
J O U R N A L O F P R O T E O M I C S 1 0 7 ( 2 0 1 4 ) 1 1 3 – 1 2 7

Ava i l ab l e on l i ne a t www.sc i enced i r ec t . com

ScienceDirect

www.e l sev i e r . com/ loca te / j p ro t

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Building and exploring an integrated human

kinase network: Global organization and medical
entry points☆
Jacques Colinge⁎, Adrián César-Razquin, Kilian Huber, Florian P. Breitwieser,
Peter Májek, Giulio Superti-Furga⁎

CeMM—Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT 25.3, 1090, Vienna, Austria
A R T I C L E I N F O
☆ This article is part of a Special Issue entit
Calvete, Natacha Turck, Denis Hochstrasser
⁎ Corresponding authors.
E-mail addresses: jcolinge@cemm.oeaw.a

http://dx.doi.org/10.1016/j.jprot.2014.03.028
1874-3919/© 2014 The Authors. Published
(http://creativecommons.org/licenses/by-nc-
A B S T R A C T
Available online 3 April 2014
 Biological matter is organized in functional networks of different natures among which kinase–
substrate and protein–protein interactions play an important role. Large public data collections
allowed us to compile an important corpus of interaction data around human protein kinases.
One of the most interesting observations analyzing this network is that coherence in kinase
functional activity relies on kinase substrate interactions primarily and not on which protein
complexes are formed around them. Further dissecting the two types of interactions at the level
of kinase groups (CMGCs, Tyrosine kinases, etc.) we show a prevalence of intra-group
interconnectivity, which we can naturally relate to current scenarios of evolution of biological
networks. Tracking publication dates we observe high correlation of kinase interaction research
focus with general kinase research.We find a similar bias in the targets of kinase inhibitors that
feature high redundancy. Finally, intersecting kinase inhibitor specificity with sets of kinases
located at specific positions in the kinase network, we propose alternative options for future
therapeutic strategies using these compounds.

Biological significance
Despite its importance for cellular regulation and the fact that protein kinases feature
prominent targets of modern therapeutic approaches, the structure and logic of the global,
integrated protein phosphorylation network have not been investigated intensively. To
focus on the regulatory skeleton of the phosphorylation network, we contemplated a
network consisting of kinases, their substrates, and publicly available physical protein
interactions. Analysis of this network at multiple levels allowed establishing a series of
interesting properties such as prevalence of kinase substrate interactions as opposed to
general protein–protein interactions for establishing a holistic control over kinases
activities. Kinases controlling many or a few only other kinases, in addition to non-
kinases, were distributed in cellular compartments differently. They were also targeted by
kinase inhibitors with distinct success rates. Non-kinases tightly regulated by a large
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number of kinases were involved in biological processes both specific and shared with
their regulators while being preferably localized in the nucleus. Collectively, these
observations may provide for a new perspective in the elaboration of pharmacological
intervention strategies. We complemented our study of kinase interactions with a
perspective of how this type of data is generated in comparison with general research
about those enzymes. Namely, what was the temporal evolution of the research
community attention for interaction versus non-interaction-based kinase experiments.
This article is part of a Special Issue entitled: 20 years of Proteomics in memory of Vitaliano
Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and
Jean-Charles Sanchez.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

The organization of biological matter into functional networks
with elements of modularity has been identified as key to
warrant the accomplishment of a great variety of biochemical
and cellular functionswith a limited set of gene products [1–4]. In
many instances, molecular networks have been very well
studied, such as in intermediate metabolism, protein interac-
tions and phosphorylation. In eukaryotes, and with the added
layer of dedicated tyrosine phosphorylation, protein phosphory-
lation has evolved as a primary intracellular signaling strategy. It
bears many intrinsic specificities over other posttranslational
modifications, including reversibility, energetic convenience and
the ability of changing polarity of protein surfaces, leading to
allosteric changes as well as governing protein interaction [5]. As
phosphorylation has many biochemical and cellular changes
both as input and as outcome, it induces a network that
intersects with a plethora of biological processes.

Continuous efforts and methodological developments have
greatly augmented our knowledge of how human kinases
interact with other proteins or small molecules. More than
11,000 protein–protein physical interactions (PPIs) involving at
least one kinase can be retrieved from public databases that
compile the individual efforts of a whole community. Different
technologies were used to unravel these data with a strong
contribution of affinity purification-mass spectrometry (AP-MS)
[6–8] and the yeast 2-hybrid (Y2H) system [9,10]. Known kinase
interactions were obtained thanks to amultitude of publications,
which did not necessarily focus on kinases but nonetheless
included some of those enzymes. Recently, dedicated campaigns
mapped human protein kinase interactors specifically and on a
large-scale. For instance, following a tandem AP–MS approach
and using a tetracycline-inducible strep-hemagglutinin tag [7],
the protein complexes formed around 32 commonly expressed
kinases, i.e. kinases found in most cell types, were mapped in
HEK293 cells [11]. Another study employing the same experi-
mental protocol charted the complexes involving CMGC kinases
in an unprecedented whole kinase group-wide effort [12].

