltonian system in a space H” of 2w -periodic Sobolev functions of
order p > 0 with zero meanvalue. It means that KdV has infinitely many integrals of motion I, I, ..., which are non-
negative analytic functions on H?, and for any non-negative sequence / = (I, Iz, ...) the set Ty = {u: I;(u) = 1; Vj}
is an analytic torus in H” of dimension |J (/)| < 0o, where J is the set J = {;j: I; > 0}. Each torus 7; carries an
analytic cyclic coordinate ¢ = {¢;, j € J(I)}, and in the coordinates (/, ¢) the KdV-dynamics takes the integrable
form:

I=0, o=w{). 0.2)

The frequency vector W analytically depends on /. See [17,11] and Section 2 below.

Importance of these remarkable features of KdV is jeopardised by the fact that KdV arises in physics only as an
approximation for ‘real’ equations, and it is still unclear up to what extend the integrability property persists in the
‘real’ equations, or how it can be used to study them.

The persistence problem turned out to be difficult, and the progress in its study is slow. In particular, it was
established that small Hamiltonian perturbations of KdV do not destroy majority of time-quasiperiodic solutions, cor-
responding to (0.2) with |J (I)] < oo (see [14,11]), but it is unknown how these perturbations affect the almost-periodic
solutions (]J (I)| = 00), and whether solutions of the perturbed equations are stable in the sense of Nekhoroshev.

Probably it is even more important to understand the behaviour of solutions for KdV, perturbed by non-Hamiltonian
terms (e.g., to understand how small dissipation affects the equation). The first step here should be to study how
a v-perturbation affects the dynamics (0.2) on time-intervals of order v~'. For perturbations of finite-dimensional
integrable systems this question is addressed by the classical averaging theory, originated by Laplace and Lagrange.
During more than 200 years of its history this theory was much developed, and good understanding of the involved
phenomena was achieved, e.g. see in [1]. In particular, it is known that for a perturbed finite-dimensional integrable
system,

I=vfl,p), ¢=WI)+vgl,g), v<l, (0.3)

where I € R", ¢ € T", on time-intervals of order v~ the action (t) may be well approximated by solutions of the
averaged equation:

I=v(f)D), (f)(I)Z/f(I,gt))d(p, 0.4)
T}‘l

provided that the initial data (7 (0), ¢(0)) are typical. This assertion is known as the averaging principle.

The behaviour of solutions of infinite-dimensional systems (0.3) on time-intervals of order > v~! is poorly
understood. Still applied mathematicians believe that the averaging principle holds, and use (0.4) to study solutions
of (0.3) with n = oo. In particular, if (0.3) is a perturbed KdV equation, written in the variables (I, ¢), then (0.4)
is often called the Whitham equation (corresponding to the perturbed KdV). The approximation for /(¢) in (0.3)
with 0 <1 < v~ ! by 1(r), satisfying (0.4), is called the Whitham averaging principle since in [19] the averaging is
systematically used in similar situations. In so far the Whitham averaging for the perturbed KdV equation under
periodic boundary conditions was not rigorously justified. Instead mathematicians, working in this field, either
postulate the averaging principle and study the averaged equations (e.g., see [5] and [3]), or postulate that the solution
regularly—in certain sense—depends on the small parameter and show that this assumption implies the Whitham
principle, see [12].

The main goal of this paper is to justify the Whitham averaging for randomly perturbed equations.

Let us start with random perturbations of the integrable system (0.2) with I € R", ¢ € T", where n < oo.
Introducing the fast time t = vt we write the perturbed system as the Ito equation:

dl = Fdr + o dB;,
dp = (v'W(I)+ G)dr + gdB;. (0.5)
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Here F, G, o and g depend on (I, ¢), ; is a vector-valued Brownian motion and o, g are matrices. It was claimed
in [9]" and proved in [7] that (under certain assumptions, where the main one is non-degeneracy of the diffusion
and of the frequency-map W) when v — 0, the solution /() converges in distribution to a solution of the averaged
equation,

dI = (F)(I)dt + (o)(I)dB, (0.6)

where (F') is defined as in (0.4) and the matrix (o')(/) is a symmetric square root of the matrix f Tn oo'de.
Now let us consider a randomly perturbed (‘damped-driven’) KdV equation:

0 — Vilgy + Uyprr — Ouny = A/v1(t, ). 0.7)

As before, x € S! and f udx = f ndx = 0. The force n is a Gaussian random field, white in time ¢:

ad
n= 5 Z bsBs(t)es(x),
SEZO
where Zg = Z \ {0}, B;(¢) are standard independent Wiener processes, and {ey, s € Zp} is the usual trigonometric
basis:
cossx, s§>0,
es(x) = (0.8)

sinsx, s <0.

Concerning the real constants by we assume that
by < Cpls|™ Vm,s (0.9)
with some constants C,, (so n(t, x) is smooth in x), and
bs #0 Vs. (0.10)

The factor /v in front of the force n(z, x) is natural since under this scaling solutions of (0.7) remains of order 1
as t — oo and v — 0. Eq. (0.7) defines a Markov process in the function space H”. Due to (0.10) it has a unique
stationary measure. Let u" (¢, x), t > 0, be a corresponding stationary in time solution for (0.7); or let " be a solution,
satisfying,

u"(0, x) = up(x), 0.11)

where ug(x) is a non-random smooth function. In Section 1 we prove that all moments of all Sobolev norms
¥ (¢, -)||m are bounded uniformly in v > 0 and 7 > 0. Let us write u"(t) as (I"(t), ¢"(t)). These processes satisfy
the infinite-dimensional equation (0.5), so by the just mentioned estimates the processes {/"(-), 0 < v < 1} form a
tight family, and along suitable sequences v; — O we have a weak convergence in distribution,

1V () — 1°0), (0.12)

where, according to the type of the solutions u”(z), the limiting process I°() is either stationary in , or satisfies
1°0) = 1 (uo ().
The main results of this work are the following two theorems, proved in Section 6:

Theorem A. The limiting process 1°() satisfies the Whitham equation (0.6), corresponding to the perturbed KdV
equation (0.7). It is non-degenerate in the sense that for any T > 0 and each k > 1 we have P{I,?(r) =0}=0.

Theorem B. If the processes u(t) are stationary in t, then for any t > 0 the law of the pair (I'/(t), ¢V (1))
converges to the product measure ¢° x dg, where q° is the law of 1°(0) and dg is the Haar measure on T™.

' The main theorem of [9] deals with the situation when the unperturbed system is a stochastic equation with a non-degenerate diffusion for ¢,
but in its last section it is claimed that the ideas of the proof also apply to (0.5).
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The proof is based on the scheme, suggested by Khasminskii in [9], see also [6] and [18]. It uses the estimates
from Section 1 and more sophisticated estimates, obtained in Sections 4 and 5. Namely, we use crucially Lemma 4.3
(Section 4) and Lemma 5.2 (Section 5). In the former coupling arguments are evoked to prove that for any k probability
of the event {/ ,f (t) < 8} goes to zero with §, uniformly in v and ¢. This is important since (0.5) is an equation for /
in the octant {7 | I; > 0 Vj} which degenerates at the boundary {/ | I; = O for some j}. In the latter we examine the
random process W™ (t) = W™ (IV(t)), where W™ is the vector, formed by the first m components of the frequency
vector W. Exploiting Krylov’s results from [13] we estimate the density against the Lebesgue measure of the law of
the averaged vector 51 fos W™ (1" (t))dz, s ~ 1. We use this estimate to show that with probability close to one the
components of the vector W™ (t) are non-commensurable, so the fast motion (d/dr)¢” = v~!W" (1) is ergodic on
the torus T C T°, for any m. This is a crucial step of the proof of Theorem A. Our proof of Lemma 5.2 is ‘hard’ in
the sense that it uses heavily the analyticity of the frequency map W (7).

The arguments above are applied to the perturbed KdV equation, written in the Birkhoff normal form (Eq. (2.1) in
Section 2). They apply as well to perturbations of other Birkhoff-integrable equations if their solutions satisfy good
a priori estimates uniformly in the small parameter, and the corresponding transformation to the Birkhoff coordinates
is smooth and is polynomially bounded at infinity. In the KdV case which we consider, half of the required bounds
on the transformation is established in the recent paper [10]. We are certain that the remaining half can be obtained
similarly, but do not prove them in this work, see Theorem 2.3 in Section 2.

The Whitham equation (0.6), corresponding to the perturbed KdV (0.7), is a complicated infinite-dimensional
stochastic differential equation. Theorem A implies that for any smooth initial data 7 (0) it has a weak solution, but
we do not know if this solution is unique. We point out that, firstly, if (0.6) has a unique solution and the process
uV (t) satisfy (0.11), then the law of the limiting process I° is independent of the sequence {v i}, and the convergence
(0.12) holds for v — 0. Secondly, if (0.6) has a unique stationary measure, then a similar assertion holds for stationary
solutions u" (7).

