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A b s t r a c t - - M o s t  of public-key cryptosystems rely on one-way functions, which can be used to 
encrypt and sign messages. Their encryption and signature operations are based on the computation 
of exponentiation. Recently, some public-key cryptosystems are proposed and based on Lucas func- 
tions, and the Lucas sequences are performed as S = V(d)modN. In this paper, we will transform 
the concept of addition chains for computing the exponentiation evaluations to the Lucas chains 
for computing the Lucas sequences. Theoretically, the shorter Lucas chain for d is generated, the 
less computation time for evaluating the value V(d) is required. Therefore, we proposed a heuristic 
algorithm for evaluating a shorter Lucas chain and then use it to compute the Lucas sequence with 
less modular multiplications. (~) 1999 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - A d d i t i o n  chain, Cryptosystem, Signature scheme, Lucas chain. 

1. I N T R O D U C T I O N  

In  1976, Diffie and  He l lman  p roposed  the  pioneer ing concept  of publ ic -key  c r y p t o s y s t e m s  [1] and  

the  key exchange  scheme based  on discre te  logar i thms  over a Galois  field GF(P). Afte r  t he  idea  

was in t roduced ,  Rives t  et al. proposed  the  most  promis ing  publ ic -key  c r y p t o s y s t e m  [2]. T h e  

R S A  scheme is based  on the  diff iculty of fac tor iza t ion  problem.  These  m e t h o d s  are  requi red  to  

c o m p u t e  t he  m o d u l a r  exponen t ia t ions .  

Recent ly ,  S m i t h  and  Lennon p roposed  a new publ ic -key  sys tem,  the  Lucas  c r y p t o s y s t e m  [3,4], 

which  uses a new one-way funct ion based  on Lucas  functions.  T h e  Lucas  sy s t em appl ies  a specia l  

t y p e  of second-order  l inear  recurrences  to  c ryp to sys t ems  and s igna ture  schemes. For  example ,  t he  

E I G a m a l ' s  publ ic -key  c r y p t o s y s t e m  and its d ig i ta l  s igna ture  [5] can be  i m p l e m e n t e d  by  the  Lucas  

func t ion  [6,7]. Fu r the r ,  Diff ie-Hellman key d i s t r ibu t ion  [1] can also be cons t ruc t ed  based  on the  

Lucas  funct ions .  S m i t h  and  Lennon po in ted  ou t  t h a t  the  reason of using Lucas  funct ions  ins t ead  

of e x p o n e n t i a t i o n s  is i ts c ryp tog raph i ca l  s t rength .  I t  is much s t ronger  t h a n  or a t  leas t  as s t rong  

as the  e x p o n e n t i a t i o n - b a s e d  systems.  In  1995, Bleichenbacker  et al. publ i shed  some r emarks  

on Lucas -based  c r y p t o s y s t e m s  [8] and  po in ted  out  t h a t  some Lucas  sys tems  are  vu lne rab le  to  

s u b e x p o n e n t i a l  t ime  a t tacks .  Of course,  i t  is l ikely to  spa rk  a subs t an t i a l  d e b a t e  concern ing  the  
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security of their schemes. At the same year, Laih et al. analyzed the security of Lucas function [9], 
and showed that  its security is polynomial-time equivalent to the generalized discrete logarithm 
problems. 

On the other hand, several researches on fast exponentiation evaluation have been proposed. 
Knuth presented a simple square-and-multiply method [10] based on the binary representation of 
the exponent. Yacobi uses addition chains [11] to reduce the number of multiplications. However, 

to find the shortest addition chain has been shown to be an NP-complete problem [12]. Similarly, 
some researches are concerning the fast computation of Lucas functions. To efficiently evaluate 
the Lucas values, it is important  to find the shortest Lucas chain, which is the same as addition 
chains and is also a hard problem. In 1995, Yen and Laih proposed two algorithms by scanning 
the binary form of the exponent and sequentially evaluate the Lucas sequence [13]. Now, we 

will propose a heuristic method for finding a Lucas chain and then compute the Lucas sequence. 

The computation of modular multiplication is reduced and the Lucas values can be evaluated 
efficiently. 