Since kinases act primarily by regulating other proteins
through their enzymatic activity, to map kinase PPIs is not
sufficient for understanding their functional relationships. PPIs
inform us on their collaboration with other proteins to form
protein complexes or molecular machines, whereas kinase–
substrate interactions (KSIs) picture what is regulated by their
action.HumanKSIs havebeen studiedmore sparsely thanPPIs so
far, although data exist from several databases and new
large-scale efforts were undertaken. CEASAR, a protein
microarray-based strategy unraveled 3,656 KSIs for 289 protein
kinases [13], bringing the number of known KSIs to more than
8500. Furthermore, computer-inferred KSIs such as the 75,000+
KSIs predicted by NetworKIN [14], exploiting experimental
phospho-proteomic data, known kinase substrate specificity,
and kinase physical and genetic interactions, might provide a
useful complement after stringent filtering before more experi-
mental KSI are measured.

The regulatory function of kinases has been observed to be
deregulated inmany diseases, in particular cancer. Accordingly,
a large number of kinase inhibitors have been developed by
drug discovery laboratories and pharmaceutical companies,
which are mostly small molecules or antibodies. To relate
kinases with their PPI partners as well as their substrates calls
for further annotating such a network with the perturbation
entry points available for disease therapy or chemical biology.
Several large in vitro kinase screens have provided comprehen-
sive and quantitative drug–protein interaction data (DPIs) for a
lot of cancer kinase inhibitors. In this category, 72 inhibitors
were screened against 442 kinases by Ambit Biosciences [15]
and another set of 178 inhibitors against 300 kinases by the
Peterson's group [16]. Furthermore, specialized databases
collect DPIs from a broad range of scientific reports, e.g.
DrugBank [17] (78 DPIs). Finally, chemical proteomics has
emerged as a very interesting, more physiologically correct
alternative to in vitro screens, where immobilized compounds
serve as bait in affinity purifications to identify kinase inhibitor
protein targets in an unbiased and cell type-dependentmanner
[18,19]. This methodology has been applied successfully to
small molecules inhibiting protein kinase activity [20–28].

Altogether, the availability of kinase PPIs, DPIs, as well as KSIs
in unprecedented, large numbers created a unique opportunity
for assembling a kinase-centered network combining these three
kinds of interactions and to perform a global study of kinases in
their environment. We hence collected and integrated data from
the various sources mentioned above and computed such a
network. We started our analysis by examining how protein
interaction information was correlated with classical kinase
research. Investigating the global topology of PPI and KSI
networks we could obtain new insights in how they differ as
well as refine previous hypotheses regarding the existence of
global kinase communication ways. We finally investigated how
existing kinase inhibitors actually cover different classes of
kinases and how KSIs might help exploring new therapeutic
approaches.
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2. Materials and methods

2.1. Statistical analyses and data representation

All statistical analyses were performed with the R system
(www.r-project.org). Cytoscape [32] was used to prepare
network representations.

2.2. Construction of the network

The list of human kinases with kinase group assignment
was downloaded fromUniProt web site andwas comprised of
508 kinases. Assignment to kinases families (sub-groups) was
obtained from kinase.com web site [29]. Binary PPIs were
collected from several public repositories: IntAct [30], MINT
[31], InnateDB [32], DIP [33], HPRD [34], MatrixDB [35]. Binary
PPIs were generated following the spoke model in the case of
AP-MS data. PPIs were also obtained from two repositories
describing protein complexes: CORUM [36] and NCI PID [37].
We used the matrix model to obtain binary interactions in
this case. Experimentally determined KSIs were obtained
from IntAct, PhosphoSitePlus [38], and Phospho.ELM [39]
databases along with Newman et al. [13] supplementary
material. Computational inferences of KSI were retrieved from
NetworKIN [14] website. DPIs were compiled from DrugBank
[17] (inhibitors of human protein kinases only), in vitro kinase
screens [15,16], and several chemical proteomics publications
[20,23–25,27].

All interaction datasets downloaded from public databases
were obtained from the versions available on the 10th of January
2014. Only human-human interactions derived from physical
association methods were retained. UniProtKB/Swiss-Prot [40]
human protein sequences were downloaded on the same day
and all protein accession codes mapped to Swiss-Prot and
updated to the current primary accession code to avoid
duplications that can typically account for 2–5% of the proteins
when public databases aremerged directly. Management of the
PPI downloads was operated by a database system implement-
ed in-house using Postgres and Perl.

DPIs and KSIs were downloaded manually and further
processed by dedicated Perl and R scripts. Computational KSIs
were filtered by comparing with experimental data, see Results
and discussion. DPIs were also submitted to filtering. In vitro
screen data were imposed a maximum cut-off of 1000 nM (Refs
[15,27]) and 50% of remaining activity (Ref. [16]). Chemical
proteomics data, except Ref. [27], were taken as filtered in the
original publications (Refs [20,23–25]).We further extracted a list
of strong interactors by first requiring more stringent thresh-
olds (100 nM for Ref. [15]; 200 nM for Ref. [27]; 25% remaining
activity for Ref. [16]; no addition for Refs [11,14–16]). In addition,
for each compound in each dataset separately, targets had to be
either outliers with the strongest affinity or hits with an affinity
not worse than 5 times the most potent target (References
[15,16,27]) or 10 times the most potent target (References
[20,23–25]). Outliers were defied by the boxplot.stats function
of R (default parameters). DPIs from DrugBank were not
considered as strong in the absence of affinity measures but
weadded to the strong target list the primary targets reported in
Davis et al. [15] irrespective of the filters above.
2.3. Random networks