The inviscid limit. Let us consider the stationary solutions of Eq. (0.7) in the original time 7. The a priori estimates
from Section 1 imply that this family is tight in C([0, T]; H?) for any 7 > 0 and any p > 0. Therefore, along
sequences v; — 0, we have convergence in distribution,

u’i() = u®) (0.13)

(the limiting process u°(f) a priori depends of the sequence {v 1. The arguments, applied in Section 10 of [15] to the
randomly perturbed Navier—Stokes equation (0.14) also apply to (0.7). They show that a.e. realisation of the limiting
process u%(t, x) is a smooth solution of the KdV equation (0.1). In particular, the law uo of the random variable
u%(0,-) € H? is an invariant measure for the dynamical system which KdV defines in H”. But KdV has infinitely
many integrals of motion; so it has a lot of invariant measures. How to distinguish among them the measure 10?2
Noting that u"(¢);—0 = u"(t)r=0, we apply Theorem B to get that the isomorphism u(-) — (I, ¢) transforms MO to
the measure ¢° x dg. In particular, if (0.6) has a unique stationary measure, then the measure ;° is uniquely defined,
and the convergence (0.13) holds for v — 0.

This discussion shows that in difference with the deterministic situation, averaged randomly perturbed equations
describe not only behaviour of solutions for a pre-limiting equation on time-intervals of order v™!, but also its as-
ymptotic in time properties. Indeed, under the double limit ‘first # — oo, next v — 0’, the distribution of any solution
converges to a measure, simply expressed in terms of a stationary measure of the averaged equation.

The Eulerian limit. The perturbed KdV equation (0.7) is a reasonable model for the randomly perturbed 2D NSE:
w—vAu+ W -VYu+Vp=Jvni,x), xe T?,
divu =0, /udxz/ndxzo, (0.14)
obtained by replacing in (0.14) the 2D Euler equation (0.14),—9 (which is a Hamiltonian PDE with infinitely many

integrals of motion) by KdV. Under restrictions on the random force n(t, x), similar to those imposed on the force
in (0.7), Eq. (0.14) (interpreted as a Markov process in the space of divergence-free vector fields u(x)), has a unique
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stationary measure, see in [15]. Let (u"(¢), p¥(t)) be the corresponding stationary solution. Then, along sequences
v; — 0, the convergence in distribution holds:

(" (), p"i () = (°C), p°C)), (0.15)

where the limiting process (u°, p°) is stationary in time, is sufficiently smooth in ¢ and x, and a.e. its realisation
satisfies the free Euler equation (0.14),—¢. Accordingly, the law w1® of u°(0) is an invariant measure for the dynamical
system, which the Euler equation defines in the space of divergence-free vector fields. To study the measure u° (in
fact, the set of measures 10, since it is possible that now the limit depends on the sequence {v i}), is an important
problem in (mathematical) 2D turbulence. The problem, addressed in this work, may be considered as its model.

Agreements. Analyticity of maps B; — B between Banach spaces By and Bj, which are the real parts of complex
spaces Bf and Bj, is understood in the sense of Fréchet. All analytic maps which we consider possess the following
additional property: for any R a map analytically extends to a complex (6 > 0)-neighbourhood of the ball {|u|p, < R}
in Bf. When two random variables are equal almost sure, we usually drop the specification “a.s.”.

Notations. x4 stands for the indicator function of a set A (equal 1 in A and equal O outside A). By x(¢) we denote
various functions of ¢ such that » (1) — 0 when ¢ — 00, and by x..(¢) denote functions x(¢) such that »(¢) = o(t™N)
for each N. We write x(¢t) = x(¢; R) to indicate that »(¢) depends on a parameter R. For a measurable set Q C R”
we denote by | Q] its Lebesgue measure.

1. The equation and its solutions
We denote by H the Hilbert space,
H= {u € Lz(Sl): /udx = 0}

with the scalar product (u, v) = % fozn u(x)v(x)dx. Then {e;s, s € Zo} (see (0.8)) is its Hilbert basis. We set H™ to
" 3Mun1/2
E)xm E) axﬂl > .

be the mth Sobolev space, formed by functions with zero mean-value, and given the norm ||u||,, = (
We write the KdV equation as

u+Vwu)=0, V@)=uy —6uuy, (1.1)
and rewrite Eq. (0.7) as
i—vitee + V() =/vn(t, x). (1.2)

It is well known that a dissipative nonlinear equation in one space-dimension with a white in time right-hand side
has a unique strong solution if the equation’s solutions satisfy sufficiently strong a priori estimates. In Appendix A we
show that any smooth solution of (0.7) with a deterministic initial data,

u(0) = ug, (1.3)
where ug € H™, m > 1, satisfies the following estimates:
Eeo It < maX(Eeauwmng’ 2627 50), (1.4)
E|u()]|?, < max(4E[u()|2, Cl,), (1.5)
E|u®)]* < C(luolme, Busi,m, k). (1.6)

Heret >0,k eNand o < (2maxb3)_l.
Accordingly, we have the following result:

Theorem 1.1. For any deterministic ug € H™, m > 1, the problem (0.7), (1.3) has a unique solution u(t, x). It satisfies
estimates (1.4)—(1.6).
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Due to assumption (0.10), Eq. (0.7) has a unique stationary measure u, and any solution converges to [, in
distribution. For the randomly forced 2D NSE equation this result now is well known (e.g., see in [15]). The proofs
for Eq. (0.7) are simpler and we do not discuss them.

Let ug(t, x) be a solution of (0.7), (1.3) with ug = 0. Since ’D(ug(t)) — Ly, then Theorem 1.1 and the Fatou lemma
imply:

Theorem 1.2. The unique stationary measure |1, satisfies the estimates:

/eU“uH%Mp(du) <Cy <00 Vo< (Zmaxbsz)—l,
H

/Ilullfnuu(du) <Cmi <00 Vm. k.
H

2. Preliminaries on the KdV equation

In this section we discuss integrability of the KdV equation (1.1).
For r > 0 let us denote by A" an abstract Hilbert space with the basis {f;, j = &1, £2, ...} and the norm | - |,

where
2 <142 2 2
|v|r=21 r(vj+v_j) f0rv=Zvjfj.
jz1 J€ZLy

We denote v; = (Ulifj), and identify a vector v=> v j fj € " with the sequence (vi, v2,...).

Theorem 2.1. (See [11].) There exist an analytic diffeomorphism ¥ : H — h° and an analytic functional K on h° of
the form,

1

K(Zvjfj) =K1, Ip,...), Ij = E(v?"‘v%j)’

with the following properties:

(1) ¥ defines, for any m € N, an analytic diffeomorphism ¥ : H™ — h™,
(2) d¥(0) is the map H™ 3 Y ugses v 3 |s| ™12, f; € h™;
(3) acurve u(t) € C1(0, T; H) is a solution of (1.1) if and only if v(t) = ¥ (u(t)) satisfies the equations:

vj = —sign(j)v_;W;(1, I, ...), €y, 2.1)

where W) = %forl: 1,2,....
Corollary 2.2. If u(t) is a solution of (1.1) and ¥ (u) = v =) _ vy f, then

RS S I _
Ik(t)_z(vk-i—v_k)(t)_const Vk=1,2,.... (2.2)

If v € A", then the vector I = (I, I, ...) belongs to the space
hh = [1: e =23 14011 <oo}.
In fact, I € h§+, where
e={1en: 1; >0V}

Amplification. The function K in Theorem 2.1 is analytic in h(} - That is, it analytically extends to the vicinity of
this set in the space h(l).
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The quantities I, I, ... are called the actions. Each vector v; can be characterised by the action /; and the angle:

V—j
¢; = arctan —-.
Vj
We will write v = (I, ¢), where ¢ = (¢1, ¢2, ...). The vector ¢ = (¢1, 2, ...) belongs to the torus T*°. We provide
the latter with the Tikhonov topology, so it becomes a compact set.

The functions u — v (1), k € Zo, form a coordinate system on H. They are called the Birkhoff coordinates, and
the system of Eqs. (2.1)—the Birkhoff normal form for the KdV equation. The normal forms is a classical tool to study
finite-dimensional Hamiltonian systems and their perturbations locally in the vicinity of an equilibrium (see [16, §30]).
For all important finite-dimensional systems the normal forms do not exist globally. In contrast, Theorem 2.1 shows
that the KdV equation is an infinite-dimensional Hamiltonian system which admits a normal form globally in the
whole space H. To take all advantages of this normal form we will need some information about asymptotic properties
of the transformation ¥ (#) when u — o0:

Theorem 2.3. For m =0, 1, ... there are polynomials P,, and Q,, such that
/e @)], <Pu(lulm). j=0.1,2,
and
[d/ e, < Om(lvlm). j=0.1,
forall u,v and all m > 0. Here for j > 1 |d/W|,, is the norm of the corresponding poly-linear map from H™ to h'™,

and similar with ||d7 & =1,

Proof. The estimates for the norms |¥ ()|, and |¥ 1 (v)||,, follows from Theorem 2.1 in [10].2

We do not prove here the estimate for d/W¥ () with j = 1,2. We are certain that modern spectral techniques
(e.g., see [10,2]) allow to establish them, but we think that this paper is not a proper place for a corresponding rather
technical research. 0O

Remark. We do not use the fact that the coordinate system v = (v, v2, ...) is symplectic, but only that it puts the
KdV equation to the form (2.1). Therefore we may replace v by another smooth coordinate system v' = (v{, v}, ...)
such that / j’ =[; for all j and (p} =¢;+®;(ly, I, ...). Non-symplectic coordinate systems are easier to construct,
and it is possible that a proof of Theorem 2.3 simplifies if we replace there v by a suitable system v’.