The proposed paper is organized as follows. In Section 2, we review the Lucas functions and 
the relative computations. In Section 3, we develop a method to generate Lucas chains and use 
it to compute the Lucas sequences. The discussions and applications will appear in Section 4. 
Finally, we make some conclusions in the last section. 

2.  R E V I E W  O F  L U C A S  F U N C T I O N S  

2.1. General  Lucas Funct ions  

Lucas functions can be seen as generalized linear recurrences. Assume that  P1, P 2 , . . . ,  Pm are 
integers, a Lucas function is a sequence of integers {V(n)} defined as follows: 

V(n) = P l Y ( n -  1) + P 2 V ( n -  2) + . . .  + P m V ( n -  m), 

where V(0), V(1), V ( 2 ) , . . . ,  V(m - 1) are given independently before using the equation. This 
equation is referred as an mth order linear recurrence. Obviously, to find a value V(n), we have 

to evaluate the previous m - 1 values of V(i)'s and that  needs enormous computations. The 
sequence defined by the first-order linear recurrence V(n) = PV(n - 1) is the multiplication of P 
with the power n and the initial V(0). Under this case, the Lucas function is reduced to an 

exponentiation operation. 

The general second-order linear recurrences are usually used in the recent cryptosystems [3,4]. 
Here, two functions U(n), V(n) in Lucas sequences are defined as follows: 

U ( 0 ) = 0 ,  U ( 1 ) = t ,  U ( n ) = P l x U ( n - 1 ) - P 2 x U ( n - 2 ) ,  

V ( 0 ) = 2 ,  V ( 1 ) = P 1 ,  V(n) = P1 x V ( n - 1 )  - P2 x V ( n -  2), 

for n _> 2, (1) 

for n > 2, (2) 

where P1, P2 are two relatively prime numbers. In equation (1), if the parameters are selected as 
P1 -- 1, P2 = - 1, the sequence derived by the recursive is the well-known Fibonacci sequence. In 
equation (2), the recursive function V(n) with P2 -- 1 is usually used to devise cryptosystems by 
cryptographers. 

2.2. C o m p u t a t i o n s  of  Lucas Funct ions  

For the RSA cryptosystem, several methods, such as "addition chain" [11,14] or "square-and- 
multiply" [10,15] algorithms, are given to speed up the computations for exponentiations [16-18]. 
For the Lucas system, it is infeasible to evaluate V(n)modN in a recursive manner. In [3], a 
method is proposed by directly combining formulas of the Lucas function. Recently, Yen and 
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Laih [13] proposed two algorithms to evaluate the Lucas function V ( n )  = M V ( n  - 1) - V ( n  - 2), 
which is based on the following property of the function: 

Y ( x  + y) = Y ( x ) V ( y )  - Y ( x  - y), for x >_ y _> 0. (3) 

This property describes the relationship between two numbers x and y in a Lucas sequence. In 
their schemes, a value d has to be expressed in its binary form as: 

d -~ ( d r - l ,  d r - 2 , . . . ,  d l ,  do)2, where di E {0, 1}, i = 0, 1 , . . . ,  t - 1. 

The first algorithm is an approach of left-to-right scanning. It scans the binary form step by step 
and evaluates the partial value of V(d)  from left to right by the following formula: 

Ti -1  = ( . . . ( d r - 1  x 2 -bd t -2 )  x 2 . . . + d i )  x 2 + d i_ l  

= Ti x 2 + di-1 = Ti + di-1 + Ti, 

and 

V ( T i - 1 )  = V ( T i  q- d i - 1 ) V ( T i )  - V ( d i - 1 ) .  

On the contrary, the second algorithm is a right-to-left scanning approach. Similar to the previous 
algorithm, the partial value of V(d)  can be obtained as follows: 

i i-1 
= d k .  2 = 2 + 2 k 

k=O k=O 

-: di • 2 i + Y i -1 ,  

and 

v(Y ) = 

Briery, the methods scan the 
above formulas to derive the 

V (Yi- 1), if di = 0, 

Y (2 i) V (Y~-I) - Y (2 i - Yi-1),  if d~ = 1. 

binary form bit by bit from left to right or right to left and use the 
partial values. Obviously, it requires two modular multiplications 

for each bit, no matter  what the value of the bit is. In the following, we will develop a method 
to find the Lucas chains instead of scanning the bits and thus, the computation of modular 
multiplications can be reduced dramatically. 