We generated two types of random networks to assess the
significance of different topological features. A first operation
consisted in selecting random nodes from our reference
network reduced to PPIs only (Section 3.4). This selection
was done to achieve similar node degree distribution and
repeated 1000 times. PPI degrees of all kinases in the reference
network were extracted and the probability of selecting
non-kinase nodes randomly was adjusted to obtain a set of
nodes, same number as kinases in the reference network,
having the same degree distribution. If kinases with degree d
represented x% of the kinases, then the probability to draw a
non-kinase node with degree d was set to x%. A second type of
random network was generated for evaluating the hierarchical
nature of KSI-mediated kinase-kinase interactions (Section 3.5).
In this case, we did not generate random selections of sub-
networks as above but instead generated 200 full networks
whose nodes followed the original degree distribution. Thiswas
achieved using the randomNodeGraph function of the graph R
package, which implements the algorithm of M.E.J. Newman
[41]. Self-connectednodeswere removed anda correction factor
applied to compensate for the resulting slight reduction in the
number of edges.
3. Results

3.1. Reference network

We assembled a comprehensive reference interaction net-
work by incrementally adding the three kinds of interactions
we considered in this work (Fig. 1A), starting with all PPIs we
retrieved from public sources; see Materials and methods. We
eliminated redundancy and PPIs of proteins with themselves
that cannot be recognized as real or technical artefacts, e.g. in
AP-MS where a bait is almost always detected in its pulldown.
A total of 104,964 PPIs linking 13,347 proteins was collected.

In the next step, we added KSIs considering experimental
KSIs first. In case an experimental KSI overlapped a PPI, the
interaction was considered KSI. We then further proceeded
with computational KSIs (compKSIs) obtained fromNetworKIN,
which makes available a large set of such predictions (75,275
compKSIs). Asmanynewexperimental KSIs have been released
since NetworKIN inferences were computed, we decided to
exploit experimental KSIs to filter computer predictions.
NetworKIN compKSIs were associated with three scores (con-
text, motif, and ranking scores) which were potentially corre-
lated. We therefore submitted the whole collection of 75,275
triples to principal component analysis (PCA), a classical
statistical procedure to reduce data dimensionality in the
presence of redundancy. The result (Fig. 1B) showed that the
first two principal components described 97% of data variability
(bottom left bar plot). That is, the 2-dimentional projection of
the data captured information available in the three NetworKIN
scores almost completely. We observed that motif and ranking
scores were highly redundant (co-linear in the plot, Fig. 1B
bottom right), meaning that the context score and e.g. themotif
score were sufficient to describe confidence in compKSIs.
Plotting the 943 experimental KSIs overlapping NetworKIN

http://www.r-project.org
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Fig. 1 – Construction of a protein kinase-relevant interaction networks. (A) Multiple sources of interaction data were integrated
combining protein–protein interactions (PPIs), kinase to substrate interactions (KSIs) and inhibitory drug to kinase interactions
(DPIs). (B) To complement experimentally determined KSIs, we included filtered in silico KSIs from NetworKIN. Principal
component analysis of the three scores provided by NetworKIN and intersection with experimental KSIs (red) identified a
well-defined score range to filter NetworKIN KSIs. Variance explained by the principal components (bottom left) and
orientation of the original coordinates in the space spanned by the first 2 principal components (bottom right). (C) The resulting
reference network.
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predictions in red, we could clearly observe a rather localized,
parallelogram-shaped area. A simple filter could hence be
designed: we imposed two independent thresholds to the
context and motif scores such that 90% of the experimentally
supported compKSIs were above each limit. This filter retained
14,905 compKSIs out of theoriginal 75,275. Altogether,weadded
8,539 experimental KSIs, linking 405 kinases to 2,774 substrates,
and compKSIs raised these numbers to 23,444 KSIs, linking 409
kinases to 3,941 substrates.

DPIs fromdistinct sourceswere filtered separately due to the
diversity of the screeningmethods; see Materials andmethods.
This resulted in 8,046 DPIs representing clear affinities between
476 kinases and 205 compounds. The reference network we
assembled (Fig. 1C) included 14,176 proteins among which 487
kinases.

3.2. Accumulation of knowledge in kinase interaction research

Collecting PPI data from multiple sources, we kept track for
each of the PubMed ID (PMID) and the year of publication. In
combination with a resource provided by the NCBI that links
genes to publications (gene2pubmed, ftp://ftp.ncbi.nlm.nih.
gov/gene/DATA/), we could investigate how the community
focused its attention to kinases comparing dates of general
publications with publications disclosing kinase PPIs from
1975 to 2013. By summing the number of publications of
each type for every kinase, we observed a strong correlation
between general knowledge and knowledge about interaction
partners (Fig. 2A). This means that popular and well-studied
kinases were predominantly selected for performing PPI
experiments, network biologists aiming at further character-
izing “well-known” kinases. This was certainly due to the
rather recent emergence of PPI mapping technology, which
was naturally directed towards questions already identified as
the most important ones instead of embarking in systematic
exploration. Interestingly, this trend might change soon as
unbiased, systematic studies are emerging [12].

