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The global cycle of desert dust aerosols responds strongly to climate and human perturbations, and, in
turn, impacts climate and biogeochemistry. Here we focus on desert dust size distributions, how these
are characterized, emitted from the surface, evolve in the atmosphere, and impact climate and biogeo-
chemistry. Observations, theory and global model results are synthesized to highlight the evolution
and impact of dust sizes. Individual particles sizes are, to a large extent, set by the soil properties and
the mobilization process. The lifetime of different particle sizes controls the evolution of the size distri-
bution as the particles move downwind, as larger particles fall out more quickly. The dust size distribu-
tion strongly controls the radiative impact of the aerosols, as well as their interactions with clouds. The
size of particles controls how far downwind they travel, and thus their ability to impact biogeochemistry
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1. Introduction

Mineral aerosols or desert dust particles are soil particles sus-
pended in the atmosphere in regions with easily erodible dry soils,
little vegetation and strong winds. Mineral aerosols represent one
of the most important aerosols in mass and aerosol optical depth
(Tegen et al., 1997), and can significantly impact radiation during
strong events or even in the annual mean (Li et al., 2004). Desert
dust can interact with liquid or ice clouds, and thereby modify
cloud optical properties and lifetimes (DeMott et al., 2003;
Mahowald and Kiehl, 2003), as well as affect precipitation processes
(Creamean et al., 2013). Once dust particles are deposited to the
surface, they provide micro nutrients to the ocean (e.g. Jickells
et al., 2005; Martin et al., 1991) or to land ecosystems (e.g. Okin
et al., 2008; Swap et al., 1992), as well as modify snow albedo
(Painter et al., 2007). Furthermore, inhalation of dust aerosol poses
a hazard to human health. The smaller the aerosol, the greater the
chance of it getting deposited in the gas-exchange region of the
lungs, and the greater the adverse effect (e.g., Brunekreef and
Holgate (2002)). Thus mineral aerosols are important for human
health, weather, climate, and biogeochemistry (Fig. 1).
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Soil dust particles are entrained into the atmosphere in a
several step process (e.g. Marticorena and Bergametti, 1995; Kok
et al., 2012). First strong winds force particles of about 100-
200 um diameter to move in ballistic trajectories (‘saltation’) close
to the surface (Bagnold, 1941; Alfaro et al., 1998b). These saltating
particles can break apart or eject smaller soil particles upon
impacting the soil. These smaller particles (< ~50 um) are
entrained into the boundary layer, after which they can be trans-
ported long distances (Prospero, 1996; Grousset et al., 2003).

Mineral aerosols are highly variable in space and time, with var-
iability in mass of more than 4 orders of magnitude (e.g. Mahowald
et al., 2009). Much of the desert dust mass transported in the atmo-
sphere occurs during a few events (e.g. Mahowald et al., 2009).
Globally averaged mineral aerosols have varied by a factor of 2-3
between glacial and interglacial time periods (Mahowald et al,,
2006; Petit et al., 1999), and on the regional and decadal time scale
can change by a factor of 2-4 depending on climate or land use by
humans (Ginoux et al., 2012; Mahowald et al., 2010; Prospero and
Lamb, 2003).

For aerosols, chemical composition and size are critical in con-
sidering the impacts (e.g. Mahowald et al., 2011a,b). For mineral
aerosols, both composition and size vary greatly over space and
time. Here we focus on size. The lifetime of a particle is heavily
dependent on the size of the particle, because smaller particles fall
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Fig. 1. Schematic of interactions between dust and climate and biogeochemistry.

downward much slower than larger particles because of friction
(Seinfeld and Pandis, 1998). For instance, recent results from the
Fennec field campaign in the Sahara desert indicate that the life-
time of dust aerosols larger than 20 um is of the order of 12 h
(Ryder et al., 2013a). For impacts through direct solar radiation
interactions, particles with sizes of the order of the solar (short-
wave) wavelengths (~0.2-2 um) produce the largest shortwave
(generally cooling) radiative effect per unit mass. Conversely, par-
ticles with sizes of the order of terrestrial (longwave) radiation (>
~4 nm), produce the largest longwave (warming) radiative effect
(Miller et al., 2006; Tegen and Lacis, 1996). For indirect effects with
clouds, although larger particles become cloud condensation nuclei
first, the number of particles activated in a cloud is important, and
thus the number of particles above a given size is the important
quantity (Dusek et al.,, 2006). For biogeochemical impacts, the
amount of mass deposited is important, and thus large particles
can dominate. Thus, size is a key determinant of mineral aerosol
impacts. However, the size distribution of dust is poorly understood
and difficult to consistently measure (e.g. Reid et al., 2003b).

There have been several recent reviews of desert dust impacts
on climate and biogeochemistry (e.g. Jickells et al., 2005;
Mahowald et al., 2005; Shao et al., 2011b), although none have
focused on dust sizes. For this review, we focus on the character-
ization and spatial patterns of the size distribution, and describe
how size impacts mineral aerosol impacts on climate and biogeo-
chemistry. In Section 2 we review methods for characterizing dust
particle distributions in both observations and models. Section 3
focuses on the distribution of dust particle sizes, and Section 4
on the importance of size for the impacts of dust onto climate
and biogeochemistry. Section 5 summarizes the results and identi-
fies key areas for more research.

2. Method for measuring and modeling the dust particle size
distribution

2.1. Dust size distributions

Aerosols can vary in size from less than 1 nm up to 100 pm.
Aerosols less than 1 um are considered fine aerosols, and are
divided into Aitken mode (<0.1 pm) and accumulation model
(>0.1 um). Particles larger than about 1 um are often referred to

as coarse particles. The size distribution of aerosols is often found
to be a log-normal distribution (Fig. 2), (although not necessarily
close to the source regions, as discussed later). The important prop-
erties of aerosols, which are related to the size distribution, include
the number, surface area and the mass of particles (Fig. 2). Assum-
ing there is a simple log-normal distribution, there is a straightfor-
ward mathematical relationship between number, surface area and
mass (e.g. Seinfeld and Pandis, 1998).

The particle size can be characterized using different particle
properties, resulting in a range of measures of the particle diame-
ter, including the aerodynamic, geometric, and optical diameters.
Since dust aerosols can be highly irregular, especially if they are
aggregates (Okada et al., 2001; Reid et al., 2003a), these different
measures of particle size can differ strongly for the same particle
(Reid et al., 2003b).

Most studies discussing particle size concern themselves with
the geometric diameter Dp, which is defined as the diameter of a
sphere having the same volume as the irregularly-shaped dust par-
ticle (e.g., Hinds, 1999). This diameter can be measured using a
variety of experimental techniques (see Table 1), including through
use of a coulter counter (see Table 1), which infers the particle vol-
ume by measuring the changes in electrical resistance as the parti-
cle flows in an electrolyte suspension through a narrow orifice
(Hinds, 1999). The geometric diameter can also be determined
using imaging techniques, such as optical microscopy (e.g.,
Gillette et al.,, 1972) and electron microscopy (e.g. Reid et al.,
2003a). A disadvantage of imaging techniques is that only two of
the three particle dimensions can normally be measured, although
the third dimension can be estimated using shadowing techniques
(Okada et al., 2001).

Whereas the geometric diameter is based on the particle’s phys-
ical size, the aerodynamic diameter D,. is determined by the parti-
cle’s aerodynamic resistance. It is defined as the diameter of a
spherical particle with density po = 1000 kg/m?> that has the same
aerodynamic resistance as the dust aerosol. The aerodynamic
diameter is of critical importance in assessing the health impacts
of mineral dust and other aerosols, since it determines where in
the human body aerosols are deposited upon inhalation (e.g.,
(Brunekreef and Holgate, 2002)). Consequently, the aerodynamic
diameter is commonly used in setting air pollution standards, such
as limits in Europe and the United States on concentrations of
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Fig. 2. (a) Aerosol number, (b) surface area, and (c) volume for a typical trimodal
aerosol distribution (from (Mahowald et al., 2011a,b)) based on information in
figure 7.6 in (Seinfeld and Pandis, 1998) and on information in (Dulac et al., 1996).
Also shown in the boxes is a schematic representation of the typical aerosol
diameter range impacting various processes as described in the text. Each process is
assigned a panel depending on whether the impacts are primarily dependent on
number (CCN and IN), surface area (SW AOD and LW AOD) or mass (biogeochem-
istry). Abbreviations: CCN, cloud condensation nuclei (red); IN, ice nuclei (blue); SW
AOD, shortwave aerosol optical depth (brown); LW AOD, longwave aerosol optical
depth (purple); and BGC, biogeochemically relevant species (green). Solid boxes
represent only size-dependent processes, and the outlined boxes represent the part
of the impact that is composition dependent.