3. T H E  P R O P O S E D  A L G O R I T H M S  BASED ON LUCAS C H A I N S  

In this section, we will develop an algorithm to find a Lucas chain and then use it to evaluate 
the Lucas sequences. 

3.1. L u c a s  C h a i n s  a n d  L u c a s  S e q u e n c e s  

As we know, the exponentiation problem can be conducted by additions, because of the expo- 
nents are additive. Addition chains can theoretically be used to reduce the number of multipli- 
cations for the exponentiation [14-18]. Similarly, the computation of a Lucas sequence can also 
be reduced by a shorter chain, which is called a Lucas chain. In the following, we are devoted 
to find a shorter Lucas chain and evaluate the Lucas sequence efficiently. By using equation (2), 
with P1 = M and P2 = 1, the Lucas system is defined as follows: 

V ( n )  = M V ( n  - 1) - Y ( n  - 2), for n > 2, and Y(0) = 2, V(1) = M, (4) 

where M is the plaintext. First, the Lucas chain [13] is defined as follows. 

DEFINITION 1. Given an integer n, a Lucas chain for n is a sequence of  increasing integers 

(ao, a l , . . . ,  a t )  such  that  

(i) a 0 = 0 ,  al = l ,  a n d a r  = n ;  

(ii) ai = aj + ak, for some k < j < i; 

(iii) aj - ak e ( a 0 , a b . . . , a r } .  
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From the definition, we can see that  a Lucas chain has one more requirement than an addition 
chain. A sequence satisfies the three conditions will surely be an addition chain. Tha t  is, a Lucas 
chain is definitely an addition chain, whereas the converse may not be true. 

DEFINITION 2. Given a sequence (ao, a l , . . . ,  at), the length of the Lucas chain is defined as r. 

EXAMPLE 1. The sequences (0,1,2,3,5,10,15) and (0,1,2,3,4,7,8,15) are both  addition chain and 

Lucas chain for 15. The lengths of the two sequences are 6 and 7, respectively. However, the 

sequence (0,1,2,3,6,12,15) is an addition chain but not a Lucas chain, since the term 12 + 3 = 15 

but 9 -- 12 - 3 does not belong to the sequence. 

Now, we will concentrate on the evaluation of the n th term of a Lucas sequence V(n) ,  which is 

corresponding to the Lucas chain for n. The construction of a Lucas chain for an integer n can 

be transformed into a specific way of the computat ion of V(n).  I t  has been shown tha t  finding 
a shortest  addition chain for a random integer is an NP-complete problem [12]. Intuitively, it is 

believed tha t  this fact is also true for finding the Lucas chains. Therefore, a heuristic method is 

used to find a Lucas chain for an integer n. If  the shortest Lucas chain for an integer n can be 

found, the n th te rm of the Lucas sequence V(n)  can also be evaluated with the minimum number 

of multiplications. 

In [4,13], the authors had shown the property of equation (3), which expresses the relationship 

between terms in a Lucas sequence. The following Lemma is implied straightforwardly from the 

property. 

LEMMA 1. Let x be an integer, 

(i) V(2x) = V ( x ) V ( x )  - V(O); 

(ii) V(3x) = V ( 2 x ) V ( x )  - V(x);  

(iii) Y(5x) = Y ( 3 x ) Y ( 2 x )  - V(x) .  

_From (i), we can find out the relationship between the x th term and the 2x th term of a Lucas 

sequence. In other words, the value of the 2x th term can be computed from the x th term. 

From (ii), if an integer y is a multiplier of 3, i.e., y -- 3x, then the value of the yth term can be 

obtained from the x th and the 2x th terms. Similarly, (iii) can also be applied. In Lemma 1, these 

terms are formed a partial chain, which is called a Lucas subchain. The Lucas subchain for an 

integer d can be computed by decomposing the value d. 