We then wanted to know whether information about kinase
PPIs was acquired following different modes such as very
intensive early studies followed by no activity afterwards or
constant but less intense attention. We therefore considered
cumulative time courses counting how many general versus
PPI-disclosingpublicationswere releaseduntil a certain timepoint
(Fig. 2B). The end-points of those curves were the dots of Fig. 2A
(full totals). We clustered the cumulative time courses using the
K-means algorithm and found no distinct modes. For instance,
K-means applied to the generation of 3 clusters showed that
the only differences were in the total amount of information

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
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available. The shapes of the cumulative time courses were highly
similar otherwise. To apply K-means specifying more clusters
did not change this result. We hence concluded that not only the
level of attention in kinase PPI research followed closely the oneof
general kinase research but this relationship remained rather
constant over time. It will be interesting to see if further
development of PPI mapping technologies will change this in
the future.

We asked one further question to our data, which was
whether a bias existed at a finer level. Given the prevalent role
of kinases in cancer, we classified kinases as cancer kinases
and non-cancer kinases. Two different sources were used: the
COSMIC cancer gene census [42], which identified 41 kinases;
KEGG [43] cancer pathways, which contained 72 kinases (25
shared with COSMIC census). The level of attention to cancer
versus non-cancer kinases in general research as opposed to
PPI mapping was measured by the total number of publica-
tions available for the respective kinase classes. In Fig. 2C
(first two columns), one can read that PPI kinase research was
much less biased towards cancer than general kinase research.
In the case of PPIs, kinase interactions could be measured
without choosing a kinase as bait. That is, information was
acquired without a kinase being in the original research focus.
Consequently, we repeated our analysis only considering
publications disclosing kinase interactions where the kinase
was the bait and we found the same trend (Fig. 2C, third
column).

We finally wanted to assess whether the trend by which
kinase PPI datawere highly correlatedwith general information
about kinases was not biased by protein abundance. Namely,
one could imagine that abundant kinaseswereeasier to analyze
and to discover. Therefore, the correlation observed would
mostly reflect this practical difficulty. For the purpose of this
study, we defined as low abundant or seldom expressed the
proteins found in 3 or less of the 11 cell line proteomes recently
published by the Mann's group [44], where more than 10,000
proteins were identified in each proteome. We indeed found a
lower correlation (R2 = 0.33 instead of 0.60, Fig. 2A) for such
proteins, definitely indicating the presence of a bias but the
correlation remained clearly positive and significant. The
cancer versus non-cancer kinase analysis (Fig. 2C, last column)
stayed unchanged.
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3.3. How do kinases connect to the human interactome

Fig. 1C visually suggests that kinases (red and yellow) and
their substrates (blue) tend to occupy more central positions.
We wanted to investigate this global aspect more precisely
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Compared to an average human protein, a kinase was more
connected with other proteins (Fig. 2A) to participate in more
protein complexes most likely. It has been already observed
that commonly expressed proteins tend to have more PPIs
[46,47]. Here, we defined commonly expressed as detected in
all of the 11 proteomes by Geiger et al. [44]. This definition
certainly reflected both an important function required by
most cells and an abundance level not too low. We could
repeat the observation of higher connectivity in our network
and further remark that within the kinase family the same
trend existed, i.e. common kinases participated in more PPIs
(Fig. 2A).

Turning our attention to kinase substrates, we performed a
similar analysis and found that they also tended to be more
connected with other proteins through PPIs (Fig. 2B). To
ensure that this trend would not be caused by the two thirds
of computationally derived KSIs we repeated the analysis for
experimental KSIs only and observed the same bias. As
expected, commonly expressed substrates had even higher
connectivity. No correlation was observed between kinase and
their substrate PPI connectivity (Fig. 2C, adjusted R2 = 3E−5;
same result for experimental KSI only).

3.4. A kinase–kinase network

After having considered kinases within the whole human
interactome, it was a natural subsequent question to ask our
data whether kinases – as a whole – evolved their direct
interactions to collaborate with each other (PPIs) and to operate
internal control and regulation (KSIs). It has been suggested that
through PPIs kinases might establish some significantly dense
sub-network in yeast [48] or in human [12] (restricted to CMGC
kinase data in the latter case). We hence tried to assess the
existence of this phenomenon at the level of the whole kinase
family and distinguishing for the first time PPIs and KSIs, which
represent very different forms of interaction.