For a function f on a Hilbert space H we write f € Lip;y (H) if
|f @) = fu)| < PR)lluy —uzl| - if llur ], uzll < R, (23)

where P is a continuous function (depending on f). Clearly the set of functions Lipy,. (H) is an algebra. Due to the
Cauchy inequality any analytic function on H belongs to Lip,, (H) (see Agreements). In particular,

Wi € Lipjoi(h!) forleN, r >0. (2.4)
3. Equation (0.7) in the Birkhoff coordinates
Fork=1,2,... we denote:

Y  H™ — R?, (1) = Vg,

where ¥ (1) = v = (vq, V2, ...). Letu(t) = u" (¢) be a solution of (0.7), which either is a stationary solution, or satisfies
(1.3) with a v-independent non-random ug. Applying Ito’s formula to the map ¥, we get:

2 Note that the quantity, denoted there 11 p—1/2, equals |v| up to a constant factor, and Q»,, satisfies the estimates Qp, < Ry, (|lull ,+1)
q Y. p—1/2>€q p+1 Up D D ); P+
and |[ull p+1 < R2p(Q2p), where Ry, and Ry, are some polynomials.
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1 :
dv; = (dlI/k(u)(vuxx + VW) + 5V Z b5 W (u)le;, ej]) dr + ﬁdqfk(u)< Z bje; d,BJ>. (3.1)

J€Zy J€Zo

Let us denote:

W) (Y bje;dBT) = Buwydp =Y By dp/, By R Yk, J.
j

Then the diffusion term in (3.1) may be written as /v By (1) dB.
Since I} = % |W|? is an integral of motion (see (2.2)), then application of Ito’s formula to the functional % IVi|? = I
and Eq. (3.1) results in

1 1
dr, = v((dlllk(u)uxx,vk) + 2 (Zbi dzllfk(u)[ej, ejl, Vk> + 3 Zbﬂdq/k(u)ejF) dr + «/;(Bk(u) dg, Vk)
J J

(3.2)

(here and below (-, -) indicates the scalar product in R?). Note that in difference with (3.1), Eq. (3.2) ‘depends only
on the slow time’ in the sense that all terms in its right-hand side have a factor v or /v.

Let us consider the infinite-dimensional Ito process with components (3.2), k > 1. The corresponding diffusion is
Vvo dB, where o = (o (u), k €N, j € Zy) and

Okj = (Bkj (n), Vk) =b; (dlI/k(u)ej, lPk(u)).
Consider the diffusion matrix a,

a)=o@)o' W), Gk, = Y Ok Ok- (33)
J€Zy

Lemma 3.1. For any u € H the sums in (3.3) converge. The matrix a is symmetric and defines a bounded linear
operator in 1%, If a& = 0 for some & € I, then & # 0 only if v =0, where v =W (). In particular, if vi # 0 Yk, then
Kera = {0}. Moreover, if |vj| = § for 1 < j < m, then for any £ € R™ x {0} C R* we have:
2
(awg, &), =o' wsl, = CIEl7, (3.4)

where C depends on §, m, |v|1 and the sequence {b;}.

Proof. Using (0.9) and Theorem 1.1 we get that |oy;| < C|j | =19k, where 1 € [2. Therefore o defines a bounded linear
operator H — [ and o' defines a bounded operator /> — H.So a = oo’ is a bounded operator in /> and its matrix is
well defined. Let us take any vector &. Then (a&, &)z = (0'§, 0'&), where

(0'8), = > b (AW w)e;. vi) & = b,<ej, dW(u)*(@ .§kvk)>. (3.5)
k

Hence, & € Kera if and only if d¥ (u)* (P & vik) = 0. Since d¥ (u) is an isomorphism, then in this case & v; = 0 for
each k, and the assertion follows.

To prove (3.4) we abbreviate P & v = &, and denote d¥ (u)*&, = 5. Then o' (u)§ = diag{b;}n (see (3.5)). Due to
the first assertion of Theorem 2.3,

117 < Ci(1vlh)1&lF < Ci(jvlh) €17 Co(lvlo)m?.
So

o
> < NTECIGE LM,
k=N+1

for any N. Since (d¥ (u)*)~! = (d¥ (u)~!)*, then the second assertion of the theorem implies that

o
Y e =1Inlig = Co(1vlo) €15 > Co(Ivlo) €176
k=1
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Choosing N = [(2C1C2C618_2m3)1/2] + 1 we get that Z,ivzl n,% > %C082|$|122. Accordingly,
2 al 1
o' @, > €Y 0 > 5C'Cos £,
k=1

where C’ depends on the sequence {b;} and N. O

0

We see that the infinite-dimensional Ito process (3.2)ken, defined for I € Ay,

the boundary 8h9+ ={I: I; =0 for some j > 0}.

By applying Ito’s formula to the kth angle ¢ = arctan(”v;lf) (k > 1) and using (2.1) we obtain:

has non-degenerate diffusion outside

o0
dgx = [Wku) +vvil (AW, i) + v|vk|—2<2b§ d*Wle;. e, v,f)
j=1

—vivil 2 > (B vk)(Bkj,vkL))] dt + /vlvi| 2 (Bi(w), vii) dB,
J€Zo

where vlﬂ- = (_s]:" ) Denote for brevity the drift and diffusion coefficients in the above equation by Wy (1) + vGg(v)
and /v g,i (v), respectively. Denoting similarly the drift coefficients in (3.2) by v Fy (v) we rewrite the equation for the
pair (Ix, ¢x) (k > 1) as

dIi (1) = vFi(v) df + v o (v) dB;,

dgr (1) = [Wi(I) + vGr (v)] dr + /v gx(v) dB;. (3.6)

Introducing the fast time,
T =0t,

we rewrite the system (3.6) as

dli () = Fr(v)dt + ox (v) dBe,
1
doi(t) = [; Wi(I) + Gk(v)} dr + gk (v) dp:. (3.7

Here B = (B;, j € Zo), where B;(t) are new standard independent Wiener processes.
In the lemma below Py and Py are some polynomials.

Lemma 3.2. For k € N, j € Zg we have:

(1) the function Fy is analytic in each space h', r 2 2 (so Fy € Lipy,(h")), and has a polynomial growth as
[v]x — o003
(ii) the function oy;(v) is analytic in h", r > 0, and for any N > 1 satisfies oy (v)| < i NPv(vl,) Yveh;
(iii) for any r 22, 8 > 0 and N > 1 the functions G (v) x(1,>s5) and gij(v) x{1,>s} are bounded, respectively, by
87 Pe(vly) and 87" j =N Pin (Jvl,).

Proof. The assertions concerning the functions Fj and Gy follow from Theorem 2.3 since the set of analytical func-
tions with polynomial growth at infinity is an algebra. To get the assertions about oy and g; we also use (0.9). O

4. More estimates
In this section and in the following Sections 5—6 we consider solutions of Eq. (3.6), written in the form (3.7), which

either are stationary in time, or satisfy the v-independent initial condition (1.3), where for simplicity u¢ is smooth and
non-random,

up e H® =ﬂH’".
m

First we derive for these solutions additional estimates, uniform in v.
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Lemma 4.1. Forany v >0, T > 0 and m, N € N the process I (t) satisfies the estimate:

E sup |I(r)|hm_E sup |v(t)| <C(N,m,T). 4.1)
0<t<T

Proof. For the sake of definiteness we consider a stationary solution v(t) = {v} (7)}. Cauchy problem (3.7), (1.3) can
be considered in the same way. Applying Ito’s formula to the expression k" I ]gv gives:

d(km 1Y) = k™ ((NI,jV—IFk(v) + %N(N — DIy (B ), vk)z) dr + NI " op(v) dﬁf).
j=1

Therefore,

T
1 o0
E sup k"IN (z) <EK"IY(0) +k"E sup / NLY T () Fe@) + SN(N = DI 72 () Y oy | ds
0<T<T o<e<r) 2 o

T
+k™E sup /NIkN_l(s)ok(v)dﬂs <C(m,N,T).

0T}

Doob’s inequality, Lemma 3.2 and Theorem 1.2 have been used here. This relation yields the desired estimate. Indeed,
by the Holder inequality we get:

o N
E( sup ]I(r)’ilN>=2NE sup (Ziz RUSEIE (‘L’))

0<t<T 0<t<T

e N% 00 N%
2
e [(Eree) (Zr)

0<t<T =1 =1

o
<CNE sup (ZJN<2’"+3>IN(r)><Cl<m,N, 7). ©

0<t<T =1

In the further analysis we systematically use the fact that the functionals Fi (I, ¢) depend weakly on the tails of
vectors ¢ = (@1, ¢2, .. .). Now we state the corresponding auxiliary results.
Let f € Lipjoe (™) and v € h", n > ny. Denoting by ITy, M > 1, the projection,

HMZh0—>h0, Zvjfji—) Z vjfi

ljilsm
we have |v — Ty, < M=)y, Accordingly,
@) = (T @)| < P(lvl) =" (4.2)
Similar inequalities hold for functions on 4, and (2.4) with r = 0 implies that
|Wi() = Wiy D| < Pe(11n)M ™", 4.3)

The torus TY acts on the space ITy/h° by linear transformations Dy,,, O € TM, where Py,, sends a point
vy = Iy, o) to (Ing, @ +0y). Similar, the torus T acts on K0 by linear transformations @g : (I, ¢) — (I, ¢ +6).
The transformation @, continuously depends on 8 € T, in the strong operator topology.