LEMMA 2. Suppose an integer d is the d th term of  Lucas sequence, if d is decomposed as Lemma 1, 

then the Lucas subchain for d can be evaluated. 

PROOF. 

(i) If d is even, i.e., d -- 2x, for some x E I, and d is decomposed as (i) in Lemma I. Let 

aj = x, ai = d = 2aj, then (aj, ai) is formed a Lucas subchain by Definition I. 

(ii) If d is a multiplier of 3, i.e., d = 3x for some x E I, and d is decomposed as (ii) in 

Lemma I. Let ak -- x, aj = 2x, and ai = d, then (aa,aj,ai) is also formed a Lucas 

suhchain by Definition i. 

(iii) Similarly, the chain (x, 2x, 3x, 5x) is also formed a Lucas subchain. | 

For explanation, the decomposition of an integer d can be represented by a tree. The integer d 
is regarded as a root node, which is then divided into several children according to Lemma 1. 
The  decomposed trees are depicted in Figure 1 for the Cases (i)-(iii), respectively, in Lemma 1. 
Note tha t  V(0) is a given value and omit ted in the tree. 

On the other hand, a Lucas chain is also corresponding to a directed graph. As Equation (ii) 
in DefinitioD 1, ai, aj ,  and ak denote the nodes. And one arc directing from aj to ai and one 
from ak to ai are used to represent the equation ai = aj q- ak. For example, the Subchains (i) 
and (iii) of Lemma 1, can be depicted in (a) and (b) of Figure 2, respectively. 

However, one problem may be raised. When an integer d is a multiplier of 7, i.e., d = 7x, for 
some x, does the Lucas sequence be V(Tx) = V(4x)V(3x)  - V(x)? Tha t  is, can it be decomposed 
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3xQ 5 

(a) (b) (c) 

Figure 1. The decomposed trees. 

x 2x x / -  -._ 3x 5x 

<2 o 
(a) (b) 

Figure 2. A directed graph representation of Lucas subchains. 

into a Lucas subchain for d? The answer is negative. The chain (x, 3x, 4x, 7x) is not a Lucas 

subchain since 4x = 3x q-x ,  but 2x = 3x - x  does not belong to the chain. This violates 

Condition (iii) in Definition 1. Therefore, we need to consider those numbers, which are not 

described in Lemma 1. 

LEMMA 3. I f  x is an odd integer, Y (x )  = Y ( [ z / 2 ]  + 1)V(Lx/2I ) - Y(1). 

Similarly, the above lemma can easily be proved by equation (3). According to the pre- 

vious division, the decomposed tree can be obtained and indicated in Figure 3. The chain 

( Ix /2 ] ,  Ix/2]  + 1,x) is not a aucas  subchain, since lx/2] - 1 does not belong to the chain. 
Therefore, the terms Ix/2] and /x/2J + 1 are required to be decomposed further. 

Lx/2j+l ~x/2J 

Figure 3. The decomposed tree. 

When a decomposed tree is obtained by Lemmas 1 and 3, the nodes can be classified into two 

types, the dependent nodes and independent nodes. 

DEFINITION 3. Let a decomposed tree be obtained from Lemma 1 or 3. A node is caned a 

dependent  node i f  it can be expressed by previous two terms and that formed a Lucas subchain; 

otherwise, it is called an independent node. 

For example, the node x in Figure 1 is an independent node, while the nodes 2x, 3x, and 5x 

are dependent  nodes. And the nodes [x/2J and Ix~21 + 1 in Figure 3 are independent nodes. 
From Lemmas 1 and 3, any number can be decomposed by a corresponding division and 

iridicated as a tree. If  its child is a dependent node, its Lucas value of tha t  node can be evaluated 
by previous nodes. If  the child is an independent node, which is required to be decomposed 
further to a dependent node. 

LEMMA 4. Let y be an odd integer and x = [y/2].  The chain ( x , x  + 1,y) is formed a Lucas 
subchain i f  two terms [x/2] and [x/21 + 1 are included in the chain. 

PROOF. Assume tha t  0, 1 are two given node values and the two terms [x/2J and [x/2] + 1 are 
included in the chain. Now, we are going to show that  (x, x + 1, y) is a Lucas subchain. Tha t  is, 
we will prove tha t  x, x + 1, and y satisfy Definition 1. 