Starting with PPIs, we first adopted a global perspective by
marking all the proteins in interaction with one kinase at
least. This represents what the whole kinase family can
interact with. Among the latter proteins, we counted the
numbers of kinases and non-kinases and computed the ratio
of these two counts obtaining 0.08. This ratio was close to
what was reported for CMGCs only (44/652 = 0.07) [12]. The
number of non-kinase proteins in contact with at least one
kinase is thus much larger than the number of kinases (1/
Fig. 3 – Connectivity of kinases. (A) Kinases tend to have more PP
augmented for commonly expressed kinases that are identified
substrates. Substrates known from experimental data only have
correlated with the one of its substrates. (D) Cooperation with ot
human proteins including 8% of kinases (red line), which is muc
the contrary, the average ratio of PPIs linking an individual kina
than expected by chance. (E) Regulation (control) of other protein
kinases control other kinases significantly more than expected by
whichwe could obtain interaction data (487). Colors associated to
cooperation (PPIs) within and across kinase groups. Since a few
featured edges with at least 3 PPIs and P-value <0.5 as dashed li
self-connection (Tyr to Tyr) was supported by such a large numbe
plot the network.
0.08 = 12.5 times). Nonetheless, 8% was much more than the
2.5% of human genes coding kinases. To properly evaluate
whether this ratio was unexpectedly large required careful
statistical modeling. As a matter of fact, we saw that kinases
had more PPIs than an average human protein, which could
artificially bias the observed ratio. Selecting 487 proteins – the
number of kinases in our network – randomly that followed
the same connectivity distribution as kinases (Materials and
methods) we confirmed higher inter-kinase PPI density
(Fig. 3D top). To gain deeper insight in the topology of the
kinase–kinase PPI network, we repeated a similar analysis but
at the level of individual kinases. It turned out that the
average ratio kinase versus non-kinase PPIs was not increased
(Fig. 3D bottom). This revealed that PPI-mediated collabora-
tion across kinases is not the rule although a certain number
of kinases are sufficiently well-connected to other kinases via
PPIs to reverse this bias when considering all the kinases as a
single entity as we did above in our global analysis. The 10
most PPI-connected kinases were SRC (32 PPIs with other
kinases; 228 in total), EGFR (29;357), FYN (25;244), MAP3K7
(21;107),RAF1 (18;82), ERBB2 (18;180), ERBB3 (18;105), LYN
(18;80), ABL1 (17;209), and IKBKB (16;102). Among this list
LYN, RAF1, ERBB3, MAP3K7 and IKBKB had a very large
number of PPIs with other kinases, typically more than 20%
of their interactions. For comparison, the more PPI-connected
kinases in general were EGFR, IKBKE (341 PPIs), FYN, SRC,
ABL1, PLK1 (185), ERBB2, MAP3K3 (178), GSK3B (174), and
PRPF4B (173).

Considering KSIs, we performed similar calculations as
above and we found that the part of the proteome globally
covered as substrates of kinases was significantly enriched in
kinases (Fig. 3E top). Reducing the data to the sole experi-
mentally derived KSIs confirmed this result (same figure). At
the individual kinase level, we also found significant over-
representation of kinases as substrates of other kinases
(Fig. 3E bottom; same result for experimental KSIs).
Intra-kinase control or regulation is thus distributed across
all kinases and is not the fact of a few global controllers only, a
clear difference with PPIs.

The kinase–kinase network combining PPIs and KSIs is
depicted in Fig. 3F, where we notice that commonly expressed
proteins again seemed to concentrate at the center and
kinases of the same groups to be closer to each other. The
actual higher connectivity of commonly expressed kinases
and substrates is reported in Fig. 3A and B. To evaluate
Is with other proteins than average and this trend is further
in almost all cell types. (B) Similar observation for kinase
the same bias (cyan). (C) The number of PPIs of a kinase is not
her kinases. Globally, the pooled kinase PPIs touch a set of
h more than expected by chance (black null distribution). On
se to other kinases versus non-kinases is significantly less
s through phosphorylation. Both globally and individually,
chance. (F) Kinase–kinase network linking all the kinases for
each kinase group are given in panels G and H. (G)Analysis of
interconnections only were significant (P-value <0.05) we
nes. (H) Same analysis for regulation (KSIs). One
r of KSIs (417) that it was outside the line width scale used to
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whether inter-group connectivity preference truly exists, we
decomposed the interactions (Fig. 3G and H). Taking into
account the group sizes, the total number of kinases in the
network, and the number of interaction between two groups,
or within a single group, we could identify stronger than
expected by chance interconnections (hypergeometric test).
Most significant PPIs interconnections took place within single
groups. In the case of KSIs, we obtained a lot more significant
interconnections across two groups although the ones within
a group were among the strongest. As we already did, we
confirmed this result considering experimental KSIs only (data
not shown).

The observation of significant interaction among kinases
through KSIs at the level of individual kinases (Fig. 3E bottom)
suggested an evolution of KSIs between kinases to globally
coordinate the activity of these enzymes. We considered the
kinase–kinase network spanned by KSIs only, which we name
KSI kinasenetwork, andobserved that it hada scale-free, or small
world, topology [45,49] (Fig. 4A, black dots) that is commonly
observed in biological networks: a few highly-connected hubs
and a majority of less connected nodes. Because kinases have a
dual role in this network, being either substrates or enzymes, we
wanted to explore the existence of a relationship between the
network topology and a prevalent enzymatic or substrate role.
Selecting kinases that play the role of the enzyme towards other
kinases in >80% of their KSIs, we recognized immediately
important signaling cascades (Fig. 4B). We asked our compiled
data whether the complete integration of the effect of all
signaling and regulation pathways by kinases on themselves
would preserve a global structure. The observation that “as
enzyme” KSIs and “as substrate” KSIs also induced a scale-free
topology (Fig. 4A, red and blue dots) already indicated that a
specific structure exists at the functional role level. In order to
further ascertain its existence, we compared how kinases that
control many other kinases, and are themselves less controlled,
connected with other kinases in the real KSI network and in
artificial networks with correct topology but random enzymatic/
substrate roles. Sorting the kinases from full controllers (always
phosphorylating other kinases) to fully controlled (never
phosphorylating other kinases) and counting how many times
one kinase has kinase substrates that are less controllers than
itself (Fig. 4C), we found a significant difference in the real data
(Fig. 4D); see also Materials and methods. Kinase controllers
thus influence the rest of the kinase activities significantly.
Kinases that had less than 5 substrates known (not only
kinases) were excluded from the simulation to limit the impact
of absent data, which left a KSI network of 357 kinases and 2698
interactions. Identical results were obtained using experimen-
tal KSIs only (data not shown).