PM2.5 and PM10 (i.e., particles with aerodynamic diameters smal-
ler than 2.5 and 10 pum, respectively) (Hinds, 1999). The aerody-
namic diameter can for instance be measured with a cascade
impactor (see Table 2), which uses differences in particle inertia
to deposit particles of decreasing aerodynamic diameter on a
sequence of stages (Hinds, 1999). The geometric and aerodynamic
diameters can be mathematically related (e.g., Reid et al., 2003b).

Lastly, the optical diameter D,p, is defined by the particle’s opti-
cal scattering abilities, (often defined as the radaius of a sphere
with the same surface area) and is usually measured using optical
sizing instruments such as the Malvern multisizer. These instru-
ments measure the intensity of scattered light at different values
of the angle with the incident beam, and then use knowledge of
the particle’s index of refraction to convert this measurement into
an estimate of particle size (Hinds, 1999). Related to the optical
diameter is the use of optical inversion techniques of remote sens-
ing data, such as used by the AErosol RObotic NETwork (AERONET).
These products use retrieval models to obtain the columnar vol-

ume size distribution that best fits measurements of spectral and
multiangle sun-sky radiances (Dubovik and King, 2000).

Unless otherwise noted, references to particle size in the
remainder of this article refer to the geometric diameter.

2.2. Dust size distribution: observational methodologies

A complete understanding of the dust cycle requires knowledge
of processes related to dust emissions and the spatial evolution of
dust load and its size distribution with transport and deposition.
This ranges from saltating particles, to loess deposits often repre-
sentative of proximal sedimentation, to remote sites such as ice
cores preserving information representative of long range trans-
port (Maher et al., 2010). Observations providing information of
dust size distributions can be obtained from aeolian sediments,
in situ sampling and remote sensing. The time and space repre-
sented in the measurement as well as the quantity measured varies
depending on the kind of measuring device (Table 1; see also Sec-
tion 2.1). Measurement accuracy and precision are limited by the
signal-to-noise issue when attempting to isolate the dust (signal)
from the surrounding environment or physical matrix.

Aeolian sediments include paleodust records (Kohfeld and
Harrison, 2001; Maher et al., 2010), embracing a broad spatial
range of distance from the dust sources, including the more tra-
ditional loess/paleosols sequences (e.g. Pye, 1995), marine sedi-
ments (e.g. Rea, 1994) and ice cores (e.g. Petit et al., 1999), and
the more recent developing dust records from lacustrine sedi-
ments (e.g. Lim and Matsumoto, 2008) and peat bogs (e.g. Marx
et al., 2009). In the case of sediments the general procedure is
to apply mechanical, chemical and thermal processes to isolate
the terrigenous fraction from the sediment, after which the sam-
ple is put into water and a dispersant is added to separate single
grains that have aggregated (e.g. Rea and Hovan, 1995). For an
accurate depiction of the size distribution representative of the
actual dust signal at the time of deposition (Pye, 1995; Bettis
et al., 2003) it is important that these aggregation issues are well
understood (Mason et al., 2011; Haberlah and McTainsh, 2011).
Wet methods tend to cause the loss of soluble material (e.g.
salts), and dissaggregate particles, which is likely to be more
applicable far from the source regions, when large particles have
fallen out already. Dry methods are appropriate for analyzing
recent deposition close to the source areas where the aggregated
size of particles is important for understanding deposition pro-
cesses. In the case of ice sediments most of these problems are
negligible, but sample melting is still required for liquid phase
analysis with coulter counter or laser devices. Procedures based
on ice sublimation and imaging characterization could overcome
this step (lizuka et al., in press), at the price of the uncertainty of
imaging techniques for the size distributions (Reid et al.,
2003a,b).

In situ sampling strategies include passive sampling devices for
dust deposition, such as sediment traps (Clemens, 1998) and
ground collectors (Goossens and Rajot, 2008), as well as active or
passive atmospheric sampling from ground stations (e.g. Maring
et al., 2003), ships (e.g. Stuut et al., 2005) and airplanes (e.g.
Ryder et al., 2013a,b).

Dust size information from remote sensing techniques can
come from the AERONET stations network, in particular from the
stations located in places where the aerosol load is predominantly
dust (Huneeus et al., 2011), and have been used for model-data
inter-comparisons (e.g. Ginoux et al, 2001; Yu et al., 2009;
Albani et al., submitted). Intercomparisons of AERONET remotely
sensed data compared with in situ measurements in field com-
paigns provide constraints on the accuracy of the remotely sensed
data (e.g. Reid et al., 2003b; Dubovik et al., 2000) A known artifact
of AERONET retrievals affects the fine or sub-micron mode of such
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Table 1
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Overview of techniques for measuring particle sizes and distributions.

Techniques Principle Size range Size resolution Diameter type Example references
Sieve-pipette Geometric + gravimetric Full range Coarse: 2-4-8-16-etc. um Mass-based Mubhs et al. (2003)
SediGraph Gravimetric + X-ray 1-30 um Intermediate i.e. 50 Mass-base Coakley and Syvitski (1991) and

Coulter Counter/
Elzone

Laser diffraction

Mobility

Aerodynamic
Cascade impactors
Remote sensing

attenuation

Geometric: volume + electric

Optical

Electrical mobility

Aerodynamic mobility
Aerodynamic mobility

Optical inversion

0.6-120 pm (sub-
range,

depending on setup)
0.4-120 um

Sub-micron: 3-
800 nm

0.8-30 pm
0.8-30 pm
0.1-20 pm

channels

Very fine e.g. 256 bins
in 0.6-20 pm, but absolute

res vary with interval
Intermediate

Fine
Intermediate/coarse

Intermediate/coarse
Intermediate/coarse

Volume-based

Volume-based

Number
distributions
Aerodynamic
Aerodynamic
Volume-based

Holz et al. (2007)
McTainsh et al., 1997;
Delmonte et al., 2002; Clemens, 1998

Buurman et al. (1997), Ruth et al.
(2003)

and Baumgardner et al. (2001)
Weidenohler et al. (2012)

Reid et al. (2003a,b)
Reid et al. (2003a,b)
Dubovik and King (2000)

Table 2
Types of size distribution datasets and characterisitics.
Sediments In situ sampling Remote sensing
Time span 1-106 years Days-decades Days-decades
Temporal integration  Subannual-multidecadal Hours-weeks Hours
Spatial coverage Local Local Local-global
Parameter Deposition Deposition, surface concentration Vertical path/column-integrated

Measurement types Volumetric, gravimetric, optical, imaging

Volumetric, gravimetric, optical, imaging, aerodynamic

Active/passive Optical path properties

" Spatial representativeness may be large, especially for remote sites (e.g. Mahowald et al., 2011a,b).

" Include aircraft flights and cruises.

inversion products (Dubovik et al., 2000), especially before the par-
ticle asimmetricity was taken into account (Dubovik et al., 2006).
Detection and evolution of the dust size distribution from satellite
is an active area of research and a potentially valuable source of
information (Kalashnikova and Kahn, 2008).

Based on the measuring principle, sizing techniques have differ-
ent sensitivity and resolution across regions of the size spectrum
(e.g. Goossens, 2008), so that difficulties emerge when comparing
observations (e.g. Reid et al., 2003b; Ryder et al., 2013a,b;
Formenti et al., 2011). For example, many sediments studies
focused on a wide size range e.g. >100 um, for which purposes
the clay fraction could be treated almost as a unique size class,
although studies comparing different techniques showed discrep-
ancies in assessing its relative contribution to the full size spec-
trum (e.g. Buurman et al., 1997; Goossens, 2008). Nonetheless
when it comes to long-range transported dust, finer resolution size
is important in assessing distribution shapes and their variability
(Steffensen, 1997; Ruth et al., 2003), which is relevant for dust as
a proxy of climate processes (McTainsh et al., 1997; Delmonte
et al.,, 2004) and because of the dust size impacts on radiation
and clouds (Forster et al., 2007; see also Section 4.1). Lacking a
common method of measurement for all of these sources of infor-
mation is a limitation, although the diversity in the type of obser-
vations also offers the opportunity for multiple views of the dust
cycle.

Measurements yield size data distributed in discrete channels,
which differ depending on the instrument and setup. From the
point of view of data dispersal in the literature, there are two main
options: parameterized distributions or binned data. In some cases,
because of the original goals of specific works, just the median of a
distribution was reported, unfortunately hampering broader uses
of the measurement’s potential information. In general, while
observations of dust size distributions exist from a variety of situ-
ations, it is difficult to organize all the information in a unique con-
sistent framework.