(1) Since y is odd, we have y = [y/2] + ([y/2]  + 1) = x + (x + 1). And (x + 1) - x = 1, which 
is the given node value. So, the term y satisfies Definition 1. 
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(2) Let us consider the terms x and x + l .  I fx  is even, then x = [x/2J + L x / 2 ] , x + l  = Ix/2] + 
([x/2J + 1). So, x and x +  1 satisfy Definition 1. I fx  is odd, then x = Lx/2J + ([x/2J + 1), 
z + 1 = ([z/2J + 1) + (Lx/2J + 1). So, x and x + 1 also satisfy Definition 1. Therefore, 
the chain (x, x + 1, y) is a Lucas subchain. | 

THEOREM 5. Given an integer d, the decomposed tree and Lucas chain for d can be constructed.  

PROOF. From Lemmas 1 and 3, the integer d can be decomposed into a subtree. Its children 
are composed of dependent nodes and independent nodes. The dependent nodes form a Lucas 
subchain, which can be proved by Lemmas 2 and 4. Further, the dependent nodes are stored 
in an array in decreasing manner. The remaining independent nodes are decomposed again by 
Lemmas 1 and 3. This process will be repeated until the given node d -- 1 is found. Consequently, 
the decomposed tree and Lucas chain can be constructed. | 

THEOREM 6. Given an integer d and its Lucas chain, the Lucas sequence V(d)  can be evaluated. 

PROOF. The Lucas chain for an integer d can be derived by Theorem 5. The chain's node values 
are stored in an array by their decreasing order. Therefore, we can evaluate the Lucas sequence 
by the formulas in Lemmas 1 and 3 in a reverse order until the Lucas sequence V(d)  of node d 
is computed. 

3.2. Computat ion  of  Lucas Chains 

Given an integer d, we decompose d by the method of Lemmas 1 and 3. It can be considered 
as four filters, which inspect the value d and properly generate a Lucas subtree. Each node in the 
subtree is required a modular multiplication in the computation of a Lucas sequence. Therefore, 
the main problem is how to construct a Lucas tree such that  it has fewer nodes. Moreover, if an 
integer d can be decomposed simultaneously by the three filters in Lemma 1, how do we select 
one from them? In general, we would suggest that  (i) is the best selection and (iii) is the final 
consideration. Since the comparison of the number of children in Figure 1 is indicated by the 
inequality log 2 d <  2 log 3 d < 3 log 5 d. On the other hand, if the integer d is odd, (ii) and (iii) in 
Lemmas 1 and 3 can be used. The priority of choosing Lemma 1 is higher than Lemma 3, since 
2 log 3 d < 3 log 5 d < 2 log 2 d. The Lucas chain for d can be derived by the following algorithm. 

ALGORITHM A. [Find a Lucas chain.] 
Input: d. 
Output  Lucas chain: A[I], A [ I -  1] , . . . ,  A[0]. 
Step 1: [Assign the initial d in the array.] 

I = O, A[I] = d. 

Step 2: [End of decomposition, output the Lucas chain.] 
IF d = 1 THEN output A[I], A [ I -  1] , . . . ,  A[0]; Stop. 

Step 3: [Decompose the integer d by filters.] 
IF d is even THEN 

d = d/2; I = I + 1; A[I] = d; GOTO Step 2. 
IF d is divisible by 3 THEN 

d = d/3; I = I +  1; A[I] = 2 .  d; I = I + 1; A[I] -- d; GOTO Step2. 
IF d is divisible by 5 THEN 

d = d/5; I = I + 1; A[I] = 3 .  d; I = I +  1; A [ I ] =  2 ,  d; I = I + 1; A[I] = d; GOTO 
Step2. 

