
PERGAMON

An Intemational Journal

computers &
mathematics
with applications

Computers and Mathematics with Applications 38 (1999) 187-196
www.elsevier.nl/locate/camwa

A M e t h o d for Comput ing Lucas Sequences

C H I N G - T E W A N G AND C H I N - C H E N C H A N G
Inst i tute of Computer Science and Information Engineering

National Chung Cheng University, Chiayi, Taiwan 62107, R.O.C.
<wct><ccc>©cs. ccu. edu. tw

CHU-HSING LIN*
Department of Computer and Information Sciences
Tunghai University, Taichung, Taiwan 407, R.O.C.

ehlin©mail, thu. edu. tw

(Received January 1999; accepted February 1999)

A b s t r a c t - - M o s t of public-key cryptosystems rely on one-way functions, which can be used to
encrypt and sign messages. Their encryption and signature operations are based on the computation
of exponentiation. Recently, some public-key cryptosystems are proposed and based on Lucas func-
tions, and the Lucas sequences are performed as S = V(d)modN. In this paper, we will transform
the concept of addition chains for computing the exponentiation evaluations to the Lucas chains
for computing the Lucas sequences. Theoretically, the shorter Lucas chain for d is generated, the
less computation time for evaluating the value V(d) is required. Therefore, we proposed a heuristic
algorithm for evaluating a shorter Lucas chain and then use it to compute the Lucas sequence with
less modular multiplications. (~) 1999 Elsevier Science Ltd. All rights reserved.

K e y w o r d s - - A d d i t i o n chain, Cryptosystem, Signature scheme, Lucas chain.

1. I N T R O D U C T I O N

In 1976, Diffie and He l lman p roposed the pioneer ing concept of publ ic -key c r y p t o s y s t e m s [1] and

the key exchange scheme based on discre te logar i thms over a Galois field GF(P). Afte r t he idea

was in t roduced , Rives t et al. proposed the most promis ing publ ic -key c r y p t o s y s t e m [2]. T h e

R S A scheme is based on the diff iculty of fac tor iza t ion problem. These m e t h o d s are requi red to

c o m p u t e t he m o d u l a r exponen t ia t ions .

Recent ly , S m i t h and Lennon p roposed a new publ ic -key sys tem, the Lucas c r y p t o s y s t e m [3,4],

which uses a new one-way funct ion based on Lucas functions. T h e Lucas sy s t em appl ies a specia l

t y p e of second-order l inear recurrences to c ryp to sys t ems and s igna ture schemes. For example , t he

E I G a m a l ' s publ ic -key c r y p t o s y s t e m and its d ig i ta l s igna ture [5] can be i m p l e m e n t e d by the Lucas

func t ion [6,7]. Fu r the r , Diff ie-Hellman key d i s t r ibu t ion [1] can also be cons t ruc t ed based on the

Lucas funct ions . S m i t h and Lennon po in ted ou t t h a t the reason of using Lucas funct ions ins t ead

of e x p o n e n t i a t i o n s is i ts c ryp tog raph i ca l s t rength . I t is much s t ronger t h a n or a t leas t as s t rong

as the e x p o n e n t i a t i o n - b a s e d systems. In 1995, Bleichenbacker et al. publ i shed some r emarks

on Lucas -based c r y p t o s y s t e m s [8] and po in ted out t h a t some Lucas sys tems are vu lne rab le to

s u b e x p o n e n t i a l t ime a t tacks . Of course, i t is l ikely to spa rk a subs t an t i a l d e b a t e concern ing the

*Author to whom all correspondence should be addressed.

0898-1221/1999/$ - see front matter (~) 1999 Elsevier Science Ltd. All rights reserved. Typeset by .A~S-TEX
PII: S0898-1221 (99)00297-7

188 C.-T. WANG et al.

security of their schemes. At the same year, Laih et al. analyzed the security of Lucas function [9],
and showed that its security is polynomial-time equivalent to the generalized discrete logarithm
problems.