For a function f € Lip;yy (h"') and any N we define the average of f in the first N angles as the function,

(FIn() = f F(®oy ®id)(v) oy

TN
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(here id stands for the identity transformation in the space h° & ITyh®), and define the average in all angles as

() (v) = / F(@ov) 6,
TOO

where df is the Haar measure on T°. The estimate (4.2) readily implies that

(FIn@) = (/Y@< PRN-@™)if ju], < R. (4.4)

Let v= (I, ¢). Then (f)y is a function, independent of ¢1, ..., ¢y, and (f) is independent of ¢. L.e., (f) can be
written as a function (f) (7).

Lemma 4.2. Let f € Lip g (h"!). Then

(1) The functions (f)n(v) and {f)(v) satisfy (2.3) with the same polynomial as f and take the same value at the
origin.

(ii) They are smooth (analytic) if f is. Moreover, if f is smooth, then (f)(I) is a smooth functions of the vector
(I, ..., Iy) forany M. If f(v) is analytic in the space h™!, then (f)(I) is analytic in the space h'}l.

Proof. (i) Is obvious.

(ii) The first assertion is obvious. To prove the last two consider the function g(ry,r2,...) = (f)(vi, V2, ...),

T (rd) Then g(r) = (f)(I), where [; = l1"12 for each /. The function g is smooth and even in each r;, j > 1.

Any function of finitely many arguments with this property is known to be a smooth function of the squared argu-
ments, so the second assertion holds.

Now let f(v) be analytic. Denote by h"! the space of all sequences r = (ry, r2, ...) such that the corresponding
vector v belongs to A"!, and provide it with the natural norm. If f(v) is analytic, then ( f)(v) also is analytic and g(r)
extends analytically to an even function in a complex neighbourhood O of §"! in h"! @ C. This neighbourhood may
be chosen to be invariant with respect to all involutions:

(ri,r2, 0oy 1y ) (r,r2, oo, =1y, j=12,....

The image O; of O under the map,

1 1
(ri,r,...)— (Erlz, §r22, .. .),

is a neighbourhood of h?‘ in the complex space h'}‘ ® C. The function,

(V21 £2D,..) = g(NT),

is a well-defined locally bounded function on 0;.3 For any N its restriction to O;V =0 NIy (h?' ® C) is a single-
valued algebraic function on a domain in CV; so g(+/I) is analytic on O;V for each N. Hence, g(+/I) is analytic on
Oy (see Lemma A.4 in [11]). Since g(\/7) = (f)(I), then the result follows. O

Let (1"(t), ¢" (7)) be a solution of (3.7). In the lemma below we show that the processes I;/(z), k > 1, do not
asymptotically approach zero as v — 0 (concerning the notation x(8~'; M, T), used there, see Notations):

Lemma 4.3. Fbl any M € N and T > 0 we haVe;
P{ i IV T 8} < 8 5 M, ) 4.5
k]g“ln k( ) < J{( 2 ) ( )

uniformlyinv >0and 0 <t <T.

3 Le., it is bounded uniformly on bounded subsets of O;.
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Here the difficulty is that the scalar process I (t) = % |vi(T) |2 satisfies Eq. (3.7), where the diffusion o} degenerates
when [ vanishes. The equation for the vector-process vi () (see (7.1) below) has a non-degenerate diffusion, but its
drift has a component of order v™!. To prove the lemma’s assertion we construct a new process V(t) such that
[vi(7)| = |Vx(7)| and Vi satisfies an Ito equation with a non-degenerate diffusion and coefficients, bounded uniformly
in v. Then I} = %I@k(r)|2 meets estimate (4.5) by a Krylov’s theorem. The problem to perform this scheme is that
the process Vi is constructed as a solution of an additional diffusion equation which is ill defined when v vanishes.
We cannot show that the event,

{ve(r) =0 for some 0 < 7 < T},
has zero probability and resolve this new difficulty by means of some additional (rather involved) construction.
For a complete proof see Section 7.

5. Averaging along Kronecker flows

The flow,
ST T® — T, o> @+tW, teR,

where W € R®, is called a Kronecker flow. In this section we study averages of functions f(v) = f (I, ¢) along such
flows. That is, we study the quantities:

~|—

T
/f(1,<p+W’"t)dt, T >0.
0

Lemma 5.1. Let f € Lip;, (h"), v=(I,9) € h", n > n1 20, and f is analytic in the space h™'. Then for each
R' >0, meN and § > 0 there is a Borel set 2%,(8) C {x € R": |x| < R’} such that |2},(8)| < 8, and for any
W™ ¢ Q7,(8), W™ < R’ the estimate:

1
< 75€0(m, R ol f) +m= 7" P(jul,),

P o,
?/f(1,¢+w 1)dt — (f) ()
0

holds uniformly in ¢ € T*. Here P is the continuous function from (2.3) and W™ is identified with the vector
(Wm,0,...) e R®.

Proof. Let us first assume that f(v) = f([1,v) (i.e., v depends only on finitely-many variables). Then
f=fU™, ¢™) is analytic in ¢ and the radius of analyticity is independent of I, satisfying |/| 10 < R’. Now the
estimate with P := 0 is a classical result (e.g., see in [16]). In general case we write f as f oI, + (f — f o I1,) and
use (4.4). O

We will apply this lemma with W" = W™ (I), where I = I () is the I-component of a solution of (3.6). To do this
we have to estimate probabilities of the events {W" (I (7)) € .Q;g, (8)}. To state the corresponding result we introduce
more notations. For any events Q and O we denote:

Po(0)=P(CQ N0,
and

Eo(f) =E((1 - x0)f)-
Abusing language, we call Py a probability. We fix any,

denote
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and for R > 1 consider the event,

.QRz{ sup [0V ()| >R},
0<e<T P

where v¥ () is a solution. Noting that | W™ (I)| < R’ = R’(R, m) outside the event 2, we denote:
2(8) =25 (9), R'=R'(R), 0<b<1.
Finally, for M > m and 0 < y < | we define:

0 . :
0y ={Ieh1+. 1<n}1£MIj <y}.

Lemma 5.2. There exists M = M (R, m) > m such that
T

/PQR({W'"(I(S)) €O\ {I(s) € 0y })ds<x(87" i R,m,y.T), (5.1)
0

uniformly in v > 0.4

Proof. Consider the function D(I) = det(dW?”/dl,: 1 < j,r < m). It is analytic in h? (see Amplification to

Theorem 2.1), and D # 0 since D(0) = C™, C # 0 (see [14, Lemma 3.3], and [11]). For a finite non-decreasing
sequence of natural numbers o = (! <--- <o) we denote:

la| =aV, [a]=N,

and define the derivative d* D(1)/91% in the natural way.
Step 1. Study of the sets {I € Bg: |D(I)| <¢},0<e <K 1.

By the analyticity any point I’ € Bg has a neighbourhood O C h(l) such that
a*D(I)

>c VIeO,
oI«
where the sequence o = (a! < --- <) and ¢ > 0 depend only on the neighbourhood. Since By is a compact subset
of h(I), we can cover it by a finite system of neighbourhoods O;, j =1, ..., L, as above, where L = L(R, m). Then
0% D(I
I € Bg: A«l,]’:l,...,L = 0. 5.2)
81;."
Let us denote,
M = max |ojl, N = max [oj],
1<j< <<

and consider the sequence

—j_~—N_H—j-N
e=gy<el<--<ey<l, gj =g T

where 0 < ¢ < 1. Note that
-N
ejejflze(z ) for0< j<N.

For m < [a;] we set:

d d D(I)
E)al. o™

lej = {I (S BRI
J J

In particular, 9[2_; =A0={I € Bg: |D(I)| < &} for each j.

4 We recall that x(t; R,m,y, T) stands for a function of # which goes to zero when t — 0o, and depends on the parameters R, m,y and T.
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For 0 < ¢ « 1 relation (5.2) implies that

L
200 = (@2 ) u (2, \22 ) U u @ ).
j=1

Step 2. An estimate for the integral fOT Po {ID((s))| < e}ds.