2.3. Modeling dust size distributions

There are two basic methodologies in use for modeling aerosol
size distributions: bin and modal methods. In bin or sectional
methods, separate bins for each size of aerosols are simulated sep-
arately, allowing them to interact with each other and the gas
phase, as well as deposit and be transported (e.g. Su and Toon,
2009). For each bin, however, the size distribution within the bin
stays constant, which means there is a constant relationship
between mass in the bin and the number of particles. Various num-
bers of bins can be included from just a few to dozens, depending
on the application. In modal models, the mass and number are
both carried, which allows the size to evolve with time
(Balkanski et al., 1996), and often fewer modes are included (e.g.
Liu et al,, 2011). In general circulation models, where computa-
tional time is a constraint, reduced numbers of bins or modes are
usually used. As an example here, we will describe and show
results from a 4 bin dust scheme (Mahowald et al., 2006) and a
3-mode modal scheme (Liu et al., 2011)., both of which are imple-
mented in the Community Atmosphere Model (Neale et al., 2013),
as described in more detail in (Albani et al., submitted). There are 4
dust bins in the CAM4 version of the model (Albani et al,
submitted; Mahowald et al., 2006; Zender et al., 2003). The model
assigns dust from an analytic trimodal lognormal probability den-
sity function, or three source modes, to four discrete sink modes, or
transport bins.

1 In(Dyaxj/ Doy) In(Dyin;/ Do)
M;j == |erf | — 22220 | —erf | — 2 222 )| 1
12 ! V2Inay; f V2Inay; @

The mass overlap, M;;, is computed from the formula above and rep-
resents the fraction of mass from each source bin to each transport
bin. A modified size distribution following brittle fragmentation
theory from Kok (2011) prescribes mass percents of 1.1, 8.7, 27.7,
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and 62.5% at every grid point which acts as a source for the 4 bins
(0.1-1 um, 1-2.5pm, 2.5-5pm and 5-10 pm) (Albani et al,
submitted). The sub-bin size distribution is identical for each bin
and is fully described by a lognormal distribution with mass median
diameter, D, =3.5 um and geometric standard deviation, 0g=2.0
(Reid et al., 2003b; Zender et al., 2003). While the mass within each
bin changes at each model time step due to deposition processes,
the sub-bin size distribution is fixed (Zender et al., 2003). At each
time step, the mass in each bin in each grid box is subject to trans-
port or deposition separately, with no interaction between bins.
This method is characterized as a bulk aerosol method as all aerosol
species are distinct and externally mixed.

Dust size distributions in CAM5 are treated as lognormal modes
instead of bins (called the MAM3 or modal aerosol model, with 3
modes) (Albani et al., submitted; Liu et al., 2011). Whereas differ-
ent particle types were carried in distinctive bins in CAM4, the log-
normal modes in CAM5 can carry more than one species, and an
intra-mode internal mixture is assumed. More specifically, in
MAMS3, dust is prescribed in two lognormal modes, an accumula-
tion mode and a coarse mode, where each of these modes is not
exclusive to dust but also carries other aerosol species, i.e. sea salt,
black carbon, organic carbon, and sulfate. Mixing between modes
is assumed to be negligible for dust, however mixing within modes
and water uptake changes the mass median diameter and number
concentration of the mode while the geometric standard deviation
is held constant. The mass median diameter and number concen-
tration are allowed to change within each mode with fixed geo-
metric standard deviation, and cutoff boundaries for the fine dust
and coarse dust mode are 0.1-2 um and 2-10 pm, respectively.
Similar to CAM4, dust in the updated model uses Kok (2011) to
parameterize the distribution of dust mass between the modes,
and the mass percents in each mode are 1.1 and 98.9% for the accu-
mulation and coarse modes, respectively.

3. Dust size distribution in observations and models

The dust size distribution at emission is extremely important
for downwind concentrations, since most of the dust is emitted
at sizes that do not effectively grow by condensation or coagulata-
tion (Seinfeld and Pandis, 1998) (Section 3.1). Once in the atmo-
sphere, the size distribution evolves due to deposition processes,
primarily, as large particles fall out more quickly (Section 3.2).
The size evolution of dust can be probed while in the atmosphere,
as well as at deposition (Section 3.3).

3.1. The dust size distribution at emission

3.1.1. Observations of the dust size distribution at emission

Accurate representation of the dust particle size distribution
(PSD) in the atmosphere begins with a parameterization of the dust
PSD at emission. Note that the different measurements of the size
distributions at emission are all in rough agreement for dust aero-
sols smaller than ~5 pm in diameter (Fig. 3). This is quite remark-
able, considering that these measurements were taken over
different soils, in different source regions, and using different
techniques. For larger particles (> ~5 um), the size distributions
do differ substantially, a possible cause of which is discussed in
the next section.

In order to parameterize the dust PSD at emission in models, the
dependence on wind speed and soil properties, such as soil PSD,
needs to be understood. A number of studies have reported mea-
surements of the dust PSD at different values of the wind friction
speed ux (Fig. 4). Most of these measurements show no depen-
dence of the dust PSD on the wind speed at emission (Fig. 4; see
Kok (2011a) for a statistical analysis). The study of Alfaro et al.
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Fig. 3. Compilation of measurements of the volume (A) and number (B) dust size
distribution at emission. Measurements by Gillette and colleagues (Gillette, 1974;
Gillette et al., 1972, 1974) used optical microscopy, and were taken in Nebraska and
Texas. Conversely, measurements by Fratini et al. (2007), Sow et al. (2009), and
Shao et al. (2011a) used optical particle counters. These measurements were made
in China, Niger, and Australia, respectively. All measurements were normalized
following the procedure described in Kok (2011b). Note that the Fratini et al.
measurements were normalized over the range of 2-4 um (instead of 2-10 um),
because the results from the coarser particle bins in that data set are unreliable
(Fratini, 2012, personal communication). Furthermore, adjacent pairs of particle
bins in the Fratini et al. data were averaged to reduce scatter.

(1998a) is an exception to this observation, as this study found a
strong dependence of the dust PSD on ux in wind tunnel
measurements (Fig. 41). Such a dependence of the dust PSD on ux
is not observed in the wind tunnel experiments of Gillette et al.
(1974), nor in most field measurements, and might be due to the
used wind tunnel being too short to produce steady state saltation
(Alfaro et al., 1998a) similar to that occurring in the field (Kok,
2011a). Another possible exception is the study of Sow et al.
(2009), which found more fine particles and fewer coarse particles
for an energetic wind event than for two less energetic events.
However, dust PSD measurements during each event showed no
dependence on wind speed (Sow et al., 2009). Furthermore, the dif-
ferent dust events occurred a year apart such that the measured
differences could have been caused by changes in the soil state
(Kok, 2011a).

On balance, the measurements (Fig. 4) indicate that the dust
PSD is independent of the wind speed at emission. This conclusion
is supported by the observation of Reid et al. (2008) that the PSD of
dust advected from individual source regions appeared invariant to
the wind speed at emission.
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Fig. 4. Compilation of measurements of the dust size distribution at emission measured at different wind friction velocities. Shown are results of the field studies of (A)
Gillette et al. (1974), (B-D) soils 1-3 of Gillette (1974), (E) Fratini et al. (2007), (F) Sow et al. (2009), and (G) Shao et al. (2011a). In addition, panels (H) and (I) show results
from the wind tunnel measurements of Gillette et al. (1974) and Alfaro et al. (1998a), respectively.

The dependence of the dust PSD at emission on soil properties is
more difficult to determine, as few measurements for different
soils exist (e.g. DO4Models, http://www.geog.ox.ac.uk/research/
climate/projects/do4models.html). However, the available experi-
mental data sets show, as mentioned above, remarkably similar
size distributions for Dy, < ~5 pm (see Fig. 3). Since the measure-
ments in Fig. 3 were taken for a range of soil types, this result sug-
gests a limited dependence of the PSD of <5 pum dust on soil
properties. This is highly fortuitous for parameterizing the emitted
dust size distribution in models, although it should be verified by
further measurements.

The different measurements of the PSD of particles >5 pm do
show substantial scatter, which is likely largely due to differences
in the state and PSD of the soil. Therefore, more research is needed
to better quantify the influence of the soil size distribution on the
emitted dust size distribution.

3.1.2. Theories and parameterizations of the dust size distribution at
emission

As discussed in Section 1, most dust aerosols are emitted into
the atmosphere through the mechanical impacts of saltating parti-
cles. These impacts create elastic waves that are necessary to rup-

ture the interparticle bonds binding dust particles to other soil
particles. The patterns in which these bonds are ruptured deter-
mines the size distribution of dust aerosols. The studies of Alfaro
and Gomes (2001), Shao (2001, 2004), and Kok (2011b) proposed
distinct theories that use this knowledge of the origin of dust aero-
sols to predict the dust PSD at emission.