On the other hand, several researches on fast exponentiation evaluation have been proposed.
Knuth presented a simple square-and-multiply method [10] based on the binary representation of
the exponent. Yacobi uses addition chains [11] to reduce the number of multiplications. However,

to find the shortest addition chain has been shown to be an NP-complete problem [12]. Similarly,
some researches are concerning the fast computation of Lucas functions. To efficiently evaluate
the Lucas values, it is important to find the shortest Lucas chain, which is the same as addition
chains and is also a hard problem. In 1995, Yen and Laih proposed two algorithms by scanning
the binary form of the exponent and sequentially evaluate the Lucas sequence [13]. Now, we

will propose a heuristic method for finding a Lucas chain and then compute the Lucas sequence.

The computation of modular multiplication is reduced and the Lucas values can be evaluated
efficiently.

The proposed paper is organized as follows. In Section 2, we review the Lucas functions and
the relative computations. In Section 3, we develop a method to generate Lucas chains and use
it to compute the Lucas sequences. The discussions and applications will appear in Section 4.
Finally, we make some conclusions in the last section.

2. R E V I E W O F L U C A S F U N C T I O N S

2.1. General Lucas Funct ions

Lucas functions can be seen as generalized linear recurrences. Assume that P1, P 2 , . . . , Pm are
integers, a Lucas function is a sequence of integers {V(n)} defined as follows:

V(n) = P l Y (n - 1) + P 2 V (n - 2) + . . . + P m V (n - m),

where V(0), V(1), V (2) , . . . , V(m - 1) are given independently before using the equation. This
equation is referred as an mth order linear recurrence. Obviously, to find a value V(n), we have

to evaluate the previous m - 1 values of V(i)'s and that needs enormous computations. The
sequence defined by the first-order linear recurrence V(n) = PV(n - 1) is the multiplication of P
with the power n and the initial V(0). Under this case, the Lucas function is reduced to an

exponentiation operation.

The general second-order linear recurrences are usually used in the recent cryptosystems [3,4].
Here, two functions U(n), V(n) in Lucas sequences are defined as follows:

U (0) = 0 , U (1) = t , U (n) = P l x U (n - 1) - P 2 x U (n - 2) ,

V (0) = 2 , V (1) = P 1 , V(n) = P1 x V (n - 1) - P2 x V (n - 2),

for n _> 2, (1)

for n > 2, (2)

where P1, P2 are two relatively prime numbers. In equation (1), if the parameters are selected as
P1 -- 1, P2 = - 1, the sequence derived by the recursive is the well-known Fibonacci sequence. In
equation (2), the recursive function V(n) with P2 -- 1 is usually used to devise cryptosystems by
cryptographers.

2.2. C o m p u t a t i o n s of Lucas Funct ions

For the RSA cryptosystem, several methods, such as "addition chain" [11,14] or "square-and-
multiply" [10,15] algorithms, are given to speed up the computations for exponentiations [16-18].
For the Lucas system, it is infeasible to evaluate V(n)modN in a recursive manner. In [3], a
method is proposed by directly combining formulas of the Lucas function. Recently, Yen and

Computing Lucas Sequences 189

Laih [13] proposed two algorithms to evaluate the Lucas function V (n) = M V (n - 1) - V (n - 2),
which is based on the following property of the function:

Y (x + y) = Y (x) V (y) - Y (x - y), for x >_ y _> 0. (3)

This property describes the relationship between two numbers x and y in a Lucas sequence. In
their schemes, a value d has to be expressed in its binary form as:

d -~ (d r - l , d r - 2 , . . . , d l , do)2, where di E {0, 1}, i = 0, 1 , . . . , t - 1.

The first algorithm is an approach of left-to-right scanning. It scans the binary form step by step
and evaluates the partial value of V(d) from left to right by the following formula:

Ti -1 = (. . . (d r - 1 x 2 -bd t -2) x 2 . . . + d i) x 2 + d i_ l

= Ti x 2 + di-1 = Ti + di-1 + Ti,

and

V (T i - 1) = V (T i q- d i - 1) V (T i) - V (d i - 1) .