Step 4: [Other number d] 
dh = [ 4 / 2 ] ; d l = d h + l ; I = I + l ; A [ I ] - - d l ; I = I + l ; A [ I ] = d h ;  

REPEAT 
dh = [dh/2J; dl = dh + l; I = I + l; A[I] = dl; I = I + l; A[I] = dh; 

UNTIL dh = 2; 
d = 1; I = I +  1; A[I] = d; GOTO Step 2. 
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In the above algorithm, we use an array to store the chains. First, the number d is stored 
in A[0]. After the independent nodes are decomposed, the dependent nodes are sequentially 

stored in the array. In Step 3, the filters are used to decompose the independent nodes. However, 
not all numbers can be filtered in Step 3, the remaining numbers are filtered by Step 4. Now, let 
us consider an example. If d -- 108, the decomposed tree can be depicted as in Figure 4. 

Figure 4. The decomposed tree. 

After executing Algorithm A, the Lucas chain can be obtained as in Figure 5. 

Figure 5. Lucas chain. 

3.3. Computation of Lucas Sequences 

For simplicity, we assume that  the Lucas system is defined as equation (4) in Section 3.1. First, 

we compute the Lucas chain for the value d (or e) as described in the previous section. To find 
the Lucas sequence, we can use the given values d, V(0), V(1) and the Lucas chain as the inputs, 
and repeatedly compute the dependent nodes. The algorithm is described as follows. 

ALGORITHM B. [Find Lucas sequences[ 

Input: LUC chain A[I], A [ I -  1] , . . . ,  A[0], d. 

Output:  Lucas sequence V(d). 
Step 1: [Assign initial values.] 

V(0) = 2; V(1) = M. 

Step 2: [Compute the Lucas sequence.] 

FOR k = I - 1 downto 0 

IF A[k] = 2g[k + 1] THEN 

Y(A[k]) = Y(A[k + 1]) * V(A[k + 1]) - Y(0)modY; 

ELSE IF A[k] = A[k + 1] + A[k + 2] THEN 

V(A[k]) = Y(A[k + 1]) ,  Y(A[k + 2]) - Y(A[k + 2])modY; 

ELSE IF A[k] = 2A[k + 2] THEN 

Y(m[k]) = Y(A[k + 2]) * V(A[k + 2]) - V(0)modY; 

ELSE (A[k] = A[k + 2] + A[k + 3]) 

Y(A[k]) = Y(A[k + 2]) * V(A[k + 3]) - Y(1)modN; 

ENDIF 

ENDIF 

ENDIF 
NEXT k; 

V(A[0]) is the output.  

Note that  V(0) = 2, V(1) = M are given. In Step 2, the Lucas chains are stored in an array 
and each Lucas value can be evaluated by the previous dependent nodes. 
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4. D I S C U S S I O N S  A N D  A P P L I C A T I O N S  

4.1. Performance Analyses 

In Yen and Laih's methods [13], the integer d has to be represented first in the binary form. 
Both of their algorithms are required to sequentially scan each bit. Therefore, in order to com- 
pute V ( d ) ,  it requires two modular multiplications for scanning each bit. Totally, 2(1 + [log 2 d]) 
modular multiplications are needed. 

In the proposed method, the operations are composed of two parts. In the first part for con- 
structing Lucas chain, it checks if the number d is suitable for filters in Lemma 1 or 3. It requires 
division operations. In the second part for constructing Lucas sequence, the algorithm evaluates 
the Lucas value, which is dependent on the previous values. It requires modular multiplications to 
combine the Lucas values. Obviously, the number of modular multiplications is greater than that  
of division operations. For the purpose of analyses, we assume that  the number d can be expressed 
as d = 2 k (d -~ 3 k or d = 5k), and can be applied to Lemma 1. In this case, the required number 
of modular multiplications in the second part is [log 2 d] (2 [log 3 d j or 3 [log 5 d] ). The number is 
corresponding to that  of children in the decomposed tree, since each child's node requires one 
modular multiplication. In [13], their method requires 2(1 + [log 2 d]) modular multiplications. 
By neglecting the constant, the value 2( [log 2 d] ) will be compared with ours. We can see that  the 
numbers of modular multiplications are approximately reduced to 50%, 63%, and 65%, respec- 
tively. Additionally, it requires [log 2 d], [log 3 dJ, and [log 5 dJ division operations, respectively, 
in the first part of our method. This fact can be regarded as that the half number of the modular 
multiplications in [13] are transferred to divisions in our method. Thus, the number of modular 
multiplications is reduced. On the other hand, if the random number d cannot be filtered in 
Lemma 1, we need to apply Lemma 3. Then, the required number of modular multiplications is 
2( [log2 d] ), and we can only save two modular multiplications. Now, let us analyze the efficiency 
in average case. We assume that  a decomposed tree with d nodes has levels of I = [log 2 dJ. If 
there are l / 2  levels can be manipulated by Lemma 1 and the others by Lemma 3 on average, 
the average number of modular multiplications is approximately (1/2)(2[log3d]) in Lemma 1 
and (1/2)(2[1og 2 d]) in Lemma 3. Therefore, the average number of modular multiplications is 
[log 3 d] + [log 2 d], which is approximately 19% reduced comparing to [13]. 

