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Flamingo Regulates R8 Axon-Axon and Axon-Target
Interactions in the Drosophila Visual System

in the Drosophila visual system [5]. In this screen, and
in most of the analyses reported here, photoreceptor
axon projections were examined in whole-eye mosaics
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Photoreceptors (R cells) in the Drosophila retina con- Gogh, and prickle-spiny legs, genes that act together
nect to targets in three distinct layers of the optic lobe with fmi in the establishment of ommatidial polarity [9].
of the brain: R1–R6 connect to the lamina, and R7 and For all of these mutants, R axon projection patterns
R8 connect to distinct layers in the medulla [1]. In each appeared normal, despite the defects in ommatidial po-
of these layers, R axon termini are arranged in evenly larity (data not shown, but see also [10]). We conclude
spaced topographic arrays. In a genetic screen for that ommatidial polarity defects do not necessarily
mutants with abnormal R cell connectivity, we recov- cause strong axon targeting defects, and that the func-
ered mutations in flamingo (fmi). fmi encodes a seven- tion of fmi in axon targeting is mediated by a pathway
transmembrane cadherin, previously shown to func- distinct from that used in establishing ommatidial po-
tion in planar cell polarity [2] and in dendritic patterning larity.
[3]. Here, we show that fmi has two specific functions
in R8 axon targeting: it facilitates competitive interac-
tions between adjacent R8 axons to ensure their cor- Flamingo Is Required for Layer-Specific Targeting
rect spacing, and it promotes the formation of stable of R8 Axons
connections between R8 axons and their target cells For a more detailed analysis of photoreceptor axon tar-
in the medulla. The former suggests a general role geting in fmi mosaics, we used markers specific for each
for Fmi in establishing nonoverlapping dendritic and subclass of photoreceptors: Rh1-�lacZ for R1–R6, Rh4-
axonal target fields. The latter, together with the find- �lacZ to label �70% of R7 cells, and Rh6-GAL4 UAS-
ing that N-Cadherin has an analogous role in R7 axon- �lacZ to label �70% of R8 cells. These markers revealed
target interactions [4], points to a cadherin-based sys- a highly specific R8 targeting defect (Figures 2C and
tem for target layer specificity in the Drosophila visual 2G). In contrast, R1–R6 axons correctly target the lamina
system [1]. (Figures 2A and 2E), and R7 axons generally appear to

select their correct target layer in the medulla, although
Results and Discussion their termini are slightly disorganized (Figures 2B and 2F).

Since the R7 axon from each ommatidium extends
Flamingo Is Required Autonomously into the medulla some 12 hr after the R8 axon, we won-
for Photoreceptor Axon Targeting dered if the mild R7 targeting defects might merely be
We recovered nine alleles of fmi in a genetic screen for secondary to the severe defects in R8 targeting. To test
mutations disrupting photoreceptor (R cell) connectivity for a specific role of fmi in R7 targeting, we used GMR-
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Figure 2. Flamingo Is Required for R8 Target Layer Specificity

(A–H) Horizontal head sections of (A–D) control mosaics and (E–H)
fmiE59 mosaics generated by using either (A–C, E–G) eyFLP to makeFigure 1. Flamingo Is Required Autonomously for Retinal Axon Tar-
whole-eye mosaics or (D and H) GMR-FLP and MARCM to generategeting
single mutant R7 cells. Specific axonal markers (green) were visual-

(A–C) Horizontal head sections of (A) control mosaics, (B) fmiE59
ized with (A–C, E–G) anti-�-galactosidase or (D and H) anti-GFP.

mosaics, and (C) fmiE59 mosaics rescued with a GMR-fmi transgene. Counterstaining (red) was performed with either (A–C, E–G) mAb
Whole-eye clones were generated with eyFLP, and R axons were 22C10 to label all neurons or (D and H) mAb 24B10 to label all
visualized by using a glass-lacZ marker and anti-�-galactosidase photoreceptor axons. (E–G) Note also the slight misalignment of the
staining. The arrowheads in (A) indicate layers of R8 and R7 termini medulla (me) with respect to the retina and lamina (la) in fmi mosaics.
in the medulla. Anterior is oriented toward the upper left. The scale This defect is commonly observed in photoreceptor connectivity
bar represents 25 �m. mutants and can usually be rescued by eye-specific expression, as

is the case for fmi (Figure 1C). It reflects a failure of the medulla to
complete its normal 90� rotation during late pupal development. (A
and E) R1–R6 axons, labeled with Rh1-�lacZ, terminate in the lamina
(arrow) in both control and fmi mosaics. (B and F) R7 axons, labeledFrom this analysis, we conclude that fmi is required
with Rh4-�lacZ, terminate in a deep layer of the medulla (arrow),in the eye for R8 axons to select targets in the correct
and only very mild defects are observed in fmi mosaics. (C and G)layer of the medulla, but not for the target layer specific-
R8 axons, labeled with Rh6-GAL4 UAS-�lacZ, terminate in a single

ity of R1–R6 or R7. This precludes neither an additional layer of the medulla in control animals ([C], arrow) but are highly
nonautonomous requirement for fmi within the target disorganized and often terminate at superficial levels in fmi mosaics