On the contrary, the second algorithm is a right-to-left scanning approach. Similar to the previous
algorithm, the partial value of V(d) can be obtained as follows:

i i-1
= d k . 2 = 2 + 2 k

k=O k=O

-: di • 2 i + Y i -1 ,

and

v(Y) =

Briery, the methods scan the
above formulas to derive the

V (Yi- 1), if di = 0,

Y (2 i) V (Y~-I) - Y (2 i - Yi-1), if d~ = 1.

binary form bit by bit from left to right or right to left and use the
partial values. Obviously, it requires two modular multiplications

for each bit, no matter what the value of the bit is. In the following, we will develop a method
to find the Lucas chains instead of scanning the bits and thus, the computation of modular
multiplications can be reduced dramatically.

3. T H E P R O P O S E D A L G O R I T H M S BASED ON LUCAS C H A I N S

In this section, we will develop an algorithm to find a Lucas chain and then use it to evaluate
the Lucas sequences.

3.1. L u c a s C h a i n s a n d L u c a s S e q u e n c e s

As we know, the exponentiation problem can be conducted by additions, because of the expo-
nents are additive. Addition chains can theoretically be used to reduce the number of multipli-
cations for the exponentiation [14-18]. Similarly, the computation of a Lucas sequence can also
be reduced by a shorter chain, which is called a Lucas chain. In the following, we are devoted
to find a shorter Lucas chain and evaluate the Lucas sequence efficiently. By using equation (2),
with P1 = M and P2 = 1, the Lucas system is defined as follows:

V (n) = M V (n - 1) - Y (n - 2), for n > 2, and Y(0) = 2, V(1) = M, (4)

where M is the plaintext. First, the Lucas chain [13] is defined as follows.

DEFINITION 1. Given an integer n, a Lucas chain for n is a sequence of increasing integers

(ao, a l , . . . , a t) such that

(i) a 0 = 0 , al = l , a n d a r = n ;

(ii) ai = aj + ak, for some k < j < i;

(iii) aj - ak e (a 0 , a b . . . , a r } .

190 C.-T. WANG et al.

From the definition, we can see that a Lucas chain has one more requirement than an addition
chain. A sequence satisfies the three conditions will surely be an addition chain. Tha t is, a Lucas
chain is definitely an addition chain, whereas the converse may not be true.

DEFINITION 2. Given a sequence (ao, a l , . . . , at), the length of the Lucas chain is defined as r.

EXAMPLE 1. The sequences (0,1,2,3,5,10,15) and (0,1,2,3,4,7,8,15) are both addition chain and

Lucas chain for 15. The lengths of the two sequences are 6 and 7, respectively. However, the

sequence (0,1,2,3,6,12,15) is an addition chain but not a Lucas chain, since the term 12 + 3 = 15

but 9 -- 12 - 3 does not belong to the sequence.

Now, we will concentrate on the evaluation of the n th term of a Lucas sequence V(n) , which is

corresponding to the Lucas chain for n. The construction of a Lucas chain for an integer n can

be transformed into a specific way of the computat ion of V(n). I t has been shown tha t finding
a shortest addition chain for a random integer is an NP-complete problem [12]. Intuitively, it is

believed tha t this fact is also true for finding the Lucas chains. Therefore, a heuristic method is

used to find a Lucas chain for an integer n. If the shortest Lucas chain for an integer n can be

found, the n th te rm of the Lucas sequence V(n) can also be evaluated with the minimum number

of multiplications.

In [4,13], the authors had shown the property of equation (3), which expresses the relationship

between terms in a Lucas sequence. The following Lemma is implied straightforwardly from the

property.

LEMMA 1. Let x be an integer,

(i) V(2x) = V (x) V (x) - V(O);

(ii) V(3x) = V (2 x) V (x) - V(x);

(iii) Y(5x) = Y (3 x) Y (2 x) - V(x) .