The Dust Production Model (DPM), proposed by Alfaro and
colleagues (Alfaro et al., 1997; Alfaro and Gomes, 2001), predicts
that the mechanical impacts of saltators produce dust particles in
three distinct lognormal modes. A critical ingredient of the DPM
is that the relative contribution of each of the three modes
depends on the bonding energy for each mode. The bonding
energy and median diameter of these modes was determined
from fitting to wind tunnel experiments (Alfaro et al., 1997),
and recent results suggest that these parameters might need to
be adjusted for each soil (Sow et al., 2011). Since the DPM
assumes that the saltator impact speed scales with wind speed,
this model predicts a strong dependence of dust PSD on usx.
Although an increase of the saltator impact speed with usx is intu-
itive, recent measurements and theories indicate that the saltator
impact speed actually stays constant with ux (Kok et al., 2012).
Consequently, the DPM predicts a strong dependence of the emit-
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ted dust PSD on ux, which is not shown by most measurements
(see Fig. 4).

Following the DPM, Shao (2001, 2004 ) proposed a different the-
ory based on the insight that the emitted dust size distribution is
intermediate between the undisturbed and the fully disturbed
(i.e., fully disaggregated) soil size distributions. Specifically,

Pa(Dp) = yPm(Dyp) + (1 = 7)p¢(Dy), (2)

where pq4, pm, and pr denote the size distributions of the emitted
dust aerosols, the undisturbed soil, and the fully disturbed soil.
The problem then is how to estimate the weighting factor y; Shao
(2001, 2004) postulated that y increases monotonically with usx.
However, in more recent work, Shao et al. (2011a) suggested that
y is independent of ux, based on the observation that field measure-
ments of the dust PSD show no clear dependence on ux (see Fig. 4G).

Most recently, Kok (2011b) proposed a theory for the size distri-
bution of emitted dust aerosols that assumes that most dust emis-
sion is the result of fragmentation of soil dust aggregates by
impacting saltators. As also noted by Gill et al. (2006), stressed
dry soil aggregates are known to fail as brittle materials
(Braunack et al.,, 1979; Lee and Ingles, 1968; Perfect and Kay,
1995; Zobeck et al., 1999). Therefore, Kok (2011b) hypothesized
that the impact energy of a saltating particle shatters aggregates
of dust particles in soils in much the same way that glass shatters
upon a sufficiently energetic impact. Since the patterns in which
cracks are created and eventually merge in brittle materials is
scale-invariant (Astrom, 2006), and thus does not require detailed
knowledge of the strength of interparticle bonds in the dust aggre-
gate, this hypothesis produced a relatively straightforward expres-
sion for the size distribution of emitted dust aerosols. Specifically,
Kok (2011b) derived

dVy Dy In(Dy4/Ds) D4\’

dlnDd_C_,,[1+erf<\/§1n0's>] exp {_<7> }7 )
where Vy is the normalized volume of dust aerosols with size Dy,
cy=12.62 pm is a normalization constant, and os~3.0 and
D)s~3.4um are the geometric standard deviation and median
diameter by volume of the log-normal distribution of a typical arid
soil size distribution in the < 20 pum size range. The parameter /.
denotes the propagation distance of side branches of cracks created
in the dust aggregate by a fragmenting impact, and Kok (2011b)
obtained 2 =12 + 1 um using least-square fitting to dust PSD mea-
surements. Eq. (3) is in surprisingly good agreement with measure-
ments (Fig. 3), and correctly predicts the independence of the
emitted dust PSD with ux (Fig. 4). Furthermore, implementation
of Eq. (3) into models has improved agreement against measure-
ments in several regional and global models (Albani et al.,
submitted; Johnson et al., 2012; Nabat et al., 2012; Zhang et al,,
2013). This approach assumes that the dust size distribution is
not a strong function of soil properties which matches many obser-
vations (e.g. Fig. 3), but is not consistent with all observations (e.g.
Reid et al., 2003a,b).

Note that the side crack propagation length 4 remains highly
uncertain. In particular, the recent measurements of Shao et al.
(2011a) suggest a smaller value of 1; measurements of Fratini
et al. (2007), which were overlooked in Kok (2011b), also suggest
a smaller value of 1. However, the coarse particle bins of Fratini
et al. (2007) might be unreliable since the cut-off diameter of the
inlet system was not determined and might be smaller than the
assumed 10 pm (aerodynamic) diameter (Fratini, personal com-
munication, 2012). Considering the large scatter in PSD measure-
ments for dust with diameters > ~5 pm, which is the portion of
the theoretical curve that is sensitive to the value of 2, it is likely
that the exact value of 4 is highly dependent on the properties of
the soil (Kok, 2011a).

3.1.3. Treatment in atmospheric circulation models

As discussed in Section 2.2, atmospheric circulation models use
either a modal or a sectional (bin) method to represent the dust
size distribution at emission and during transport. Following the
prevailing treatment of other aerosol species (e.g., sulfates;
Seinfeld and Pandis, 1998), many models simulate the dust size
distribution as a sum of lognormal modes (e.g., Balkanski et al.
(2007), Zhao et al. (2010)). Although this approach is computation-
ally efficient for models using the modal method, measurements of
the dust size distribution at emission and in situ near source
regions do not generally support the idea that the dust PSD at
emission is a sum of a few lognormal modes (Figs. 4 and 5).
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Fig. 5. Compilation of in situ measurements of the dust PSD close to North African
source regions. Shown are measurements from the DODO (Fig. 7 in McConnell et al.
(2008)), DABEX (Fig. 6 in Chou et al. (2008) and Fig. 10 in Osborne et al. (2008)),
SAMUM-1 (Fig. 8 in Weinzierl et al. (2009)), and Fennec (Fig. 5 in Ryder et al.
(2013Db)) field campaigns. Error bars have been omitted to prevent clutter, and can
be found in the original references. Only dust PSD measurements of aerosols with
diameters >0.5 um are plotted because a substantial fraction of smaller aerosols are
not mineral dust (Chou et al., 2008; Kandler et al., 2009; Weinzierl et al., 2009).
Instruments used in determining the dust PSD include electron microscopy (Chou
et al.,, 2008; McConnell et al., 2008) and optical sizing instruments (McConnell et al.,
2008; Osborne et al., 2008; Ryder et al., 2013b; Weinzierl et al., 2009). All measured
dust PSDs were normalized by fitting the number (N) size distribution to the power
law dN/d log Dq = cD4 % in the size range 2-4 pum, and dividing all measurements by
the fitted proportionality constant ¢ (Kok, 2011b). Measurements from the SHADE
(Haywood et al., 2003) and SAMUM-2 (Schladitz et al., 2011) measurement
campaigns were not included, since these measurements were not taken over
source regions. Measurements from the GERBILS field campaign (Johnson and
Osborne, 2011) were also not used, because the measurement ranges of the two
used instruments did not overlap, possibly introducing substantial systematic
erTors.
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Many models also include an explicit dependence of the dust
size distribution at emission on the soil size distribution (e.g.,
Ginoux et al., 2001; Tegen and Lacis, 1996), an idea that is sup-
ported by theory (see above). However, measurements only show
substantial variation in the dust PSD emitted by different soils
for dust particles > ~5 pm; the dust PSD for smaller particles
shows relatively little variation between soils (Figs. 4 and 5). Many
models also include a dependence of the dust PSD on the wind
speed at emission (e.g., Ginoux et al., 2001), an idea that is mainly
based on the wind tunnel studies of Alfaro et al. (1997, 1998a).
However, as discussed above, field measurements show no statis-
tically significant dependence of the dust PSD on ux* (Fig. 4; Kok
(2011a)). These results suggests that the dependence of the emit-
ted dust PSD on the soil type and wind speed might be over-
parameterized in certain models.

3.2. Atmospheric removal processes and dust size

Desert dust particles, like other aerosols, are effectively
removed by both wet and dry deposition processes. Both removal
processes are size dependent. For removal processes, the lifetime is
defined as the amount of mass in the atmosphere divided by the
surface flux, and we can define total lifetime to deposition pro-
cesses, as well as separate lifetimes to wet and dry processes.

Turbulent motions in the atmosphere bring aerosols in the
boundary layer down to the surface, as they are transported with
the eddies. Close to the surface there is a thin layer of stagnant
quasi-laminar air, which the aerosol has to transverse. Once an aer-
osol makes contact with the ground, it can be deposited onto the
surface, called dry deposition. Most often the deposition flux is
parameterized as equal to a deposition velocity times the concen-
tration of particles. The deposition velocity is derived using a resis-
tance model, where the deposition velocity is the inverse of the
sum of the aerodynamic resistance (from the eddies), quasi-lami-
nar layer resistance, and the canopy resistance of the surface to
deposition (Seinfeld and Pandis, 1998).

In addition to this turbulent dry deposition, aerosols can gravi-
tationally settle and deposit on the surface. Because aerosols are
solids or liquids suspended in the atmosphere, and thus are less
buoyant than the air around them, they accelerate downward. This
motion is opposed by friction, and the terminal velocity is the
speed at which a particle falls at equilibrium. Larger particles fall
much faster than smaller particles, giving them a larger deposition
velocity; for example, particles of size 0.1, 1, and 10 um will have
deposition velocities of 0.001, 0.05 and 1 cm/s, respectively, under
the same atmospheric conditions (Seinfeld and Pandis, 1998).