3.5. Kinases and non-kinases occupying special positions in
the phosphorylation network

The demonstrated existence of a global organization with
kinases through KSIs called for the selection and inspection of
specific sets of kinases, defined by how they were positioned
with respect to the rest of the network. For this purpose, we
decided to further increase the requirement on data reliability
by only considering experimental KSIs and to limit our study to
kinases for which at least 10 such KSIs were available, i.e. a
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rather precise appreciation for their connectivity was possible,
which left us with 168 kinases.

A first set we defined were kinases seldom or never regulated
by other kinases (in >80% of their KSIs they play the role of the
enzyme). We identified 143 such proteins and named this set
controllers. Then, considering KSIs between kinases, we defined
kinase controllers that had >80% of their KSIs towards other
kinases (KSIs towards non-kinase substrates did not count for
this second set). We found 57 kinase controllers, which were all
included in the controller set (Fig. 5) meaning that kinase
controllers are not specialized in this function andhence connect
the kinase network to the rest of the interactome. A dual set to
the kinase controllers were the 23 controlled kinases that play the
role of a substrate in >80% of their KSIs with other kinases. Some
of them were also controllers having a large number of
non-kinase substrates (Fig. 5). We further defined a set of 46
kinases that have a comparable number of KSIs as substrates or
enzymes (enzymatic role inbetween1/3 and2/3 of their KSIs).We
named them kinase integrators to indicate a potential function
integrating and propagating multiple signals within the kinase
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network. As it was the case for the controlled kinases, part of the
integrators turned out to be controllers as well (a majority in this
case). Highly-controllednon-kinasesweredefinedas theproteins
with the largest number of distinct kinases phosphorylating
them (top 5%, 122 proteins).

To contrast the different sets we submitted them to GO term
[50] analysis. Controllers were localized predominantly in the
cytosol, differentmembranes, Golgi, and also in the nucleus but
clearly less than in the cytosol. Kinase controllers and integra-
tors, and controlled kinases were in membranes and the
cytosol. Highly-controlled non-kinases were predominantly
located in the cytosol though also present in the nucleus
(reverse distribution compared to controllers); they were
specifically associated with transcription factor complexes
and nuclear euchromatin. In terms of function, the four kinase
sets associated with all types of kinase activities and signaling
cascadeswith a nice decrease from controllers (strongest) down
to controlled kinases (weakest). Controllers and kinase control-
lers were also enriched in transmembrane receptors, growth
factor binding. Highly-controlled non-kinases had a strong and
specific association with RNA and DNA binding, and transcrip-
tion. Immune response and innate immunity pathways were
strongly represented in controllers and kinase integrators (TLR
signaling). Highly-controlled non-kinases were also involved in
immune system processes. Apoptosis and cell proliferation
very significantly included the latter non-kinases as well as the
controller set. Finally, complementing the preferential nuclear
localization and nucleic acid binding specificity of the highly-
controlled non-kinases, we found a strongly association with
DNA damage signaling and DNA repair.

Compiling the genes annotated to be tumor suppressor or
oncogenes in GSEA MSigDB [51], or listed in COSMIC cancer
gene census [42] we found an intersection with 24 highly-
controlled genes (P < 4E−14, hypergeometric test).

3.6. Kinase inhibitors, the modulating medical entry points

Given the implication of kinases in a large number of disorders
[52], numerous kinase inhibitors have been developed to
modulate these enzymes as curative agents. Early and extreme-
ly successful examples such as imatinib (Gleevec®), aimed at
treating chronicmyeloid leukemia, were introduced as targeted
therapies against a specific kinase (the fusion protein BCR-ABL
in this example). Later investigations unraveled the existence of
several targets beyond BCR-ABL for this compound, even
including a non-kinase (NQO2) [25], and more generally kinase
inhibitors tend to be promiscuous compounds [15,20,25]. It is
therefore difficult to provide a clear picture ofwhich kinases are
specifically and potently targeted by whichmolecules, separat-
ing many tool compounds, approved drugs, and molecules in
clinical development or only disclosed in patent applications.
For the purpose of this study we preferred to capture trends
reflecting the interest of the drugdevelopment community and,
to a certain extent, the difficulty in targeting certain kinases.
Our reference network contained compiled data from large in
vitro screens and chemical proteomics that were filtered
according to criteria indicating clear inhibition of a kinase by a
compound. Here, we needed to define reasonable, more
stringent criteria to relate each compound to “strong” targets,
i.e. targets for which potency compared to other targets of the
same molecule was significantly stronger thus making the
compound a likely selective inhibitor for these selected targets
(Materials and methods). We obtained a strong target list
comprised of 218 kinases interacting with 170 compounds and
forming 1261 DPIs. Reporting the number of times a kinase is a
strong target for distinctmolecules (Fig. 6A) shows a very biased
attention of drug development across kinase groups and
specific enzymes. A similar figure was reported previously [53].