_From (i), we can find out the relationship between the x th term and the 2x th term of a Lucas

sequence. In other words, the value of the 2x th term can be computed from the x th term.

From (ii), if an integer y is a multiplier of 3, i.e., y -- 3x, then the value of the yth term can be

obtained from the x th and the 2x th terms. Similarly, (iii) can also be applied. In Lemma 1, these

terms are formed a partial chain, which is called a Lucas subchain. The Lucas subchain for an

integer d can be computed by decomposing the value d.

LEMMA 2. Suppose an integer d is the d th term of Lucas sequence, if d is decomposed as Lemma 1,

then the Lucas subchain for d can be evaluated.

PROOF.

(i) If d is even, i.e., d -- 2x, for some x E I, and d is decomposed as (i) in Lemma I. Let

aj = x, ai = d = 2aj, then (aj, ai) is formed a Lucas subchain by Definition I.

(ii) If d is a multiplier of 3, i.e., d = 3x for some x E I, and d is decomposed as (ii) in

Lemma I. Let ak -- x, aj = 2x, and ai = d, then (aa,aj,ai) is also formed a Lucas

suhchain by Definition i.

(iii) Similarly, the chain (x, 2x, 3x, 5x) is also formed a Lucas subchain. |

For explanation, the decomposition of an integer d can be represented by a tree. The integer d
is regarded as a root node, which is then divided into several children according to Lemma 1.
The decomposed trees are depicted in Figure 1 for the Cases (i)-(iii), respectively, in Lemma 1.
Note tha t V(0) is a given value and omit ted in the tree.

On the other hand, a Lucas chain is also corresponding to a directed graph. As Equation (ii)
in DefinitioD 1, ai, aj , and ak denote the nodes. And one arc directing from aj to ai and one
from ak to ai are used to represent the equation ai = aj q- ak. For example, the Subchains (i)
and (iii) of Lemma 1, can be depicted in (a) and (b) of Figure 2, respectively.

However, one problem may be raised. When an integer d is a multiplier of 7, i.e., d = 7x, for
some x, does the Lucas sequence be V(Tx) = V(4x)V(3x) - V(x)? Tha t is, can it be decomposed

Computing Lucas Sequences 191

3xQ 5

(a) (b) (c)

Figure 1. The decomposed trees.

x 2x x / - -._ 3x 5x

<2 o
(a) (b)

Figure 2. A directed graph representation of Lucas subchains.

into a Lucas subchain for d? The answer is negative. The chain (x, 3x, 4x, 7x) is not a Lucas

subchain since 4x = 3x q-x , but 2x = 3x - x does not belong to the chain. This violates

Condition (iii) in Definition 1. Therefore, we need to consider those numbers, which are not

described in Lemma 1.

LEMMA 3. I f x is an odd integer, Y (x) = Y ([z / 2] + 1)V(Lx/2I) - Y(1).

Similarly, the above lemma can easily be proved by equation (3). According to the pre-

vious division, the decomposed tree can be obtained and indicated in Figure 3. The chain

(Ix /2] , Ix/2] + 1,x) is not a aucas subchain, since lx/2] - 1 does not belong to the chain.
Therefore, the terms Ix/2] and /x/2J + 1 are required to be decomposed further.

Lx/2j+l ~x/2J

Figure 3. The decomposed tree.

When a decomposed tree is obtained by Lemmas 1 and 3, the nodes can be classified into two

types, the dependent nodes and independent nodes.

DEFINITION 3. Let a decomposed tree be obtained from Lemma 1 or 3. A node is caned a

dependent node i f it can be expressed by previous two terms and that formed a Lucas subchain;

otherwise, it is called an independent node.

For example, the node x in Figure 1 is an independent node, while the nodes 2x, 3x, and 5x

are dependent nodes. And the nodes [x/2J and Ix~21 + 1 in Figure 3 are independent nodes.
From Lemmas 1 and 3, any number can be decomposed by a corresponding division and

iridicated as a tree. If its child is a dependent node, its Lucas value of tha t node can be evaluated
by previous nodes. If the child is an independent node, which is required to be decomposed
further to a dependent node.