([G], asterisk). (D and H) Single mutant R7 axons, generated withregion nor a role for fmi in any R cell for the selection
GMR-FLP and MARCM and labeled with A181-GAL4 UAS-synapto-of the appropriate synaptic partners within the target
brevin-GFP, terminate in the correct layer in both control and fmilayer.
mosaics (arrowheads). The scale bars represent 25 �m.

Flamingo Is Required for the Correct Spacing
and Morphology of R8 Growth Cones terminate in more superficial layers in the adult (Figure

2G), we infer that these R8 axons fail to form stableR8 axons first extend from the eye imaginal disc into
the optic lobe during the third instar larval stage. The contacts in their target region and subsequently retract

to more superficial layers.Rh6 marker is not expressed at this stage, and so to
follow the initial projections of the R8 axons, we gener- In wild-type animals, R8 axons form evenly spaced

topographic arrays in the medulla, with “inverted-Y-ated an early R8 marker ato-�myc (see the Experimental
Procedures). With this marker, it appeared that most if shaped” growth cones (Figures 3A and 3B). In fmi mosa-

ics, the R8 growth cones are irregularly spaced andnot all R8 axons do initially reach their correct target
layer in the medulla (Figure 3F). Since many R8 axons have a more “club-like” morphology, but they have many
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elaborate fine processes (Figures 3F and 3G). The pro-
cesses of individual R8 growth cones often overlap ex-
tensively, something we only rarely observe in control
animals (Figures 3B and 3G; see also [12]).

Despite this irregular spacing, the entire target field
appears to be filled, and there does not appear to be
any dramatic misrouting of axons within the optic lobe.
This suggests that the overall topographic order is
largely preserved in fmi mosaics. We confirmed this for
the dorsoventral axis by using markers specific for polar
(i.e., dorsal- and ventral-most) axons (omb-�lacZ; [13])
and equatorial axons (Sema2b-�myc; [14]). In fmi mosa-
ics, as in control mosaics, these axons maintain their
correct topographic positions as they extend within the
eye disc (not shown), through the optic stalk (Figures
3C and 3H), and into the optic lobe (Figures 3D and
3I). We lack analogous markers to assess topographic
mapping along the anterior-posterior axis, but the or-
dered posterior-to-anterior filling of the medulla target
field in all of the preparations we examined (e.g., Figure
3F) is strong evidence that, along this axis too, topo-
graphic order is preserved.

Since Fmi is a homophilic cell adhesion molecule [2],
we wondered whether it might also contribute to the
bundling of photoreceptor axons into their discrete om-
matidial fascicles. We tested this by using electron mi-
croscopy to examine the composition and structure of
ommatidial fascicles within the optic stalk. The only dif-
ference we noted in fmi compared to control mosaics
was a slight (5.0%) increase in the number of fascicles
comprising more than eight R axons (n � 900 and 587,
respectively). This difference can be attributed to the
low frequency of ommatidia containing extra R cells [8].
Otherwise, fmi mosaics were indistinguishable from the
controls (Figures 3E and 3J), indicating that Fmi does
not function in the formation of ommatidial fascicles.

Flamingo Is Expressed on Photoreceptor Axons
and in the Target Region
We used anti-Fmi mAb 74 [2] to assess the distribution
of Fmi protein in the developing visual system. At the
third instar larval stage, Fmi protein is strongly ex-
pressed within the lamina plexus, where R1–R6 axons
terminate, and in the R7/R8 termination region in the
medulla (Figures 4A–4C). In photoreceptor axons, Fmi
is highly localized to the growth cone; only very low
levels of staining are seen along the axon shaft. Strong
staining was also observed within the medulla and lo-Figure 3. Morphology, Spacing, Topography, and Fasciculation of