Due to the last displayed formula, the integral to be estimated is bounded by a finite sum of the terms,
T

/PQR{I(S) e \A Y ds, r <ol (5.3)
0

To estimate (5.3), we abbreviate a% e %D(Z) = f(I). Then
j J

A, \m;jl = {1 € Bg: | f(I)| <& and ’ﬁf(l)‘ > e } (5.4)
o
J

Consider the Tto process z(t) = f(I(r)). We define the Markov moment 7’ = min{z > 0: |I(T)|hf >R AT, and
re-define z(7) for T > 1’ as a continuous process, satisfying:

dz(r) =dpl forr>7'.
Since 7’ > T outside $2g, then outside 2z we have z(7) = f(I(z)) for 0 < v < T. For z(7) we have:

dz(r) =c(r)dr + ) _b;(r)dpi,

where [c¢| < C(R,m), bj =38; for T > 1" and b; = Z%ij for t < /. Denoting a = Zb?, we have
a=7Y (00" jxVjfVif.Sola(r)| < C(R, m). From other hand, (3.4) in Lemma 3.1 implies that

M
la()| = C(R.m, y) Y (V;f)* ifI()¢Q,. (5.5)

Jj=1
Applying Theorem 2.3.3 from [13] to the process z(t), we get:
T

E/X{\z<r>|<er

0

a(r)|dt < C(R,m, T)e,.

By (5.4) and (5.5) the integrand is > CR,m,y)if I(t) € (A, \Qlijfl) \ Oy . Hence,

r+1
T
/PQR I(s) € (A, \ AT\ @y }ds <o, 2 C(R,m,y, T)
0

=e@CR, m,y, T).

We have seen that

Po,({|D(1())| <e}\{I(s) € 0, })ds < e (R, m,y, T). (5.6)

S—

Step 3. Proof of (5.1).

We have an inclusion of events:



414 S.B. Kuksin, A.L. Piatnitski /J. Math. Pures Appl. 89 (2008) 400—428

{(Ws)e®\{1(s) € 0y}
c[(fwms) e 2@\ ({1 e 0, } U{D(1(9)) <¢}))
U({P(1®) <]\ [T e 0, )]

Probability of the second event in the right-hand side is already estimated. To estimate probability of the first event
we apply the Krylov estimate to the process W (s). Re-defining it after the moment 7’ (see Step 2) and arguing as
when deriving (5.6), we get that

/pQR({wm@) c 2@\ ({I(s) € 0, ) U[D(I(s)) <)) ds

1/m

<|RG)|""CR,m,y,&T). (5.7)

Finally, choosing first & so small that the right-hand side of (5.6) is < & and next choosing § so small that the right-hand
side of (5.7) is < &, we see that the left-hand side of (5.1) is < 2¢ for any & > 0, if § is sufficiently small. O

6. The limiting dynamics

Let us fix any T > 0, an integer p > 3 and abbreviate:
h? =h, hy=h;, hj =hp, [ lr =111, |vlp = vl

Due to Lemma 4.1 and the equation, satisfied by 7V (t), the laws L£{I"(-)} form a tight family of Borel measures
on the space C ([0, T]; k). Let us denote by QU any its weak limiting point:

Q0 = llimoﬁ{l”f(-)}. 6.1)

Our aim is to show that QU is a solution to the martingale problem in the space /; with the drift operator (F)(I) =
(F1)Y(), (F2)(I), ...) and the covariance {(A)(I) = {(Ax;)(I)}, where

(A) (D =((c)o' )),,) = <Zb§ (A e, vi)) (d¥ (w)e;, v,)>.
j

By Lemmas 3.2 and 4.2 the averages (F;) and (Ay;) are analytic functions on h;. The covariance (A) is non-
degenerate outside the boundary of the domain hf . in the following sense: let § € RM cR®and I € hyy, |I| < R.
Then

D (A (D&E > CIEl, if 1] >y > 0for j < M, (6.2)
kI<M

where C > 0 depends on M, R and y. Indeed, the estimate follows from (3.4) with v = (I, ¢) by averaging in ¢.
Our study of the limit Q° uses the scheme, suggested by R. Khasminskii in [9] and is heavily based on the estimates
for solutions v"(7), obtained above.
First we show that for any k the difference,

Li(t) — f (Fu)(I(s))ds, (6.3)
0

is a martingale with respect to Q° and the natural filtration of o -algebras. A crucial step of the proof is to establish
that

T

/(Fk(ﬂ(s), 0"(5)) — (Fo) (1" (s))) ds| — 0, (6.4)

0

A" :=E max
0<t<T

as v — 0. Proof of (6.4) occupies most of this section.
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Let us fix an integer,
m>1,

denote the first m components of vectors /" and ¢” by 7" and ¢""", and rewrite the first 2m equations of the system
(3.7) as follows:

drvm = Fm(l",w”)dt+0m(1”,¢”)dﬂ,,

1
de¥™ = <—W’” (I") +G™ (I”, (p")) dr + g™ (I”, gp”) dg:. (6.5)
v
Here and afterwards we identify the vectors (I{,...,1},0,0,...) with I""™, and the vectors (¢;, ..., ¢,,0,0,...)

S VL
Wlt]gfnote' (Fi)mI™) = (Fi)m U, ©)1=(1,,,0),0=0- By Lemma 3.2 there is a constant Cr(R) such that for any
v=_(~1,¢), |v] <R, we have:
|Fe(1.9) = Fi(I", ") | < Ce(Rym ™", (6.6)
[(Fe)u (I™) = (Fe)(D| < Ce(Rym ™. (6.7)
Define the event 2 as in Section 5. Due to Lemma 4.1,
P($2r) < %00 (R)

(here and in similar situations below the function x is v-independent). Since by Lemma 3.2 the function Fy has a
polynomial growth in v, then this estimate implies that

T T
E max /Fk(v"(s))ds—EQR max /Fk(v“(s))ds
0<t<T 0<t<T
0 0

< %oo(R).

The functions Fy(I""™, ¢"'™), (Fx)m(IV"™) and (Fy)(I""™) satisfy similar relations. So we have:

T

A" < xoo(R) + Egp Jnax /{Fk(l"(s), @' (8))ds — Fr (1" (s), """ (s)) } ds
0

Xt x

T

/ (F (177 (), "™ (5)) — {Fe) (177 (5)) ) ds

0
T

/ [ (177 (5)) — (F) (1" (5))} ds
0

<too(R) + CL(Rym™!

f (F (177 (), "™ (5)) — {Fed (177 (5)) ) ds

0

+Eg, max
<

TR

+Eg, max
0<t<T

+Eg, max
<T

O\T\

The last inequality here follows from (6.6)—(6.7). It remains to estimate the quantity:

T

f (F(177(5). 0" (9)) — (Fedm (17 () ) ds

0

max

1— .
o ax, (1 — x528)

To do this we consider a partition of the interval [0, T'] to subintervals of length vL, L > 1 by the points:

Tj=vip+vjL, 0<j<K+1,
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where 7g 1 is the last point 7; in [0, T']. The constant L such that

1
L>2 L<-v! (6.8)
2

and the (deterministic) initial point o € [0, L) will be chosen later. Note that

% T<K-vL<T.
Denote
Ti+1
w= [ (B0, 0"" ) ds = (R (1" 5)) s, 0<I<K.
T
Since outside the event £2 we have:

/!

/ (Fe(I"™ (5. 0" () — (Fidu (1" (5))) ds

’

<vLC(R)

T
for any t’ < t” such that T/ — 7/ < vL, then
T
[ (E 761,977 0) = (17 5) 8

0

Ego, max
0<t<T

K

<Eg, Y Iml+vLC(R). (6.9)
=0

To calculate the contribution from the integral over an /th subinterval, we pass there to the slow time t = v~!7. Now
the system (6.5) reads as

A" () =vF™ (1", ¢") dt + Vv (1", ¢") dB;,
dep""™ (1) = (W”’ (I”) + vG’”(I”, go”)) dr + /vg" (I", (p”) dg;. (6.10)
Denoting t; = 7;/v = to + jL we have:

141

f [F (1700, "™ () = Fe (17" 1), ™™ () + W™ (1° (1) (x — 1)) } dx

I

Il <v

fi41

+v / {Fe(1V" (1), "™ 1) + W™ (17 (1)) (x — 1)) — <Fk>m(1“’m(n))}dx‘
1

f41

0] [1FIn (17 @) = (B (1" )} x| =114 77 4 77

)

To estimate the integrals Tll — Tl3 we first optimise the choice of 7y. Defining the event §2(6), the number M (R, m)
and the set Q,, as in Section 5, we have the:

Lemma 6.1. The non-random number ty € [0, vL) (depending on v and §) can be chosen in such a way that

K
%ZP&gzoo(R)+x(y_l;R,m)+}f(6_l;y,R,m), 6.11)
=0
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forall0 <6, y <1, where
E=02rU {I(‘[]) S QV} U {Wm(‘l.']) S .Q((S)}

Proof. Due to Lemmas 5.2 and 4.3,
T
/P(.QR U{I(m) e 0, }U{W"(x) € 2(5)})dr
0
< xso(R) +x(y_1; R, m) +}f(5_1; R, m, )/).