LEMMA 4. Let y be an odd integer and x = [y/2]. The chain (x , x + 1,y) is formed a Lucas
subchain i f two terms [x/2] and [x/21 + 1 are included in the chain.

PROOF. Assume tha t 0, 1 are two given node values and the two terms [x/2J and [x/2] + 1 are
included in the chain. Now, we are going to show that (x, x + 1, y) is a Lucas subchain. Tha t is,
we will prove tha t x, x + 1, and y satisfy Definition 1.

(1) Since y is odd, we have y = [y/2] + ([y/2] + 1) = x + (x + 1). And (x + 1) - x = 1, which
is the given node value. So, the term y satisfies Definition 1.

192 C.-T. WANG et al.

(2) Let us consider the terms x and x + l . I fx is even, then x = [x/2J + L x / 2] , x + l = Ix/2] +
([x/2J + 1). So, x and x + 1 satisfy Definition 1. I fx is odd, then x = Lx/2J + ([x/2J + 1),
z + 1 = ([z/2J + 1) + (Lx/2J + 1). So, x and x + 1 also satisfy Definition 1. Therefore,
the chain (x, x + 1, y) is a Lucas subchain. |

THEOREM 5. Given an integer d, the decomposed tree and Lucas chain for d can be constructed.

PROOF. From Lemmas 1 and 3, the integer d can be decomposed into a subtree. Its children
are composed of dependent nodes and independent nodes. The dependent nodes form a Lucas
subchain, which can be proved by Lemmas 2 and 4. Further, the dependent nodes are stored
in an array in decreasing manner. The remaining independent nodes are decomposed again by
Lemmas 1 and 3. This process will be repeated until the given node d -- 1 is found. Consequently,
the decomposed tree and Lucas chain can be constructed. |

THEOREM 6. Given an integer d and its Lucas chain, the Lucas sequence V(d) can be evaluated.

PROOF. The Lucas chain for an integer d can be derived by Theorem 5. The chain's node values
are stored in an array by their decreasing order. Therefore, we can evaluate the Lucas sequence
by the formulas in Lemmas 1 and 3 in a reverse order until the Lucas sequence V(d) of node d
is computed.

3.2. Computat ion of Lucas Chains

Given an integer d, we decompose d by the method of Lemmas 1 and 3. It can be considered
as four filters, which inspect the value d and properly generate a Lucas subtree. Each node in the
subtree is required a modular multiplication in the computation of a Lucas sequence. Therefore,
the main problem is how to construct a Lucas tree such that it has fewer nodes. Moreover, if an
integer d can be decomposed simultaneously by the three filters in Lemma 1, how do we select
one from them? In general, we would suggest that (i) is the best selection and (iii) is the final
consideration. Since the comparison of the number of children in Figure 1 is indicated by the
inequality log 2 d < 2 log 3 d < 3 log 5 d. On the other hand, if the integer d is odd, (ii) and (iii) in
Lemmas 1 and 3 can be used. The priority of choosing Lemma 1 is higher than Lemma 3, since
2 log 3 d < 3 log 5 d < 2 log 2 d. The Lucas chain for d can be derived by the following algorithm.

ALGORITHM A. [Find a Lucas chain.]
Input: d.
Output Lucas chain: A[I], A [I - 1] , . . . , A[0].
Step 1: [Assign the initial d in the array.]

I = O, A[I] = d.

Step 2: [End of decomposition, output the Lucas chain.]
IF d = 1 THEN output A[I], A [I - 1] , . . . , A[0]; Stop.