With respect to the four kinase sets we defined previously
(Fig. 5) we observed numerous examples of kinases not
targeted by any compound suggesting many unexplored
therapeutic options for future inhibitor development. Each
had a comparable number of strongly targeted kinases but
taking into account the multiplicity of compounds strongly
targeting each kinases (heights of bars in Fig. 6A), we observed
significant differences: controllers that were not kinase
controllers were strongly enriched (P < 3.4E−6, Fisher exact)
as well as kinase integrators (P < 1.3E−8), most of which as
controllers. Controlled kinases were not found to be favored
drug targets. We further broke down target biases to the
kinase family level and identified PDGFR (P < 1.1E−15), Trk
(P < 3.2E−4), NEK(6.9E−4), VEGFR (P < 1.3E−3), Abl (P < 4.9E−3),
and EGFR (P < 5.7E−3).

To illustrate how a kinase network such as the one we
assembled might actually support the implementation of new
paradigms in the application kinase inhibitors in cancer
therapy, we drafted a strategy to circumvent aberrant behavior
of mutated non-kinases. The tumor suppressor adenomatous
polyposis coli (APC) has been found to be involved in several
tumors whenmutated (gastric and colon cancers, medulloblas-
toma, hepatocellular carcinoma, etc.) [54,55]. As indicated in
Fedorov et al. [53] APC is difficult to modulate through small
molecules and signaling around this protein could be a
preferable target for therapy. From our reference network we
collected all PPIs relating APC to its functional context (Wnt and
JNK signaling, cell migration) and retrieved 114 proteins, all
non-kinases (Fig. 6B).We subsequently found 85 kinases having
experimental KSIs with at least one of these proteins (35/144
APC neighbors). The two kinases CDK2 and SRC had the largest
number of substrates and covered together 18/144 of the APC
partners. One could thus propose to disrupt with maximum
efficacy the environment of APC by composing a combined
therapy with SRC and CDK2 inhibitors. Dual CDK1 and CDK2
inhibitors would also be an option to explore.

3.7. Discussion and conclusions

We compiled a large corpus of interaction data around human
protein kinases and performed an initial characterization of
this broad kinase network. Our results are based on available
data and clearly may be affected by experimental bias of the
underlying technologies. Yet, we feel confident that the
general trends observed here are properties of the network
too robust to be changed dramatically by acquisition of
additional knowledge in the future.

The analysis of how information was acquired in kinase
research comparing network biology efforts identifying pro-
tein–protein interactions with classical methodology showed
that a clear correlation exists between the two (Fig. 2A).
Network-orientated work has been so far directed as a
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complement and this trend was stable over the time period
for which we had data, i.e. 1975–2013 (Fig. 2B). A different
picture was provided confronting the acquisition of cancer
versus non-cancer kinase protein interactions, where we
observed a clear departure of kinase PPI mapping from
mainstream activity (Fig. 2C). This could be regarded as a
contradiction due to the general positive correlation. We
believe that this shift was first caused by a difference in the
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scope of studies realized by the network biology community
where authors frequently aim at characterizing an entire
pathway or a set of related protein complexes, which causes
the inclusion of additional baits, kinases in our case, that are
not immediately associated with cancer if cancer was the
object of the study. Furthermore, a second, confounding effect is
introduced by our partial knowledge of which kinases are
cancer-related and to which extent. The boundary between
cancer and non-cancer genes remains incompletely character-
ized and might be more diffuse than previously thought. The
increase in maturity of AP-MS and Y2H methods together with
the necessary bioinformatics [11,56–58] will surely foster global,
unbiased kinase PPI mapping projects eventually covering the
dynamical nature of kinase interactions [26]. The contribution of
such future data might alleviate the correlation with classical
biochemistry letting interaction mapping becoming a driving
force in positioning research attention.

Kinases are interacting entities by essence that both establish
interactions with other proteins to form complexes, where they
provide their enzymatic function, and with their substrates
whose activity they modulate. Analyzing the two types of
interactions separately and comparing the results unraveled
specific properties and notable differences. PPI data suggested
that kinases operate the modulation of their substrates by
participating in more protein complexes than average human
proteins (Fig. 3A), this trend being further increased among
kinases commonly expressed by many distinct cell types. This
probably reflects an evolution of kinase PPIs that favored the
modular reuseof a limited repertoire of enzymatic specificities by
creating a multitude of molecular machines, where relevance
for a certain cell type, cellular compartment, or condition
was contributed by the non-kinase subunits of the complexes,
e.g. adaptor or protein bearing binding domains. Substrates
themselves tended to be more PPI-connected than average
proteins (Fig. 3B), which could implicate another level of
evolutionary selection to more tightly modulate multifunctional
proteins activities. Absence of correlation between kinase and
their substrates PPI degrees (Fig. 3C) excluded a trivial technical
bias e.g. caused by protein abundance to be the reason for kinase
substrate increased PPIs in our data. We also found that
commonly expressed kinases did not have more KSIs thus
indicating the existence of cell type-specific kinases, rarely or
low expressed, that can drive large biological processes viamany
substrates upon activation.

Considering kinase to kinase PPIs, other authors raised the
hypothesis of existence of a so-called “kinase highway”
[12,48]. Although we found a significantly high number of
kinase–kinase PPIs by pooling all kinase PPIs as one set, this
observation did not hold true at the level of individual kinases
(Fig. 3D) meaning that on average a kinase does not bind to
more other kinases than expected by chance. We actually
made the opposite observation: kinases bound significantly
less other kinases than expected by chance. This observation
makes sense since the kinase enzymatic function is only
required once in a protein complex in general. A few kinases
highly PPI-connected to other kinases contributed the global,
pooled bias obviously and our data did not support the concept
of a PPI-based kinase highway. Turning our attention to KSIs,
which logically would be more appropriate to provide the
necessary mechanism for creating ways of communications,
going beyond individual signaling cascades, we could in-
deed prove the existence of such a global structure (Figs. 3E
and 4).