Writing the left-hand side as fOVL le(:o P(&) dry, where & is defined in terms of 7; =ty + vjL, and applying the
meanvalue theorem we get the assertion. O

Applying the Doob inequality and Lemmas 3.2, 4.1 to (3.6) we get that

Poo( swp [I°(0)=1"@)] > P(RIWL +4)

n<t<41
t

/G(U(S)) dBs

2
< P( sup v > A2> <CywL)N A=V,

N4

for all N and A. Choosing in this inequality A = (vL)!/3, using (6.8) and denoting,
o={ s |rO-1'w|>P@oLA
<<t

where Pj is a suitable polynomial, we have:

P, (01) < xoo((WL) 'y m). (6.12)
Let us set
Fi=5UQ, [1=0,1,....K.
Then (6.11) implies the estimate:

K
%ZP}"] < X0 (R) + %(y_l; R,m) + x(B_l; Y, R,m) + %oo((vL)_l; m) =K.
=0

Since Fi (I, ¢) has a polynomial growth in 7, then

K K
. 1 ]
l§_0|(E —ER)T[< PR~ l§_0 PF <k (j=1,2,3), (6.13)

where we denoted by « another function of the same form as above. So it remains to estimate the expectations E#, Tl"
and their sums in /.
First we study increments of the process ¢ (¢). Let us denote:

V() — @M (1) — W (IV ()t — 1) = D] (1), 1 <t <141
Then
t t t
P (t) = /(W’”(I”(x)) —W™(I'(1%)))dx +v / G™"dx + ﬁ/g’" df, =1+ + /5.
7] 7] ]

Outside the event F; the term J; estimates as follows:

|J1] < P(R,m)(wL)' L.
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To estimate J, and J3 we assume that

PRIGL) < 2y, 6.14)

[\

Then outside F; we have,
1
(O] >3y Vel ual k<m,
so by Lemma 3.2 and (6.14) there we have:
|2l SVLC(R)y ' < C'(R)(wL)*?.
To bound J3 we introduce the stopping time,
t = '{t>t: in I’ (t) < IV (¢ >R}At .
min|7 >: min (1) y or [1"(1)| 141
Then

t'At

/ g" (s) dpy

)

(1= xm)| 0| < Vv =: J4(1).

We have vE ftf/ |g"?ds < vLy~'C(R,m). So the Doob inequality implies:

Pr| sw 151> 00 <l s [4]> 000

<41 <S4
<L) Py ' CR,m).
We have seen that
Pr {0} > P (R,mw'PLY3) <L) Py~ C(R, m). (6.15)

Now we may estimate the terms T/ .

Terms T}.. Since Fi € Lipjoe (), then by (6.15) ‘probability’ P, that the integrand in 7} is > C(R, m)v!/3L¥3 is
bounded by (wL)'3y=1C(R, m). Since outside F; the integrand is < C(R, m), then

ZEf,T,l <V3C(R,m,L,y).
l

Terms T?-. By Lemma 5.1, outside F;,

T2 <vs~'C(R,m) 4+ Lvm™'C(R).
So
ZE;ITIZ <L) 'C(R,m)+m~'C(R).
1

Terms T‘;’.. By Lemma 4.2, outside F; we have Tl3 < P(R)Y(wL)'3(L). So

ZE;,rﬁ < P(R)(vL)'73.
I

Now (6.13) and the obtained estimates on the terms le imply that

D Elml <k +v'PCR.m, L,y)+GL)"'C(R,m) +m™ ' C(R).
l
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Using (6.9) we arrive at the final estimate:

A <00 (R) + C(R)nf1 + vLC(R) + (same terms as in the right-hand side above). (6.16)
It is easy to see that for any € > 0 we can choose our parameters in the following order,
R>m—y—>38—>L—>v,
so that (6.8), (6.14) hold and the right-hand side of (6.16) is < ¢.
Thus, we have proved the:

Proposition 6.2. The limit relation (6.4) holds true.

In the same way one can show that
t 4
/{Fk(l"(s), 9" () — (F)(I"())}ds| -0 asv—0. (6.17)

0

E max
0<i<T

From Proposition 6.2 taking into account the a priori estimates we finally derive:

Proposition 6.3. The process (6.3) is a square integrable martingale with respect to the limit measure Q° and the
natural filtration of o -algebras in C ([0, 00); hy4).

Proof. Let us consider the processes:

T
N,ff'(r)=1k”f(r)—/(Fk>(1”.f(s))ds, te€l0,T], j=1,2,....
0
Due to (3.7) and (6.4) we can write N,:j as

N (7)) =M, () + &, (2).
Here M,’ = I, — [ Fi(I"i,¢"}) is a martingale, and &, is a process such that

E sup |E,:j(r)|—>0 asv; — 0.

<t

This convergence implies that
lim £(N,’()) = lim £(M,”(-)) (6.18)
v;—0 v;—0

in the sense that if one limit exists, then another one exists as well and the two are equal.

Due to (6.1) and the Skorokhod theorem, we can find random processes J"/ (t) and J(7), 0 <t < T, such that
LJVi()=LIY(), LI()=Q° and

JY — Jin C([O, T],h,) asv; — 0, (6.19)
almost surely. By Lemma 4.1,
P{ sup |1V (0)| > R} <CR™,
0<t<T

uniformly in v;. Since (Fy) € Lipj, (A7) by Lemmas 3.2 and 4.2, then (6.19) implies that the left limit in (6.18)

exists and equals (6.3). By Lemmas 3.2 and 4.1 the family of martingales M;:j () is uniformly integrable. Since they
converge in distribution to the process (6.3), then the latter is a martingale as well. O

Denote Z;(t) = I;(t) — fot(Fk)(I(s)) ds. Using the same arguments as above and (6.17) we can show that
Zi(t)Zj(t) — fOt(Akj)(l (s))ds is a Qo-martingale in C([0, T); h;4+). Combining the above statement we arrive at
the following theorem, where T > 0 and p > 3 are any fixed numbers.
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Theorem 6.4. Let the process u’(t), 0 < v < 1, be a solution of Eq. (1.2) which either is stationary in time,
or satisfies the v-independent initial condition (1.3), where ug is non-random and smooth. Let ¥ (u" (7)) =
V(1) = (I"(1), 9" (1)). Then any limiting point Q° of the family L{I"(-)} as v — 0 is a measure in C(0, T’ hf+)
which satisfies the estimates:

/ sup |1(0)]}, Qo(dI () <C(N,m,T) <oco YN,meN,
0<t<T !

and solves the martingale problem in C(0, T’ hf) with the drift (F)(I) and covariance (A)(I).

Leto%(I)bea symmetric square root of (A)(/) so that (021" = (A)(I). We recall that (A)() is a positive
compact operator for each I € h.

Corollary 6.5. Any limiting measure Q° as in Theorem 6.4 is the distribution of a solution I(t) of the following
stochastic differential equation:

dI = (F(D))dt +o°(1)dWr, (6.20)
where W is a cylindrical Brownian motion on h(I).
Proof. Denote by h the Hilbert space of sequences {x;, x> ..., } with the norm |x|%) = ZC/XJ:l j 2(zr"‘k“)xf.. It is easy to
check that b is continuously embedded in A7, thus all the coefficients (F (1)), o%(1) and (A)(I) are well defined for
any [ €b.
By Theorem 6.4 and Lemma 4.1 the measure Q° is concentrated on C(0, T’ h?p +4). Since this space is

continuously embedded in C(0, T; §), then Q0 is also concentrated on C (0, T'; b). Therefore, Q0 is a solution of
the above limit martingale problem in the Hilbert space f. It remains to use Theorem IV.3.5 in [20] (also see [4]). O

The limiting measure Q¥ and the process I (t) inherit the uniform in v estimates on the processes I"(t), obtained
in Sections 1-4. For example,

P{Ii(t) <8} < x(87"; k) uniformly in 7 € [0, T], forany k > 1. (6.21)

In particular, I (7) € h7+ \ Bthr a.e., forany t > 0.

Remark. Eq. (6.20) is the Whitham equation for the damped-driven KdV equation (0.7). Our results show that it has

a weak solution in the space hf " for a given 7 (0) which is a deterministic vector inNthe space h;’i =N hf 4+-In fact,

the same arguments apply when 7 (0) is a random variable in hf o such that E||7.(0) || pr < 00 where N and p are large
1

enough.

Now we assume that u" () is a stationary solution of (1.2). Then the limiting process I (7) as in (6.20) is stationary
in 7. We denote qO = L(1(0)) (this is a measure on the space hi_).

Theorem 6.6. Let a process u® (t) be a stationary solution of Egs. (1.2). Then,

(1) forany 0 <t < T the law of 9" (t) converges weakly as v — 0 to the Haar measure dg on T,

(2) The law of the pair (1"(t), ¢" (7)) converges, along a subsequence {v;}, corresponding to the measure q°, to the
product measure ¢° x dg.

(3) For any m the measure qom = L(I™(0)) is absolutely continuous with respect to the Lebesgue measure on Rﬂ.