Step 3: [Decompose the integer d by filters.]
IF d is even THEN

d = d/2; I = I + 1; A[I] = d; GOTO Step 2.
IF d is divisible by 3 THEN

d = d/3; I = I + 1; A[I] = 2 . d; I = I + 1; A[I] -- d; GOTO Step2.
IF d is divisible by 5 THEN

d = d/5; I = I + 1; A[I] = 3 . d; I = I + 1; A [I] = 2 , d; I = I + 1; A[I] = d; GOTO
Step2.

Step 4: [Other number d]
dh = [4 / 2] ; d l = d h + l ; I = I + l ; A [I] - - d l ; I = I + l ; A [I] = d h ;

REPEAT
dh = [dh/2J; dl = dh + l; I = I + l; A[I] = dl; I = I + l; A[I] = dh;

UNTIL dh = 2;
d = 1; I = I + 1; A[I] = d; GOTO Step 2.

Computing Lucas Sequences 193

In the above algorithm, we use an array to store the chains. First, the number d is stored
in A[0]. After the independent nodes are decomposed, the dependent nodes are sequentially

stored in the array. In Step 3, the filters are used to decompose the independent nodes. However,
not all numbers can be filtered in Step 3, the remaining numbers are filtered by Step 4. Now, let
us consider an example. If d -- 108, the decomposed tree can be depicted as in Figure 4.

Figure 4. The decomposed tree.

After executing Algorithm A, the Lucas chain can be obtained as in Figure 5.

Figure 5. Lucas chain.

3.3. Computation of Lucas Sequences

For simplicity, we assume that the Lucas system is defined as equation (4) in Section 3.1. First,

we compute the Lucas chain for the value d (or e) as described in the previous section. To find
the Lucas sequence, we can use the given values d, V(0), V(1) and the Lucas chain as the inputs,
and repeatedly compute the dependent nodes. The algorithm is described as follows.

ALGORITHM B. [Find Lucas sequences[

Input: LUC chain A[I], A [I - 1] , . . . , A[0], d.

Output: Lucas sequence V(d).
Step 1: [Assign initial values.]

V(0) = 2; V(1) = M.

Step 2: [Compute the Lucas sequence.]

FOR k = I - 1 downto 0

IF A[k] = 2g[k + 1] THEN

Y(A[k]) = Y(A[k + 1]) * V(A[k + 1]) - Y(0)modY;

ELSE IF A[k] = A[k + 1] + A[k + 2] THEN

V(A[k]) = Y(A[k + 1]) , Y(A[k + 2]) - Y(A[k + 2])modY;

ELSE IF A[k] = 2A[k + 2] THEN

Y(m[k]) = Y(A[k + 2]) * V(A[k + 2]) - V(0)modY;

ELSE (A[k] = A[k + 2] + A[k + 3])

Y(A[k]) = Y(A[k + 2]) * V(A[k + 3]) - Y(1)modN;

ENDIF

ENDIF

ENDIF
NEXT k;

V(A[0]) is the output.

Note that V(0) = 2, V(1) = M are given. In Step 2, the Lucas chains are stored in an array
and each Lucas value can be evaluated by the previous dependent nodes.

194 C.-T. WANG et al.

4. D I S C U S S I O N S A N D A P P L I C A T I O N S

4.1. Performance Analyses

In Yen and Laih's methods [13], the integer d has to be represented first in the binary form.
Both of their algorithms are required to sequentially scan each bit. Therefore, in order to com-
pute V (d) , it requires two modular multiplications for scanning each bit. Totally, 2(1 + [log 2 d])
modular multiplications are needed.