Photoreceptor Axons bula. This staining appears to localize to the processes
(A–J) (A–D, F–I) Whole mount eye-brain complexes of third instar and termini, respectively, of medulla cortical neurons
larvae and (E and J) optic stalk cross-sections of white prepupae (as visualized with Ap-GAL4 and UAS-CD8-GFP; Figure
from (A–E) control and (F–J) fmiE59 mosaics generated with eyFLP. 4C). We could not detect any Fmi protein in glia in the
(A, B, F, and G) (A and F) Low- and (B and G) high-magnification

retina, lamina, or medulla (as visualized with UAS-CD8-views of optic lobes. R8 axons are labeled with ato-�myc. The brack-
GFP and the glia-specific drivers 1.3C2-GAL4 [15] andets in (G) indicate examples of overlapping R8 growth cones. (C, H,
Mz97-GAL4 [16]). In whole-eye fmi mosaics, most FmiD, and I) (C and H) A high-magnification view of the optic stalk and

(D and I) a low-magnification view of the optic lobe of animals staining is lost in the lamina plexus, while staining in the
carrying the omb-�lacZ marker for polar axons (green) and the medulla is reduced but not eliminated (data not shown).
sema2b-�myc marker for equatorial axons (red). (E and J) Transmis- This confirms that Fmi protein in the lamina is largely
sion electron micrographs of uranylacetate-contrasted ultrathin sec-

confined to R1–R6 growth cones, while, in the medulla,tions through the optic stalk. The scale bars represent 20 �m in (A)
some but not all Fmi protein is localized to R7 and/orand (D), 2 �m in (B) and (C), and 0.2 �m in (E).
R8 growth cones.

Fmi immunoreactivity persists in the lamina and me-
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Figure 4. Flamingo Localizes to Photoreceptor Growth Cones and Specific Layers of the Developing Optic Lobes

(A–F) Wild-type (A–C) third instar larval and (D–F) 40-hr pupal eye-brain complexes stained with anti-Fmi (red). Photoreceptor axons were
visualized with glass-lacZ (green in [A], [B], and [D]–[F]) or with anti-HRP (blue in [C]). In (C), medulla cortical neurons are visualized with Ap-
GAL4 UAS-CD8-GFP. (B) and (C) are cross-sectional views; other panels are dorsal views. The arrowheads in (A), (D), and (E) indicate the
lamina plexus; arrowheads in (F) indicate the layer of R8 and R7 termini. (E) and (F) are higher magnification views of the boxed regions shown
in (D). The arrows in (E) indicate expression on lamina (upper) and medulla (lower) cortical neurons. la, lamina; me, medulla. The scale bars
represent 20 �m in (A)–(C), 50 �m in (D), and 10 �m in (E) and (F).

dulla throughout early- and mid-pupal development, In addition to this negative role in R8 axon-axon inter-
actions, Fmi also appears to act positively in R8 axon-with increased staining of lamina and medulla cortical

neurons (Figures 4D and 4E). By the mid-pupal stage, target interactions. Here, parallels can be drawn with
the function of the classical cadherin, N-Cadherin, in R7the R7 and R8 growth cones have become more widely

separated (by �10 �m), in part due to the intercalation targeting. In both cases, mutant axons initially contact
their correct medulla target layer, but then a specificof growth cones and processes from lamina and other

neurons [1]. Intense Fmi staining is seen in the medulla subclass retracts: R7 retracts in the case of N-Cadherin
[1, 4] and R8 retracts in the case of fmi. Distinct cadher-neuropil in the region between the R8 and R7 termini,

with only low levels in the layers immediately above the ins thus regulate distinct targeting decisions in the me-
dulla and possibly act in this case as homophilic cellR8 termini or below the R7 termini (Figures 4D and 4F).

Fmi also localizes to a single broad band deeper in the adhesion molecules. However, since both N-Cadherin
and Fmi are expressed on all photoreceptor axons andmedulla and to the lobula.
in multiple layers in the optic lobe, these two cadherins
alone cannot account for the distinct target layer selec-Conclusions

Our results define two distinct and specific functions tions of R7 and R8. Additional determinants must exist.
One of these is the receptor tyrosine phosphatase LAR,for Fmi in R axon targeting. First, it facilitates competitive

or inhibitory interactions between adjacent R8 growth which is specifically required for R7 target layer selec-
tion and may act by modulating N-Cadherin-mediatedcones. Second, it promotes R8 axon-target interactions.

These inhibitory interactions between R8 growth cones adhesion [22, 23]. Other factors are likely to emerge
from ongoing genetic screens for layer-specific axonmay be mechanistically related to those previously dem-

onstrated for R7 axons [12]. Competitive interactions targeting in the Drosophila visual system [5, 22, 23].
between retinal axons also contribute to the formation
of an evenly spaced topographic map in the mammalian Supplemental Data

Supplemental Data including the Experimental Procedures are avail-visual system [17, 18]. Mammalian Fmi proteins are also
able at http://images.cellpress.com/supmat/supmatin.htm.widely expressed in the developing nervous system [19–

21] and thus are strong candidates to mediate similar
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