4.2. Discuss ions  

(1) From the performance analyses, we can reduce the number of modular multiplications, 
which can be replaced by the division operations. Therefore, the computation time can 
be reduced in the proposed method. 

(2) There are three filters in Lemma 1. Similarly, there are some other filters can be devised by 
proper modifications. For example, V ( T x )  -= V ( 4 x ) V ( 3 x )  - V ( x ) ,  the chain (x, 3x, 4x, 7x) 
is not a Lucas chain, but V(Tx) -- V ( 5 x ) V ( 2 x ) - V ( 3 x ) ,  the chain (2x, 3x, 5x, 7x)  is formed 
a Lucas chain, if x is included to the Lucas chain. Therefore, it is important to construct 
other filters by using equation (3). 

(3) From the definition of Lucas chain, we know that  a Lucas chain is definitely an addition 
chain, while the converse may not be true. Therefore, the created Lucas chain in the 
proposed method is also an addition chain, it can also be applied to the computation 
of modular exponentiations. Furthermore, we can modify the decomposed method and 
obtain fewer nodes, since the addition chain does not satisfy the Condition (iii) as in the 
definition of Lucas chain. 

(4) The relationship between nodes in the decomposed tree and the nodes in the Lucas chain 
are one-to-one correspondence. The shorter Lucas chain will result in less number of 
modular multiplications. In our heuristic algorithm, the length of the chain is constructed 
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by logarithmic operations. However, how can we construct a shorter Lucas chain is an 

interesting research topic. 

4.3. A p p l i c a t i o n s  

Most of public key cryptosystems rest on a trapdoor function, which can be employed to encrypt 

and sign messages. The well-known and widely used schemes, such as RSA [2] and E1Gamal's 

method [5], are based on computing the exponentiation with modulus a large number. Recently, 

some researchers developed cryptographic scheme based on Lucas functions [6,7]. Assume that  

the Lucas system is defined as equation (4). Similar to RSA, in the Lucas system, we have 

to select two large prime numbers p and q, and compute N = p × q. The encryption key e 

can be randomly selected and the decryption key d is computed such that d x e = lmodR(N) ,  

where R ( N )  = Icm((p - (D/p) ) ,  (q - (D/q) ) ) ,  D = M 2 - 4, and (D/p) ,  (D/q)  are the Legendre 

symbols of D corresponding to p and q, respectively. The detailed discussions are given in [3,4]. 

Afterward, the encryption procedure of the Lucas scheme is given as 

C = V ( e ) m o d N ,  

and the signature procedure is 

S = V ( d ) m o d N ,  

where C is the ciphertext of the message M, and S is the signature. To speed up the computation 

of V ( e ) m o d N  (or V ( d ) m o d N ) ,  the proposed scheme in Section 3 can be applied for the encryption 

and signature procedure. 

5. C O N C L U S I O N S  

The algorithms for constructing Lucas chains and Lucas sequences have been proposed. Based 

on the Lucas property, a decomposed tree for an integer d can be constructed, and the corre- 

sponding Lucas subchain can also be generated. The independent nodes in the subtree are then 

repeatedly decomposed and formed a skew tree. Since the decomposed method for d uses the 

logarithmic operation, the generated Lucas chain will not be long. From the feature of Lucas 

function, the desired Lucas value is combined and evaluated. From the performance analyses, we 

can see that  the required number of modular multiplications is reduced. 
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