In the proposed method, the operations are composed of two parts. In the first part for con-
structing Lucas chain, it checks if the number d is suitable for filters in Lemma 1 or 3. It requires
division operations. In the second part for constructing Lucas sequence, the algorithm evaluates
the Lucas value, which is dependent on the previous values. It requires modular multiplications to
combine the Lucas values. Obviously, the number of modular multiplications is greater than that
of division operations. For the purpose of analyses, we assume that the number d can be expressed
as d = 2 k (d -~ 3 k or d = 5k), and can be applied to Lemma 1. In this case, the required number
of modular multiplications in the second part is [log 2 d] (2 [log 3 d j or 3 [log 5 d]). The number is
corresponding to that of children in the decomposed tree, since each child's node requires one
modular multiplication. In [13], their method requires 2(1 + [log 2 d]) modular multiplications.
By neglecting the constant, the value 2([log 2 d]) will be compared with ours. We can see that the
numbers of modular multiplications are approximately reduced to 50%, 63%, and 65%, respec-
tively. Additionally, it requires [log 2 d], [log 3 dJ, and [log 5 dJ division operations, respectively,
in the first part of our method. This fact can be regarded as that the half number of the modular
multiplications in [13] are transferred to divisions in our method. Thus, the number of modular
multiplications is reduced. On the other hand, if the random number d cannot be filtered in
Lemma 1, we need to apply Lemma 3. Then, the required number of modular multiplications is
2([log2 d]), and we can only save two modular multiplications. Now, let us analyze the efficiency
in average case. We assume that a decomposed tree with d nodes has levels of I = [log 2 dJ. If
there are l / 2 levels can be manipulated by Lemma 1 and the others by Lemma 3 on average,
the average number of modular multiplications is approximately (1/2)(2[log3d]) in Lemma 1
and (1/2)(2[1og 2 d]) in Lemma 3. Therefore, the average number of modular multiplications is
[log 3 d] + [log 2 d], which is approximately 19% reduced comparing to [13].

4.2. Discuss ions

(1) From the performance analyses, we can reduce the number of modular multiplications,
which can be replaced by the division operations. Therefore, the computation time can
be reduced in the proposed method.

(2) There are three filters in Lemma 1. Similarly, there are some other filters can be devised by
proper modifications. For example, V (T x) -= V (4 x) V (3 x) - V (x) , the chain (x, 3x, 4x, 7x)
is not a Lucas chain, but V(Tx) -- V (5 x) V (2 x) - V (3 x) , the chain (2x, 3x, 5x, 7x) is formed
a Lucas chain, if x is included to the Lucas chain. Therefore, it is important to construct
other filters by using equation (3).

(3) From the definition of Lucas chain, we know that a Lucas chain is definitely an addition
chain, while the converse may not be true. Therefore, the created Lucas chain in the
proposed method is also an addition chain, it can also be applied to the computation
of modular exponentiations. Furthermore, we can modify the decomposed method and
obtain fewer nodes, since the addition chain does not satisfy the Condition (iii) as in the
definition of Lucas chain.

(4) The relationship between nodes in the decomposed tree and the nodes in the Lucas chain
are one-to-one correspondence. The shorter Lucas chain will result in less number of
modular multiplications. In our heuristic algorithm, the length of the chain is constructed

Computing Lucas Sequences 195

by logarithmic operations. However, how can we construct a shorter Lucas chain is an

interesting research topic.

4.3. A p p l i c a t i o n s

Most of public key cryptosystems rest on a trapdoor function, which can be employed to encrypt

and sign messages. The well-known and widely used schemes, such as RSA [2] and E1Gamal's

method [5], are based on computing the exponentiation with modulus a large number. Recently,

some researchers developed cryptographic scheme based on Lucas functions [6,7]. Assume that

the Lucas system is defined as equation (4). Similar to RSA, in the Lucas system, we have

to select two large prime numbers p and q, and compute N = p × q. The encryption key e

can be randomly selected and the decryption key d is computed such that d x e = lmodR(N) ,

where R (N) = Icm((p - (D/p)) , (q - (D/q))) , D = M 2 - 4, and (D/p) , (D/q) are the Legendre

symbols of D corresponding to p and q, respectively. The detailed discussions are given in [3,4].

Afterward, the encryption procedure of the Lucas scheme is given as

C = V (e) m o d N ,

and the signature procedure is

S = V (d) m o d N ,

where C is the ciphertext of the message M, and S is the signature. To speed up the computation

of V (e) m o d N (or V (d) m o d N) , the proposed scheme in Section 3 can be applied for the encryption

and signature procedure.