More precisely, the second assertion of the theorem means the following: Due to (6.21) the limiting measure is
supported by the Borel set h” N {v: v; # 0 V¥ j}, which is measurably isomorphic to (thr \ Bhﬁ) x T°. Under this

isomorphism the limiting measure reeds as ¢° x dg.
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Proof. (1) Let us fix any m and take a bounded Lipschitz function f, defined on the torus T C T°. Then
1 [ 1 ;
B @) = 5 [Er(e o) ds = 7E [ 1" e)as
0 0

where """ satisfies (6.5). Arguing as when estimating the expectation in the left-hand side of (6.9) in the proof of
Theorem 6.4, we get that

T
E/(f(wu’m)—(f>ds)—>0 asv — 0.
0

Therefore E f (9" (1)) — (f), and the first assertion of the theorem follows.
(2) Consider an arbitrary bounded Lipschitz test function of the form @ (I, ¢) = f(I"™)g(¢™), m > 1. We have:

v
EQ(I'(r).¢" (1) = = / £ @) g (0" @) dr.
0

Consider a uniform partition of the interval (0, v='T') into sufficiently long subintervals. As was shown in the proof
of Theorem 6.4, with high probability on any subinterval of the partition the function 7V (¢) does not deviate much
from a random constant (see (6.12)), while the normalised integral of g(¢"" (¢)) approaches the integral of g against
the Haar measure (see the proof of the first assertion). Therefore when v — 0, the right-hand side above can be written
as

o0

'H‘OO

vIT
(%E / f(I”’m(s))ds) /g(@m)d¢+0(l)=ff(lm)dq0/g((pm)d<p+0(l).
0 hf

This completes the proof of (2).

(3) The vector I"(t) satisfies the Ito equation, given by the first m components of (6.20). The corresponding
diffusion is non-degenerate by (6.2). Therefore by the Krylov theorem (see [13]) for any Borel set U C [, s,
6 > 0, we have that

" (U) =P{I" 1) e U} < Cs|U|V™. (6.22)
Let us take any zero-set Z C RY and write it as
Z=7Z,U---UZ,UZ, where Z; C{Q:O}andiCR’;’O.
Then qom(Zj) =0 for each j due to (6.21). Writing Z= Us=0 Zs, where Zs = Z N [, 8§71, we use (6.22) to get
that ¢ (2) =1im¢” (Z5) =0. So ¢""(Z) = 0 and the theorem’s proof is completed. 0O

Remark. For any j > 1 the measure q? = L(1;(0)) satisfies an analogy of estimate (6.22) with m = 1. Therefore
q? = fj(s)ds,s > 0, where the function f; is bounded on segments [§, -1.

7. Proof of Lemma 4.3

Step 1. Processes V}: (7).

For 11,72 € R? \ {0} we denote by U (11, n2) the element of SO(2) such that U (1, nz)l:’;—il = 1L Note that

Imil*
Uz, n) =U@im) ™" =UGm, n)*.
In the fast time t Eq. (3.1) reads,

1 .
dvy = (—dwk(u)wm +Ak(v>) dr + ) By (v)dpf, (7.1)
Y j
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where we denoted:
1
Ak(0) = AV @y + 5 3 b EPWwles ejl, B () = d¥wbje;.
J€Zy

Let v(t) = {vk(7), k > 1} be a solution of the system (7.1)zeN-
We introduce the functions,

Ak, v) = U Vg, vi) A (v), Bij (Wi, v) = U (Vk, Vi) By (v),
smooth in (¥, v¢) from (R? \ {0} x (R2 \ {0}), and consider the additional stochastic equation for V¢ () € RZ:
Vi = A (V. v)dr + ) Bij (e v) dBy. (7.2)
J
Its coefficients are well defined for all non-zero v, and Vy.

If v(r) = {vk(7), k > 1} is as above, then Eq. (7.2) with a prescribed initial data has a unique solution, defined
while

[Vl [Vk| > ¢, vl <C,

where ¢, C are any fixed positive constants. This solution may be obtained as the last component of a solution (v, V)
of the coupled system (7.1)en, (7.2). This system has a unique solution since (7.1)cn is equivalent to (0.7) (so it has
a unique solution) while (7.2) is a Lipschitz equation on the domain, defined by the conditions above.

Foray € (0, 2) we introduce the stopping times 7: ,i20,and 7, ,i > 1, where ra' =0and fori > 1:

T :inf{t > rltl: |vk(r)| <yor |U(l’)|h1 > l}
14

rl.+ :inf{r =T |Vk(1:)| > 2y and |U(T)|h1 < %}
14

Notethatr(;"grl_,tl <r+<r+11f1>0 andr — o0 as j — oo.

Next we construct a continuous process Vk (1), T > 0. We set Vk (7,'0 )= vk(r(;“). For i =1 we extend VZ(I) to the
segment A;_1 1= [rl.tl, 7, ] as a solution of Eq. (7.2), and on the segment A; = [z, , Ti+] we define it as®

Vi@ =UW(r7). ve(r7))ve(z),  fort € A;. (7.3)
Lemma 7.1. Iflf',f (ri'tl)| = |Vk(tl.t1)| and ‘7}; satisfies (7.2) on A;_1, then |9Z| = |vg| everywhere on that segment.

Proof. Application of Ito’s formula to the expression /, ,z/ =3 |Vk 2

dIl = (v, Ak (¥}, v))dr + Z<§|Bk,(v,f, v)[Pdr + (¥, Bu (¥, u))dﬁi).
l

on the segment A;_ yields:

Similarly, I = %|Vk|2 satisfies:
1 2
Al = (v, A (v)) dt + Z(§|Bk1(v)| dr + (vi, Bu(v)) dﬂﬁ).
l
By construction, the drift and diffusion coefficients of these two equations satisfy the relations:

SY
v
(Vk,Ak Vk, Z’Bkl Vk, 2—||V—];(|(Vk,Ak(v)

=V
o~ A
(vz,Bkmvz,v»=%<vk,mz<v>>.

SOf v, (0) =0, then ‘L'a_ =1, =0 and the formula (7.3) is not defined. But it happens with zero probability, and in this case we simply set VZ =0.



S.B. Kuksin, A.L. Piatnitski / J. Math. Pures Appl. 89 (2008) 400—428 423

For the squared difference (I — I ,2’ )2 we have:

A%
~ ~. V| — |V
alte =17 = (200 = )™ ) +

where M, is a square integrable stochastic integral whose structure is of no interest. Denote JY(t) =
(I — I)*((x v 1) At). Since

sV
vkl — V) D?

V|

> (i, Bkl(v))z) dr +dM.,  (7.4)

1

B Ik—iy

il - [y |=2——%—,
k v

[Vl + |V |

then it follows from (7.4) that EJY (r) < EJY(0) + C(y)fOT EJY (s)ds. As JV(rltl) =0, then JY (7) =0 by the
Gronwall lemma. That is, |\7}:| =|vlonA;_;. O

Applying this lemma with i = 1 we see that (7.3) with i = 1 is well defined, and |€'Z| = |vk| on AgU A1. Repeating
the construction above for i = 2,3, ... we get a continuous process ffz (1), T 2 0, satisfying (7.2) on the segments
A, i 20, satisfying (7.3) on the segments A;,i > 1, and such that

|€7Z(r)| = |Vk(‘L')’.

Let us abbreviate U; = U (Vi (z;”), vk (t;")). Then on the intervals A; the process ff}: (7) satisfies the equation:
- 1 )
dvl (1) = U; (;dlllk(u)V(v) + Ak> dt + U; Byj(v) dBi.

Finally, using the notation,

. Ak, v), tel; A
Ak(Vk,U,t)z 1 — =+
Ui (L) V) + Ar), tell (7.1,

and

ék]({’kav)v IEUI Ah

By (Vi v, 1) = _
/ UiBij(v), telJ;(r .5,

we represent 9}: (1) as the Ito process:

T T
¥/ (1) = v (0) + / Ac(¥] v, 5)ds + | By (¥].v,5)dBi. (7.5)
0 0
—y %
Letting formally % =1 for |vx| = 0, we make the function % = | along all trajectories.

By the definition of Ay and 1§kj and by Theorem 2.3 the following bounds hold true with a suitable integer K :

[Ad<c(lf+1),  telJa,
i

A <o (wlf +1), re @5,
i

1Bl <C(I¥ +1),  7€[0,00)

(cf. Lemma 3.2). Let us fix any v > 0. The family of processes {v,}:(~),0 <y < 1/2} is tight in C(0, T; R?).
This readily follows from (7.5), Lemma 4.1 and the estimates above.

Since Byj(v) = B; d¥(u)ej, where ¥ defines diffeomorphisms H® — 1 and H' — h!, then the diffusion
> By ] dp’ in R? is non-degenerate and the corresponding diffusion matrix admits lower and upper bounds, uniform
if |v|; < R for any fixed R > 0.
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Step 2. Cut-off at a level |v|; = R.

Let us introduce Markov time Tg = inf{r > 0: |v(t)|; = R}. We define the processes v,f equal to v for T € [0, TR]
and satisfying the equation:

dvlf(r) =dW;, 71> 1pg,

B!

ﬂ*l)‘ Also, we define ?Z‘R to be equal to ff}: for T € [0, Tg] and for T > T satisfying the equation:

where W; = (

~y,R -\ o~y = -
AV " (1) = U (Vi (Tr), Vi (TR)) AW, T > Tg.
These processes have positive definite diffusion matrices uniformly in y and v, and
SV:R| _ | R
Vet = 1vel
By Lemma 4.1 we have:
P{V (1) # V}(/’R(t) for some 0 < 7

<
PHVk(‘L')| #* |V/I:(‘L')’ for some 0 <

<T}—o0,
T<

T} — 0, (7.6)

as R — oo, uniformly in y and v. Therefore, it suffices to prove the lemma for v; replaced by vllf with arbitrary R.°
Step 3. Limit y — 0.