The theory of dry deposition that is used in model and data
analysis is fairly standard (e.g. Seinfeld and Pandis, 1998), however
there have been few detailed field campaigns in the last 30 years
that would allow us to verify these theories (e.g. Slinn and Slinn,
1980; Prospero et al., 1996; Schulz et al., 2012), and some mea-
surements along transport pathways indicate a longer lifetime of
coarse aerosols than expected from deposition theories (Maring
et al., 2003; Ryder et al., 2013a). Because of the different sedimen-
tation rates, there is a strong dependence of dry deposition lifetime
onto size (Fig. 6). In addition, the lifetime of dust particles also var-
ies spatially (Fig. 6). This is because the dry deposition removal
occurs at the surface, and so occurs more quickly for particles close
to the surface, or in bouyant boundary layers (which can extend up
to 6 km over desert regions e.g. Mahowald and Dufresne (2004),
where the dust can be quickly brought to the surface and
deposited.

Wet deposition refers to removal of aerosols during cloud or
precipitation processes, which cause the aerosol to be deposited
onto the surface. Dust aerosols are readily incorporated into
clouds, either as cloud condensation nuclei or ice nuclei, where

aerosols are important for the formation of clouds (e.g. DeMott
et al., 2003; Rosenfeld and Nirel, 1996), or when the aerosols make
contact with the cloud droplets and are captured by the cloud
droplets within clouds. While desert dust particles are insoluble,
they readily attract water to their surfaces (Koretsky et al., 1997),
and can act as cloud condensation nuclei by adsorption of water
vapor (Kumar et al,, in press). There is also growing evidence that
dust aerosols are one of the most important sources of ice nuclei,
and thereby can substantially affect cloud processes (Creamean
et al.,, 2013; DeMott et al., 2010). Thus, processing of atmospheric
dust particles with sulfate or other pollutants is not necessary for
them to be readily incorporated into clouds (e.g. Fan et al., 2004).
These cloud droplets can grow to a size (1-100 um) where their
terminal velocity is much larger than for the original aerosols,
causing clouds that are in contact with the ground (e.g. fog) to
accelerate the deposition of aerosols (e.g. Seinfeld and Pandis,
1998). These processes are called in-cloud scavenging.

Once cloud droplets grow to where their terminal velocities are
large enough to cause deposition in minutes (100 pm to 1 mm),
they are called rain droplets, and can cause the deposition of aero-
sols to the surface from high in the atmosphere. Below the cloud,
rain drops can hit and collect more aerosols, which is called
below-cloud scavenging.

Wet deposition is sometimes parameterized as a simple scav-
enging rate, where one assumes a constant removal of aerosols
per amount of water precipitated (e.g. Tegen and Fung, 1994).
However, using surface concentration to infer wet deposition can
produce errors in situations where the aerosols are carried in
plumes elevated above the boundary layer (e.g. Heimburger
et al.,, 2012). For modeling, there are many more physically based
schemes (e.g. Giorgi and Chameides, 1985), but models using dif-
ferent parameterizations produce varying results (e.g. Huneeus
et al,, 2011; Rasch et al., 2000). There are few measurements of
wet deposition processes, implying that there are large uncertain-
ties in model estimates (Huneeus et al., 2011).

Wet deposition is also size dependent. In-cloud scavenging
should incorporate most aerosols, especially larger particles, such
as most desert dust, that more readily act as CCN or IN (e.g.
Cziczo et al., 2013; Dusek et al., 2006) and thus we do not expect
strong size-segregation during in-cloud scavenging (Seinfeld and
Pandis, 1998). Theory suggests that below-cloud scavenging
should be strongly size dependent, with a maximum rates of depo-
sition occurring when particles are close to 1 pum (Seinfeld and
Pandis, 1998), although there is limited field data to evaluate the-
ories. Aerosol wet deposition lifetimes are difficult to assess, but
are estimated to be close to 1-2 weeks on average (e.g. Balkanski
et al., 1993; Huneeus et al., 2011). Wet removal occurs only during
precipitation events, but such events cause removal of most of the
aerosol load. Overall, the deposition lifetime of aerosols depends
on whether there is precipitation at a given time and place, as well
as how large and high particles are at that location (e.g. Fig. 7).

Cloud processing of aerosols can also be important for aggregat-
ing aerosols, and thereby changing their size distribution, as well
as mixing aerosols, causing externally mixed aerosols to become
internally mixed (e.g. Seinfeld and Pandis, 1998). If individual aero-
sols have mixed compositions, these aerosols are referred to as
internally mixed aerosols, whereas if each aerosol is unmixed,
but is in a mixed population, this is referred to as an externally
mixed aerosol population.

3.3. Atmospheric concentration size fraction: observations and models

3.3.1. Measurements of the atmospheric dust size distribution near
source areas

In recent years, a range of in situ measurements of the dust size
distribution have been published, especially of measurements
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Fig. 6. Spatial distribution of dry deposition lifetimes in CAM4 (Albani et al., submitted) for bins 1-4 (a-d) in days. Dry deposition lifetimes are calculated as the column
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Fig. 7. Desert dust aerosol lifetimes in CAM4 in days (Albani et al., submitted).

close to the North African source regions. These include measure-
ments performed during the SaHAran Dust Experiment (SHADE;
Haywood et al. (2003)), Bodele Dust Experiment (BoDEx 2005;
Washington et al. (2006), Todd et al. (2007)), the Dust And Biomass
Burning Experiment (DABEX; Chou et al. (2008), Osborne et al.
(2008)), the Saharan Mineral Dust Experiments (SAMUM-1 and
SAMUM-2; Schladitz et al. (2011), Weinzierl et al. (2009)), the Geo-
stationary Earth Radiation Budget Intercomparison of Longwave
and Shortwave radiation (GERBILS; Johnson and Osborne (2011)),
and the recent Fennec campaign (Ryder et al., 2013b).These field
campaigns determined the dust PSD using a variety of optical par-
ticle counters, as well as electron microscopy analyses of collected

samples. The results of these different campaigns appear consis-
tent for particles between 1 and 5 pm, but differ substantially for
the large particle fraction (see Fig. 5). This observation mirrors
the results of measurements of the emitted dust size distribution
at emission (Fig. 3), and supports the hypothesis that the emission
of small dust aerosols (< ~5 pum) is relatively invariant to soil type
and state, whereas emission of larger dust aerosols (> ~5 pm) can
vary substantially (Kok, 2011a,b). Furthermore, differences in dis-
tance from the source will create differences in the gravitational
settling rate, which will in turn cause differences mainly in the size
distribution of the coarse fraction. Another factor contributing to
the scatter in the data for coarser aerosols is that relatively few
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PSD measurements are available that extend to coarser sizes, and
that the few available measurements of coarser aerosols have lar-
ger uncertainty than for finer aerosols because of poor counting
statistics (e.g., Ryder et al., 2013b).

Another interesting result from Fig. 3 is that aerosols <1 pum are
overrepresented relative to measurements at emission (Fig. 3). This
is puzzling since dry deposition is inefficient for particles that
small (Miller et al., 2006), and wet deposition is generally insignif-
icant over the Sahara (Ginoux et al., 2001). This apparent discrep-
ancy between in situ measurements and measurements at
emission could be due to several reasons. First, there could be sys-
tematic differences between the size distributions at emission
(Fig. 3) and the in situ size distributions (Fig. 5), for instance due
to systematic differences of soil properties in the Sahara with soils
in the measurement locales represented in Fig. 3 (Texas, Niger,
China, and Australia). Second, there could be systematic differences
in the measurement techniques, although both sets of measure-
ments used a mix of (electron) microscopy and optical sizing
instruments. Finally, the in situ measurements could contain a sub-
stantial fraction of other species of aerosols, especially sulfates
(Kandler et al., 2009; Schladitz et al., 2011). The measurements
of Chou et al. (2008) and Weinzierl et al. (2009) eliminated vola-
tiles such as sulfates, and these measurements are indeed in closer
agreement with measurements at emission than other in situ mea-
surements. In particular, the Osborne et al. (2008) measurements,
taken during the same flights as the Chou et al. (2008) measure-
ments, show more of an overestimation relative to measurements
at emission, supporting this notion.

In addition to measurements near the North African source
regions, some field campaigns have determined the dust size dis-
tribution near other source regions, such as the Middle East (Reid
et al., 2008), as well as dust transported to the Canary Islands,
Puerto Rico, and Florida (Maring et al., 2003; Prospero and
Custals, 2012; Reid et al., 2003b). The deployment of sun-photom-
eters, including from the AERONET stations, in sites or areas where
intensive field campaigns are carried out gives the chance to com-
pare the different measurements. Results from the Puerto Rico
Dust Experiment (PRIDE) campaign highlighted how inversion
estimates yielded volume median diameter around 4 pm, slightly
larger than the more reliable measurements from aerodynamic siz-
ing (3.5 um), but pointed to large uncertainties (Maring et al,
2003). More recently, size distributions from in situ aircraft sam-
pling during the SAMUM-1 and Fennec 2011 campaign showed a
significant discrepancy in comparison with AERONET for larger
particles (i.e. diameters >6 pm), with the inversions tending
towards finer distributions compared to the aircraft samples
(Muller et al., 2012; Ryder et al., 2013a,b).