5. C O N C L U S I O N S

The algorithms for constructing Lucas chains and Lucas sequences have been proposed. Based

on the Lucas property, a decomposed tree for an integer d can be constructed, and the corre-

sponding Lucas subchain can also be generated. The independent nodes in the subtree are then

repeatedly decomposed and formed a skew tree. Since the decomposed method for d uses the

logarithmic operation, the generated Lucas chain will not be long. From the feature of Lucas

function, the desired Lucas value is combined and evaluated. From the performance analyses, we

can see that the required number of modular multiplications is reduced.

R E F E R E N C E S

1. W. Diffie and M. Hellman, New directions in cryptography, IEEE Transactions on Information Theory
I T - 2 2 (6), 644-654 (1976).

2. R.L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and public-key cryp-
tosystem, Communications of the ACM 21, 120-126 (February 1978).

3. P. Smith and M. Lennon, LUC: A new public key system, In Proceedings of the 9 th I f IF Int. Symp. on
Computer Security, pp. 103-107, (1993).

4. P. Smith and C. Skinner, A public-key cryptosystem and a digital signature system based on the Lucas
function analogue to discrete logarithms, In Pre-proceedings Asiacrypt'9J, pp. 298-306.

5. T. ElGamal, A public key cryptosystem and signature scheme based on discrete logarithms, IEEE Trans-
actions on Information Theory IT-31 (4), 469-472 (1985).

6. F.E.A. Lucas, Th~orie des fonctions num~riques simplement p6riodiques, Amer. J. Math. 1, 184-240 and
289-321 (1878).

7. D.H. Lehmer, An extended theory of Lucas's functions, Ann. Math. 31, 419-448 (1930).
8. D. Bleichenbacher, W. Bosma and A.K. Lenstra, Some remarks on Lucas-based cryptosystems, In Ad-

vances in Cryptology--Proceedings of Eurocrypt'95, Lecture Notes in Computer Science, pp. 386-396,
Springer-Verlag.

9. C.S. Laih, F.K. Tu and W.C. Tai, On the security of Lucas function, Information Processing Letters 53,
243-247 (1995).

10. D.E. Knuth, The Art of Computer Programming, Volume II: Seminumerical Algorithms, Addison-~,Vesley,
Reading, MA, (1969).

196 C.-T. WANG et al.

11. Y. Yacobi, Exponentiating faster with addition chains, In Advances in Cryptology--Proceedings of Euro-
crypt'90, Lecture Notes in Computer Science, pp. 222-229, Springer-Verlag.

12. P. Downey, B. Leony and R. Sethi, Computing sequences with addition chains, SIAM Journal on Computing
10 (3), 638-646 (1981).

13. S.M. Yen, and C.S. Laih, Fast algorithms for LUC digital signature computation, IEE Proc.--Comput.
Tech. 142 (2), 165-169 (March 1995).

14. J. Bos and M. Coster, Addition chain heuristics, In Advances in Cryptology--Proceedings of Crypto'89,
Lecture Notes in Computer Science, pp. 400-407, Springer-Verlag.

15. S.M. Yen and C.S. Laih, The fast cascade exponentiation algorithm and its applications on cryptography,
In Advances in Cryptology--Proceedings of Auscrypt'92, Lecture Notes in Computer Science, pp. 447-456,
Springer-Verlag.

16. C.C. Chang, W.J. Horng and D.J. Buehrer, A cascade exponentiation evaluation scheme based on the
Lempel-Ziv-Wetch compression algorithm, Journal of Information Science and Engineering 11, 417-431
(1995).

17. D.C. Lou and C.C. Chang, Fast exponentiation method obtained by folding the exponent in half, Electronics
Letters 32 (11), 984-985 (1996).

18. C.C. Chang and D.C. Lou, Parallel computation ofthe multi-exponentiation for cryptosystems, International
Journal of Computer Mathematics 63 (1/2), 9-26 (1997).