The evolution of an ancestral kinase domain gave rise to
several groups of kinases (CMGCs, tyrosine kinases, CAMKs,
etc.), themselves decomposed in families [29]. Identifying
significantly increased connectivity within and across kinase
groups via PPIs and KSIs, we realized that within group
interactions composed an enriched network motif (we could
repeat this observation at the finer kinase family level, data
not shown). Across group connectivity was not enriched in
PPIs but it was in KSIs to a great extent, thus further
supporting the importance of the KSI network. The mecha-
nism by which intense interactions within groups emerged
could be explained by classical models of protein interaction
network evolution, for instance the duplication and diver-
gence (DD) model [59]. Duplicated kinase genes originally
preserved their PPI interface with other proteins, which later
evolved differentially between the two duplicated genes.
Since in many cases the two kinases continued to be involved
in the same or related biological processes, evolutionary
pressure maintained a high rate of shared PPIs. Obvious
examples are provided by kinase families such as CDKs
regulating the cell cycle. The same rational can be proposed
to explain KSI enrichment within groups – and families – by
preserving substrate specificity after gene duplication. The
ability to phosphorylate kinases of the same group or family
would be acquired by the necessity to coordinate protein
activity of related biological processes. This phenomenon
could have been favored when the original kinase – before
duplication – was able to autophosphorylate thus providing
the two kinases obtained after duplication with the capability
to cross-phosphorylate.

We decomposed the KSI network in several sets occupying
particular positions of its topology (Fig. 5) e.g. distinguishing
general controller kinases whose activity was not or seldom
modulated by other kinases. We opposed them to the set of
non-kinase proteins that were most regulated by kinases
(substrates of the largest number of distinct kinases). The
general controllers were predominantly located in the cytosol
though also present in the nucleus, whereas the highly
controlled non-kinases were clearly more present in the
nucleus. The general controllers were further enriched in
membranes being often transmembrane receptors. A strong
association with apoptosis, cell proliferation, and the innate
immune system, e.g. TLR signaling, was shared by controllers
and highly-controlled proteins. In addition, the latter were
specifically involved in RNA and DNA binding, transcription,
and DNA damage signaling and repair.

Kinase inhibitors represent one of the major classes of
therapeutic agents. They tend to be promiscuous molecules
[15,16,25] and despite their multiplicity only part of the
kinome has been so far targeted with some specificity and
potency (Fig. 6A) [53], leaving open a broad range of options for
future research. Similar to kinase interaction research, the
drug discovery community has biased its attention to a
limited number of kinases identified as important targets
without pursuing systematic efforts. In terms of the classes of
kinases targeted we found PDGFRs to be the most favored
kinase family and, more generally, the general controllers
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discussed above to be preferred. Interestingly, distinguishing
among the general controllers a subset of kinase controllers
that had a large number of other kinases as substrates in
addition to non-kinases, we showed that successful mole-
cules tended to avoid kinase controllers. We hypothesize that
the inhibition of such kinase controllers might induce very
deep changes in cells due to a cascade of phosphorylation
pattern alterations.

This work may bear interesting stimuli for theoretical
evaluations of therapeutic interventions. To start with, con-
trolled kinases and highly-controlled non-kinases could well
represent ideal biomarkers that may integrate a variety of
signaling states across the kinase network. Strategically chosen,
themodification state of a few good such receivers of phosphor-
ylation signaling might have superb diagnostic property. Conse-
quently, they may also offer convenient systems-level readouts
for phenotype-based drug discovery campaigns. For what
regards targeted therapy, mono- or polypharmacological modu-
lation may well be instructed by the logic of the kinase network.
For example, simultaneous inhibition of kinases heavily con-
nected to other kinases may be too prone to catastrophic events
common to many cell types, while simultaneous targeting of
global controllers that do not regulate other kinases directlymay
represent perfect therapeutic windows, being more cell–cell
context or cell–environment-specific. Furthermore, access to
high-resolution, possibly cell type and cell state-dependent KSI
maps, would allow the combination of kinase inhibitors in
therapies targeting non-kinase mutated proteins by operating
intense and surgical disruption of their functional environment
as we imagined for APC (Fig. 6B).

One of the most interesting observations of the current
analysis is that coherence in the kinase network relies on KSIs
primarily and not on PPIs. While experimental bias may play a
role, this also indicates that the primary signaling logic
involving kinases is intrinsically linked to their enzymatic
property and one might wish increased attention of the
proteomics community to rapidly complement our knowl-
edge. The accurate measure of phosphorylation sites will not
be sufficient. Certainly, more attention to dynamic aspects of
protein-protein interaction in the coming years of increased
resolution in proteomics experiments will help better model
the interface of PPI and KSI networks. Integration with
phosphatase specificities and additional regulatory networks
induced by other posttranslational modifications such as
acetylation, ubiquitination, or SUMOylation, all possibly
overlapping [60], will shed light on the many forces contrib-
uting to the evolution of kinases sociology.
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