3.3.2. Evolution of dust size distributions: example of North African
dust

Close to dust source regions, there is a significant amount of
coarse desert dust particles (Figs. 4 and 5), which fall out as the
dust travels downwind (Fig. 8). Several observational studies have
focused on understanding the evolution of dust size in the North
Atlantic (e.g. Reid et al., 1998, 2003b; Maring et al., 2003;
Kalashnikova and Kahn, 2008). Here we compare the observed
and modeled evolution (from CAM4; Albani et al., submitted).
Notice that AERONET data in the smallest size bin are not included,
because of possible contamination by other aerosols and large
uncertainties (e.g. Albani et al., submitted; Dubovik et al., 2000).
In evaluating the model against the different types of observations,
one must keep in mind both the different metrics used (geometric
vs. aerodynamic diameter, as discussed in 2.1), as well as the dif-
ferences in measurement techniques (see Figure 20 in Reid et al.,
2003a,b). While the model appears to capture the size distribution
in the source regions, according to the AERONET observations

(Fig. 8c; Albani et al., submitted), and in downwind regions (e.g.
Barbados; Fig. 8d), the transition to smaller particles appears to
occur too quickly in this model. The loss of the big particles in
windblown dust over the Eastern Atlantic is due to preferential set-
tling by dry deposition in the model.

Another important quality of dust size distributions
downwind of a large source area is that the atmospheric surface
concentrations tend to be finer than the deposition (e.g.
Fig. 8f-m), as the bigger particles fall out preferentially. This also
helps explain why the surface observations at Izafia (Maring
et al., 2003) or for off-shore sampling (Stuut et al., 2005) show
a tendency towards a finer distribution than the deposition used
as a proxy for dust deposition in marine sediment cores (Mulitza
et al, 2010): in fact the deposition observations which are
interpreted to be wind-blown show a similar peak as the model
just off the coast of Africa (Fig. 8). Also note how the observed
size fraction larger than 10 um is much larger for sea level
observations (Stuut et al., 2005) than for a high-elevation site
such as Izafia (Maring et al., 2003), although different techniques
were used. This analysis supports the use of the coarse mode in
the deposition as a proxy for dust variability (e.g. Tjallingii
et al., 2008; Mulitza et al., 2010) However, Mulitza et al. (2010)
does interpret fine particles in the sediment core as riverine
input, although they are in the correct size distribution (0.1-
10um) for wind-blown dust from North African sources farther
inland.

3.4. Deposition size distribution: observations and models

The size distribution of dust at deposition can be measured
through in situ observations as well as from paleoarchives (e.g.
Fig. 8). Similar to Fig. 7, one can see the dust size distribution
evolution during transport towards finer distributions (e.g. Junge,
1977; Derbyshire et al., 1998; Maring et al., 2003; Lawrence and
Neff, 2009), and is represented here for a collection of observa-
tional estimates of present-day dust deposition (Fig. 8). Larger
particles are usually more prevalent close to the source regions,
where there are also greater deposition fluxes (Fig. 9). There is a
tendency for an inverse relationship between the fraction of coarse
particles and dust deposition fluxes in models (Fig. 10) and obser-
vations (Fig. 9), although the relationship is not tightly constrained.
Notice that the model used here suggests that in the Southern
Ocean/Antarctic region, the dust deposition is relatively coarse,
which is not seen in the observations (Albani et al., submitted).
This is due predominately in the model to South American dust
(not shown), and it suggests too many coarse particles are being
transported long distances in the model in this region. Because of
the lack of observations, it is not clear if this is due to an incorrect
source size distribution or if the dry and wet deposition processes
in the model are in error.

For paleodust archives, the size distribution is used for many pur-
poses. In some cases the information on size distribution is used to
separate aeolian versus riverine inputs (Weltje, 1997; Tjallingii
et al., 2008) or highlight sediment redistribution (Rea and Hovan,
1995) in marine sediments, and to contribute to differentiating local
versus remote aeolian contributions (Delmonte et al., 2010; Albani
et al,, 2012a; Marx et al., 2009).

Observed variability in size distribution has been the basis for
interpreting changes in the grain size of dust as a paleoclimate
proxy, a possible indicator of changes in source area proximity,
wind strength and/or changes in the type of deposition processes
(e.g. Xiao et al., 1995; Kohfeld and Harrison, 2001; Ruth et al.,
2003; Delmonte et al., 2004). For example coarser grain size from
loess deposits (Porter and An, 1995) and marine sediments
(Hovan et al., 1991) during cold stages have been interpreted in
relation to stronger winds — while conversely finer sizes were
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Fig. 8. Evolution of dust size distributions downwind of North Africa. Top panel: column size distributions from AERONET and CAM4 model (Albani et al., submitted) at
AERONET sites (a) Capo Verde, (b) Izafia, (c) Dakhla and d) Tamanrasset (marked with x’s on map). Modeled and re-binned AERONET size distributions are normalized in the
1-10 pm range according to the model size range as a function of diameter—the grey bars on the x-axis represent the model bins Middle panel: (e) Modeled dust atmospheric
surface concentrations in a simulation driven by reanalysis winds for the years 2001-2002 (jja) (red scale, units: pg/m?). Squares (grey scale) represent modeled dust
emissions (Tg/y) in the reference period. Circles on the map represent observational sites listed in Table 3, the color coding being associated with specific size distribution
plots in bottom panel. Bottom panel: comparison of observed (black solid lines) and modeled (red solid lines) size distribution for surface concentrations normalized on the
model size range as a function of diameter—the grey bars on the x-axis represent the model bins. Dotted red lines represent modeled dust deposition normalized size
distribution. The numbers on the bottom right side of each plot represent the observed fraction larger than 10 um. (m) (Sahara) represents modeled normalized size
distribution of dust surface concentration and deposition in the corresponding regions marked by colored boxes over the source regions.
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Table 3
Description and datasets used in construction of Fig. 8.
Site Sampling period Techniques References
Barbados Apr-Aug 2010-2012 Coulter MultisizerTM 3 using bulk Prospero and Custals (2012). Particle size

(total) aerosol samples collected on a membrane filters

Miami Apr-Aug 2010-2012

Puerto Rico Jul 2000 Aerodynamic diameter
Puerto Rico Jul 2000 Aerodynamic diameter
Izana Jul 1995 Aerodynamic diameter
Meteor Cruise M41/1 Feb-Mar 1998 Coulter laser particle sizer (LS230)
GeoB9501 Sample S03.5, age 2002.6 AD Coulter laser particle sizer (LS230)

Coulter MultisizerTM 3 using bulk
(total) aerosol samples collected on a membrane filters.

distributions of Trade-Wind African dust
measured in the air and after dispersal in
water. Abstract 1483477 presented at
2012 Fall Meeting, AGU, San Francisco,
Calif., 3-7 Dec.

Prospero and Custals (2012). Particle size
distributions of Trade-Wind African dust
measured in the air and after dispersal in
water. Abstract 1483477 presented at
2012 Fall Meeting, AGU, San Francisco,
Calif., 3-7 Dec.

Reid et al. (2003a,b)

Maring et al. (2003)

Maring et al. (2003)

Stuut et al. (2005)

Mulitza et al. (2010)

Size fraction > 10 um
O <0.1

O 0.1-0.3
(0305

()»>05

0.10 1.0 10.

100. 1000. 10000.

Dust deposition (mg/m2*yr)

Fig. 9. Deposition flux and size class of present-day dust observational estimates from Albani et al. (submitted). The color scale represent the varying order of magnitude of
dust deposition, while the circles radius is proportional to the relative content of coarse (i.e. >10 um diameter) particles.

associated to increased loess weathering during warmer climate
conditions (Guo et al., 1993). Observations from ice cores are cen-
tered on a much finer range in the size spectrum, but still showed
a similar positive correlation between grain size and cold cli-
mates in Greenland (Steffensen, 1997; Ruth et al., 2003), whereas
observations in Antarctica indicate opposing behavior in relation
to climate conditions depending on the sites (Delmonte et al.,
2004).