Denote a limiting (as y — 0) law of V?’R in C,T; ]RZ) by LNO, and let V() be any process such that its law
equals £0. By construction, the relation holds 50{|€'k(r)| e 0} = £{|V,§(r)| € Q} for any Borel set Q C R. So it
suffices to prove the lemma’s assertion with v; replaced by V.

The process VZ’R satisfies the relation:

T T

VZ’R(T)ng(o)+/Ak’R(§/}:'R’”’s)ds+/Bkj,R(VZ’R,v,s)dﬂsj, (7.7)
0 0
with
A Ay, < TR,
Ak,RZ{ ko SSTR
0, s>t
and
A ék}a s g TR,
Bijr = . o
U((O)(S]’l + (1)87].,1)’ § > TR,

where U = U (v(tr), V), (Tg)).
Denote in (7.7) the drift and martingale parts by A (t) and MY (t), respectively. Then

T T
Ay(r)z/ﬁk,R(ffl):’R,v,s)ds, M”(r)=/]§kj,R(V,)(/’R,v,s)dﬁ‘si.
0 0

Distributions of the pairs (A (-), MY (-)) form a tight family of Borel measures in C (0, T'; R*). Consider a limiting
measure and represent it as the distribution of a process (A°(t), M°(7)). Then L£{A°() + M°(1)} = £0, so we can
take for a process Vi above the process Vi (t) = A1) + MO(7). Let 71 and 1> be arbitrary distinct point of [0, T]
and Co—any positive number. The set {¢ € C(0, T’; Rz): lo(t1) — p(12)| < Colt1 — 121} is closed, thus

6 Indeed, for any ¢ > 0 choosing first R so big that the probability in (7.6) is < /2 and choosing next § = §(g) so small that the left-hand side
of (4.5), evaluated for vj replaced by vff, also is < £/2, we see that the left-hand side of (4.5) is < ¢, if § is sufficiently small.
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limsupP{|A” (1)) — A" (1) | < Colt1 — 121}
y—0

<P{|A (1) — A1) | < Colr1 — o} (7.8)
Let us choose Co =2 sup{|Ax(v)|: |v|1 < R}. Then

|AY (1)) — A ()] < %com o+ v*]C(R))(U Aj) Ao, T]‘.

Since
T

E‘(U Aj) N[0, T]‘ <P{ Sup}v(f)!hl > J/_l} +E/X|vk(r)|<2y dr,
[0,7] o

then it follows from (4.1) and Theorem 2.2.4 in [13] that E|(| Aj)N[0,T]| — 0as y — 0. Therefore the limit in
the left-hand side of (7.8) equals 1, and we conclude that P{|.4%(z) — A%(12)| < Co|t; — 12|} = 1. That is, A%(7) is
Co-Lipschitz continuous and Ao(t) = fot Bo(s) ds, where | By| < Co.
We now turn to the martingale part. Since
[0,T]37— MV (1)eR?, 0<y<I,

is a family of continuous square integrable martingales with respect to the natural filtration and uniformly bounded sec-
ond moments, then the limiting process M°O(7) is a continuous square integrable martingale as well. Denote (M),
the bracket (quadratic characteristics) of MY . According to Corollary V1.6.7 in [8], (M?)), = limy, _,o{(M?)).. Since
for v € {v: |v|,1 < R} it holds,

et = w)E” < (((M7),, —(M7),,)E.€) <ci'(m —w) 5P VE R

with some ¢; > 0, then the bracket (M) satisfies the same estimate. In particular, d{(M%); = a(r)dr
for some progressively measurable symmetric 2 x 2-matrix a(r) such that c;Id < a(r) < cf] Id, a.s. Then
Wr = [y a='/2(s)dMO(s) is a Wiener process in R? and M(1) = [ a'/?(s) dW;.

We have seen that for any v > 0 and R > 1 each weak limit of the family {’Z’R(‘L’) is an Ito process of the form:

T T

ffk(t)=€'k(0)—i—/BO(s)ds—i-/al/z(s)dWs,
0 0

where |Bo(r)| < Cp and c}/z d<al?(r) < 0;1/2 Id a.s., uniformly in # and v. Since all the coefficients of this
equation are uniformly bounded and the diffusion matrix is positive definite, the desired statement follows from
Theorem 2.2.4 in [13].

Appendix A
Here we prove the a priori estimates, claimed in Section 1.

Let F: H™ — R be a smooth functional (for some m > 0). Applying formally Ito’s formula to F (u(z)), where u(t)
is a solution, and taking the expectation we get:

d 1
aEF(u(t)) =E(VF ), viyy — V() + SV ;besz(u)[es, esl.
In particular, if F () is an integral of motion for the KdV equation, then (V F (1), V (1)) = 0 and we have:

%EF(H([)) =VE(VF 1), uyy)+ % v Xs:besz(u)[es, es). (A.1)

Since ||u ||(2) is an integral of motion, then F (1) = exp(o ||u||(2)), O<o< %, also is an integral. We have:

VF(u) = 20€UHMH(2)M, d>F(u)le, e] = 2aeo el ||e||8 + 402e””””<2)(u, e)>.
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So (A.1) implies that

d
EE@””””% = —vcrE(e””””% (2||M||% — By —20 beuf)),

where for r > 0 we set:

B =Y j¥b;.

Denoting B = max bf and choosing o < 2B)~! we get that

d%Ee"“"“% < —voE(e? 115 (Jlu|? — By)) < —vo Bo(Ee” 15 — 2¢2050),

So the estimate (1.4) holds for all # > 0. In particular, for each N > 0 we have:

E|u()|) <My =Co~N?.(the rhis. of (1.4)). (A.2)
The KdV equation has infinitely many integrals of motion J,,, (1), m > 0, which can be written as
m
T () = |lu]? + ZZ/Cr,le) coum) dx (A3)
r=3 m
Here the inner sum is taken over all integer r-vectors m = (my,...,m,) such that 0 <m; <m — 1 Vj and

my+---+m, =44 2m — 2r (in particular, Jo = ||u||%). E.g., see [11, p. 209].
Let us consider an integral as in (A.3),

I:/u(m')...u('"f)dx, mi+---+mp=M,

where f 22, M >1and0<m; <pu—1,0:= ,u_l(M—i—f/Z— 1) < 2 for some p > 2. Then, by Holder’s inequality,
M

< |y m0) |yl = < oo.
], ], = <o
Applying next the Gagliardo—Nirenberg inequality we find that
6 -0
111 < Cllae)|§ Nlully = (Ad)
Finally, evoking the Young inequality we get that
2 f=O
[TI < 8llully, + Csllully™®  ¥5>0. (A.5)
We have:
m+2
I = (V) e = =20ullf 4 DY Crpu™ ) dx,
r=3 m

where m|; +---4+m, =6+4+2m —2r.Due to (AS) with§=1/2, f=rand u=m+1,

r=0

3 229 3 o
I < _§||”||r2n+1 + Clluly”° < 3 ||M||,2,,+1 +C(1+ ||u||0(er )),
Next,
iy o] =21 + 3 [ I ax
r m
Hence,

dx,

I = d2Jm(u)[ej, ej] < 2j2m +lejlemilejlcma Zf ém|u(ml)| ... \u(m;)
r,m
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~

whereF =r —2andm|+---+mp =4+42m —2r —m| —mp =: M, M > 0. Note that |e|cr» = j" for each j and n.
Assume first that 7 > 4 and M > 0. Then (A.4) implies that

2 o . —2-@
L <257 4+ Cllully ™ ™ ullg ,

with ® =2 — (?/2)%#
m+ .
By the Young inequality,

_2
L <272 4+ 8llul? .y + Cs(j™M ™2 lully 2 9) =0

. . 2 (m+1
<272 4 8l + Cs 2D (14 Ju ™).

It is easy to see that this estimate also holds for r = 4 and for M=0.
Using in (A.1) with F = J,, the obtained bounds for /1 and I, we get that

d 3 2 4m+1) 22
B0 < =SVEulpy + CvE(1+ ullg™ ™) +v ) Isb]

1 2 2, 1 2 2(m+1 o+
+ 5 SVEull, > b —i—zC,;vass D (1 4 B fJu |3 ).

Choosing § = By and using (A.2) we arrive at the estimate:

d
3 EIm @) < —VElul 1 +vCo,
where C,, depends on B, 1 and M4(n+1).

Applying (A.5) with u© = m to (A.3) we see that

1
Enuui — C(1+ Nulig™) < I @) <20l + C(1+ ullg™). (A.6)
Therefore

e, < = (BJ () — C)
- M \__ - 9
o o Eim b= Em

where C;, depends on the same quantities as C,,. We get that
EJy (u(1)) < max(EJ,, (u(0)), C;,)

for each ¢ > 0. Using (A.6) we obtain (1.5).
Let us take any integers m > 0, k > 1. By the interpolation inequality ||u ||’;1 < Nl lu ||](§_1. Therefore

1/2 2(k—1)\1/2
Elullt, < (Elul2) " Elu)2*") ",

Using this inequality jointly with (A.2) and (1.5) we get the estimate (1.6).
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