Since more larger particles would be deposited at a given core if
the source moved closer, or if the transported winds were stronger,
assuming all other processes remained constant, the paleoclimate
interpretation of larger size indicating increased strength of the
transporting winds or closer source regions appears appropriate.
This assumes that wind strength in source regions does not change
size distribution, as indicated by measurements (see Section 2.1.2).
However, because of a lack of contemporaneous measurement of
winds and size, it has been difficult to use data to test this hypoth-
esis. The AERONET data combined with meteorological station data
(see online Supplement for more details), however, give us an

opportunity to test this hypothesis relatively close to sources, but
not directly in source areas. The results suggest that an increase
in wind speed can be associated with a small (0.15 pm) increase
in dust particle size downwind of the sources (Fig. 11). This is con-
sistent with the paleoclimate interpretation that stronger winds
will carry larger particles.

In addition, changes in precipitation rates and associated chang-
ing proportions of dry vs wet deposition in such low-snow accu-
mulation areas such as the Antarctic ice sheet could be a major
driver for changing size distributions across different climates
(Albani et al., 2012b).

In terms of model-data comparisons, most of the effort so far
have focused on the emissions and airborne dust; size distribution
of dust deposition has received far less attention, although recent
work has started addressing this aspect (e.g. Albani et al.,
submitted). Climate models also have the potential to assess the
alternative causes of the observed dust size variability with cli-
mate, and in turn the use of such observations can validate the
models’ response to changing climates (Albani et al., 2012b).
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Fig. 10. Scatterplot of fraction of dust >5 pm versus magnitude of dust deposition in CAM4. (a) Source areas (red) versus regions away from sources (black). Source areas are
defined here as the model grid cells with dust emissions >0 (b) Ocean areas (blues) versus land regions (black). (c) Regional definitions (c) used in the scatter plot(d), where
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Fig. 11. Relationship between particle size and wind speed derived from 19 AERONET sites and nearby meteorological stations (see online supplement for details). (a) Mean
volume particle size distribution for different wind speed classes whereby each color corresponds to the color of the wind speed class presented in plot b. (b) Mean effective
radius for the coarse size fraction for different wind speed classes. The number of observations is given above each class on the top axis of the figure. Bars are shown for wind
classes with sufficient data for statistical signficance. (c) Plot shows whether the difference in the mean effective radius between the wind speed bins is statistically
significant. A plus (minus) symbol indicates a statistically significant increase (decrease) between the mean values. No symbol indicates that the difference is not statistically
significant. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4. Impacts of desert dust and sensitivity to size
4.1. Direct radiative effects dependence on size distribution

Mineral dust is an active component of the climate system, con-
tributing to global radiative balance. Changes in mineral aerosols
over the anthropocene are thought to contribute to aerosol radia-
tive forcing (Forster et al., 2007). In this section we focus on the
influence that dust size has on the direct effects i.e. the alteration
of the atmosphere energy balance by scattering and absorption
of electromagnetic radiation in the solar (short-wave: SW) and ter-
restrial (long-wave: LW) parts of the frequency spectrum. Given
the size range of dust particles (>0.1 pwm) scattering and absorption
in models is described in terms of Mie theory. Assuming

homogeneous spherical particles, and based on particle size and
wavelength dependent refractive indices of the effective medium,
it provides intrinsic optical properties such as the single scattering
albedo, mass specific extinction, and asymmetry parameter as a
function of the wavelength and particle size (e.g. Tegen and
Lacis, 1996). Those optical properties are then used by radiative
transfer models to calculate the radiative forcing based on dust
mixing ratio distributions in climate models. The accuracy of such
representations depends on the representativeness of the discreti-
zation of spectral bands and size-dependent optical properties in
models with respect to the modeled size distribution of dust aero-
sols (e.g. Miller et al., 2004). The approximation of particles to
spheres is thought to be of second order importance for estimating
the radiative flux divergence in climate models, despite its rele-
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vance for remote sensing applications (Mishchenko et al., 1995;
Dubovik et al., 2002).

Besides the magnitude of dust load, size distribution is a dom-
inant factor in determining the direct radiative forcing (Tegen
and Lacis, 1996; Liao and Seinfeld, 1998; Perlwitz et al., 2001).
Actually, the relevance of size is tightly related to mineralogical
composition in determining the optical properties of dust, as sum-
marized by the size dependence of the refractive indices (e.g.
Kandler et al., 2011).

Scattering tends to prevail over absorption in the short wave
(SW), as indicated by the observationally derived values >0.9 for
the single-scattering albedo (the ratio of scattering efficiency to
total extinction efficiency) at visible wavelengths >0.5 pm (Tanré
et al.,, 2001), with smaller particles being the most effective in scat-
tering (e.g. Tegen and Lacis, 1996; Miller et al., 2004). Nonetheless
SW absorption is a relevant process throughout the atmospheric
column that needs to be considered for an accurate budget of the
SW Top-Of-the-Atmosphere (TOA) radiative forcing (e.g. Miller
et al., 2004; Balkanski et al., 2007; Yoshioka et al., 2007). On the
other hand dust absorption is dominant over scattering in the long
wave (LW) especially for super-micron particles, and LW scattering
is often not represented explicitly in climate models (e.g. Miller
et al., 2006).

The net TOA direct RF from dust eventually depends on the bal-
ance between the opposing effects of SW and LW scattering and
absorption, where slight variations of the relative magnitude of
those factors can significantly alter the overall balance (e.g. Liao
and Seinfeld, 1998; Claquin et al., 1998; Albani et al., submitted),
as emerging from the large uncertainties in both magnitude and
direction (—0.56 to +0.1 W/m?) of direct dust RF from IPCC AR4
model estimates (Forster et al., 2007). The sensitivity to the SW-
LW balance at the TOA needs to be considered also in relation to
the evolution of dust size distribution with transport (e.g. Maring
et al., 2003), together with changing surface albedo (Carlson and
Benjamin, 1980; Li et al., 2004; Patadia et al., 2008 Yoshioka
et al., 2007). In fact dust tends to give a positive net surface RF over
bright surfaces, being instead negative over dark surfaces such as
the oceans (e.g. Miller and Tegen, 1998; Balkanski et al., 2007).

For the estimation of dust direct RF in climate models the pri-
mary goal in terms of dust size would be to achieve a good repre-
sentation in the 1-10 pm range, where most of dust mass with
significant lifetimes is concentrated. An additional step would then
be to focus on the uncertainties in the small and large tails of the
distributions. Small (sub-micron) particles have long lifetimes
and are effective scatterers, whereas large particles are LW absorb-
ers with huge mass over source areas (e.g. Ryder et al., 2013a,b).
Uncertainties in observational constraints in the magnitude and
spatial distribution of dust prevent a full assessment of the impor-
tance of dust size to the global RF budget, although the resulting
regional effects on e.g. the hydrological cycle (Miller et al., 2004)
or atmospheric stability (Luo et al., 2003) can be important.

4.2. Aerosol-cloud indirect effects

As with other aerosol species, dust particles can act as cloud
condensation nuclei (CCN) for cloud droplet formation under
supersaturated conditions. For a population of dust aerosol in a
supersaturated environment, all particles larger than a threshold
size, known as the critical diameter, will nucleate cloud droplets
(Andreae and Rosenfeld, 2008). This makes the number of dust
particles acting as CCN highly sensitive to the ambient (or model
predicted) number size distribution(s) shape and median
(Karydis et al., 2011).

The critical diameter required for cloud droplet formation
depends on the particle solubility, as well as the ambient
conditions. Dust particles are often large, increasing their

likelihood of exceeding the critical diameter and acting as CCN,
and they readily attract water vapor, although insoluble
(Koretsky et al., 1997; Karydis et al., 2011).Recent studies suggest
that mineral aerosols are the dominant ice nuclei for cirrus clouds
(Cziczo et al., 2013). Demott et al. (2010) introduced a scheme for
predicting the number of particles that will form ice crystals,
known as ice nuclei (IN), based on the ambient temperature and
the number concentration of particles with diameters greater than
0.5 pm. They show that much of the variability in IN activity can be
explained with this simple relation.

The dual, and competing, roles of dust as CCN and IN cloud our
understanding of the global impact of dust on the climate
(Mahowald and Kiehl, 2003). Increases in dust acting as CCN would
increase cloud albedo and suppress precipitation in warm, strati-
form clouds (Rosenfeld et al., 2001), although the global impact
of dust in this role is unknown. The impacts of dust on convective
clouds are complex and lead to vastly different, even opposite
responses in cloud albedo and precipitation (van den Heever
et al., 2006). These uncertainties highlight the importance of know-
ing dust size for predicting CCN and IN and the accompanying cli-
mate effects.

4.3. Snow albedo impacts of dust

Dust particles that deposit to snow and ice surfaces reduce their
solar albedo, exerting an additional positive RF on the climate sys-
tem. Albedo reduction from dust occurs primarily in the visible
spectrum, where ice absorbs very weakly and snow crystals scatter
efficiently. Because scattering is dominated by the ice crystals, fac-
tors which determine dust absorptivity, much more so than scat-
tering, determine the RF of dust in snow. These factors include
size distribution and imaginary component of the refractive index.
While larger particles absorb more solar radiation per particle, the
mass-normalized absorption has a non-linear relationship with
size, peaking around 0.3 pm in the mid-visible for a typical Saharan
dust mixture and wavelength (Fig. 12a). There are Mie resonance
features in absorption by individual particles (monodisperse size
distributions) that are averaged out in the lognormal size distribu-
tions. The albedo reduction caused by a given mass of dust gener-
ally peaks close to the radius of maximum 500 nm mass absorption
cross-section though deviation from this appears with large dust
concentration (Fig. 12b).

Another way in which particle size distribution influences the
RF of dust in snow is by determining the mobility of particles with
meltwater, and consequently the length of time that the particles
alter snow albedo. Several studies have noted that particulate mat-
ter becomes concentrated near the snow surface during melt,
though few have linked the effectiveness of particle retention to
size. Higuchi and Nagoshi (1977) found that dust particles larger
than 4-10 pm were relatively immobile with meltwater, while
Conway et al. (1996) reported that volcanic ash particles with
diameters larger than 5 pum tended to remain near the snow
surface during melt. Using Stokes Law to model particle drag,
Conway et al. (1996) argue that particles larger than about 6 pm
should be immobile with melt fluxes of 500 mm d-1, consistent
with observations, while particles smaller than ~1 um should
become mobile when flow rates exceed about 20 mm d~".

Size distributions of dust in snow depend strongly on proximity
to source regions, as discussed previously (Section 3.3). Most of the
measurements of dust size distributions in the cryosphere come
from ice cores records, used to interpret past climate variability.
Measurements from Greenland indicate variations in volume mode
radius of ~0.6-1.1 pm throughout the 120ky GRIP core (Steffensen,
1997), ranges in number mean radius of about 0.5-0.7 pm from
10.5-14 kya in the GISP2 core (Zielinski and Mershon, 1997), and
variations in volume mode radius of ~0.6-0.85pum during
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Fig. 12. (a) Mass absorption cross-section (MAC) at 500 nm as a function of particle
radius. The green curve depicts MAC as a function of effective radius, or surface
area-weighted mean radius. The dust mixture represents the “high hematite”
Saharan dust composition described by Balkanski et al. (2007), consisting of 2.7%
hematite by volume, 30.3% illite, 24% kaolinite, 23% montmorillonite, 14% quartz,
and 6% calcite, and with a density of 2650 kg m~>. The lognormal distribution has
geometric standard deviation of 1.8. (b) Simulated hemispheric broadband albedo
change of a semi-infinite snowpack as a function of dust effective radius, for
different dust mixing ratios in snow. Snow effective grain size is 500 um and
incident sunlight is diffuse. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

9.5-100kya in the NGRIP core (Ruth et al., 2003). Antarctic mea-
surements show ranges in volume mode radius of ~0.9-1.15 um
during the past 21kya from EPICA DOME C in East Antarctica
(Delmonte et al., 2002), and a volume mean radius of ~0.85 pm
in 20th century ice from James Ross Island (McConnell et al.,
2007). Xu et al. (2010) measure larger volume mode radii of 1.6
and 2.1 um in Mt. Everest ice (dated ~1820 and ~1710), closer
to large dust source regions. Very large dust size distributions are
measured in mountain snowpack close to local soil sources. In
snow samples from the San Juan mountains of Colorado, Neff
et al. (2008) found 40% of the dust mass was contained in particle
sizes of 10-37 um, 26% in sizes of 37-63 um, and 17% in 63-
180 um, while Lawrence et al. (2010) report that 70% of the parti-
cles smaller than 250 pm had diameters between 9.3 and 105 pm.
Finally, in snow samples collected across China, Wang et al. (2013)
found a substantial amount of local soil dust consisting of particles
larger than 30 pm.

4.4. Biogeochemistry of dust

Desert dust represents the largest sources of both iron and
phosphorus in the atmosphere (Mahowald et al., 2009, 2008).
There are large regions of the Southern Ocean and equatorial Paci-
fic that are iron limited (Martin et al., 1991), meaning that the
addition of iron allows phytoplankton to grow and increases pro-
ductivity (e.g. Boyd and Law, 2001). In addition, nitrogen fixing
organisms in the ocean may have higher iron requirements
(Falkowski et al., 1998), and this would link the nitrogen and iron
budgets in the ocean (Moore et al., 2006). Humans are depositing
extra nitrogen, phosphorus and iron to the oceans (Duce et al.,
2008; Mahowald et al., 2009, 2008), but the most important is
the iron deposition for ocean productivity and carbon uptake
(Krishnamurthy et al., 2010; Okin et al., 2011). Changes in iron
deposition to the ocean have been suggested as an important
mechanism for the change in carbon dioxide between the last gla-
cial maximum and the current climate (Kohfeld and Ridgwell,
2009), and may be causing the drawing down of some anthropo-
genic carbon dioxide today (Mahowald et al., 2010).

Not all iron is bioavailable in the oceans, and although how iron
becomes bioavailable is not well understood (Baker and Croot,
2010), there is some evidence that dust size is related to solubility
(Baker and Jickells, 2006). Models suggest that the longer lifetime
in the atmosphere explains the size dependence of solubility
(Hand et al., 2004), although there is also evidence that mineralogy
(Journet et al., 2008) or anthropogenic sources may be complicat-
ing this picture (Chuang et al., 2005; Guieu et al., 2005). Higher sol-
ubilities are also observed at lower total iron concentrations
(Sholkovitz et al., 2012).

Productivity in some tropical forests and grassland are phos-
phorus limited (e.g. Vitousek, 1984; Okin et al., 2008). Since desert
dust can be transported across the oceans, and deposited in phos-
phorus limited regions (Koren et al., 2006; Swap et al., 1992), on
geological time scales this phosphorus could maintain productivity
(Okin et al., 2004). Over long time scales, the oceans require
replenishment of phosphorus (Falkowski et al., 1998), but the
likely increased deposition of phosphorus due to humans has not
played a large role in ocean biogeochemistry (Krishnamurthy
et al., 2010; Okin et al., 2011). The solubility of phosphorus is also
likely to be variable (Mahowald et al., 2008), and may be due to dif-
ferences in solubility at emissions, as well as atmospheric process-
ing by atmospheric acids (e.g. sulfate) (Nenes et al., 2010).

Overall, the evidence suggests that size plays a role in biogeo-
chemistry, largely by modifying how far the particles are trans-
ported (e.g. Section 3), but also in the atmospheric processing that
occurs on the particles as they travel, and which particles arrive.

5. Summary and Future research needs

The size of desert dust particles is vital to understanding how
far they can travel from the source regions, and thus is a critical
measurement. Unfortunately desert dust size distributions and
their evolution are not well understood. Here we review the state
of the science in terms of measurement and modeling methods.
There are other important uncertainties in desert dust, including
the mass loading, spatial and temporal distribution, as well as their
composition, which we did not address in this review (e.g. Zender
et al., 2004; Mahowald et al., 2005).

The size of individual particles is to a large extent set at emis-
sion, and new measurements and theories roughly agree across a
large range (0.1-5 um), but below and above this range, the size
distribution is not well understood. Further measurements are
thus needed, in particular to understand the role of changes in soil
conditions and soil size distribution. The rates of dry and wet
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deposition have established theories, which are commonly used to
interpret observations and parameterize models, however, there
are few measurements, especially size resolved, of deposition.
Since there is also a scarcity of measurements of the evolution of
the dust size distribution during transport, we have a generally
poor understanding of processes that affect the atmospheric dust
size distribution, including deposition and aggregation. The obser-
vations of dust aerosols that are available do not consistently show
log normal distributions, as often used to model aerosols.

Field campaigns are vital for understanding both size distribu-
tions, as well as how to interpret different measurement tech-
niques (e.g. Reid et al., 2003a; Weinzierl et al., 2009; Ryder et al.,
2013a,b), and we encourage efforts to embrace size measurements
which can be used in sediments for deposition measurements too,
which would help produce a consistent view also across time
scales and in a wider spatial and environmental domain. Methods
based on laser diffraction seem to have the wider applicability
ranging from sediment analysis to aircraft measurements,
although the technical differences may be relevant. In addition
the application of coulter counter measurements to atmospheric
samples would help bridging further the gap while having a finer
resolution free of assumptions on dust composition (e.g. Ruth
et al., 2003) in the fine size range. Better understanding of the role
of different sizes on climate and biogeochemistry are important
areas of research as well, which have not been fully undrstood.

Currently models do not commonly include dust particles above
10 pum, but a substantial fraction of airborne dust may be above
this threshold (Lawrence et al., 2010; Ryder et al., 2013a). This dust
is likely important for longwave radiative interactions, as well as
for biogeochemistry, even if it does not travel significant distances.
Models should improve their ability to capture the evolution of the
dust size distribution as the plumes move downwind of the source
regions, although this does require more cross-comparison of dif-
fering observational methods.
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