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a b s t r a c t

This paper provides a theoretical foundation of a thinning method due to Kovalevsky for
2D digital binary images modelled by cell complexes or, equivalently, by Alexandroff T0
topological spaces, whenever these are constructed from polygonal tilings. We analyze
the relation between local and global simplicity of cells, and prove their equivalence
under certain conditions. For the proof we apply a digital Jordan theorem due to
Neumann–Lara/Wilson which is valid in any connected planar locally Hamiltonian graph.
Therefore we first prove that the incidence graph of the cell complex constructed from
any polygonal tiling has these properties, showing that it is a triangulation of the plane.
Moreover, we prove that the parallel performance of Kovalevsky’s thinning method
preserves topology in the sense that the numbers of connected components, for both the
object and of the background, remain the same.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper provides a theoretical foundation of thinning in 2D digital binary images modelled by cell complexes, or
equivalently, by topological Alexandroff spaces. Thinning is an important preprocessing method widely used in digital
image processing to facilitate the classification or recognition of objects of interest. In the case of binary images where
the set of objects has already been determined, thinning is an iterative procedure which produces a particular subset named
skeleton, from the set of all object elements. The skeleton should represent topological properties like connectedness aswell
as geometrical properties related to the size and form of the object, and it should have as few as possible elements. During
the thinning, so-called simple and non-end object elements are deleted from the ‘‘frontier’’ of the remaining object in each
iteration. Due to classical work by Rosenfeld [24], end elements are situated at the ends of arcs, that should be preserved as
part of the skeleton, whereas simple elements are those whose deletion preserves the connectedness of the object and of
the background. In the spirit of this idea we define the following:

Definition 1. A thinningmethod, to be applied to an objectwithin a 2D binary image, is said topreserve topologywhenever
it preserves both the number of connected components of the object and the number of connected components of the
background.

Important theoretical questions about the thinning are,
(1) the characterization of simplicity by local properties, considered only within a certain neighborhood of the element.
(2) the question is if a proposed method can be parallelized, that means, if the parallel implementation of the method

preserves topology.
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What ‘‘connected component’’, ‘‘frontier’’, ‘‘simple’’, and ‘‘end’’ mean, depends on the mathematical model used for the
domain of (definition of) the digital image. The domain of a nD (n-dimensional) digital image usually is supposed to be a
discrete set in Rn, that is, a discrete subset of the Euclidean topological space Rn, and within the context of Digital Image
Processing and Analysis, it ismost frequentlymodelled by an adjacency graph, see [8,22]. For 2D images, this graph is usually
related to the quadratic tiling of the plane, but hexagonal and triangular tilings (see [4,29]), and even much more general
families of subsets of R2 (see [3,11,25]) have also been considered to be theoretically and practically valuable and useful.
The domain of a nD digital image can be alternatively modelled by an n-dimensional cell complex, or, equivalently, by

an Alexandroff T0 space, where usually the discrete set is identified with the set of n-cells. This model has been proposed
and applied by Kovalevsky, see [12–17], but also by other authors, see for example [10,28] and [30]. In contrast to the cell
model used in [8] where the lower-dimensional cells are used to define the adjacency relation between n-cells, Kovalevsky
uses all cells, even in algorithms. In this regard, in a short note within the paper [13] a thinningmethodwas proposedwhich
seems to be the first (and unique, so far) proposal of a thinning algorithm on cell complexes. The same method was shortly
described within [14,15,17], with slightly distinct definitions but without profound details, without proofs, and presenting
the same unique example. These publications of Kovalevsky opened interesting theoretical and algorithmic questionswhich
provided the motivation of our investigations.
This paper develops a theoretical foundation of Kovalevsky’s thinning method, based on a study of cell complexes

constructed from polygonal plane tilings. We answer both theoretical questions cited above: First, we prove that local
simplicity is sufficient to satisfy global simplicity, and that both are equivalent under certain conditions (Theorem 12 and
Corollary 13 in Section 6). Second, we show that Kovalevsky’s thinning method can be parallelized, by showing that the
parallel performance of the method preserves topology (Theorem 15 and Corollary 16 in Section 8). For the proof of the
equivalence between local and global simplicity, we apply a digital Jordan theorem due to Neumann-Lara/Wilson [21]
which is valid in any connected planar locally Hamiltonian graph. Therefore, we first prove that the incidence graph of
the cell complex constructed from any polygonal tiling has these properties, showing that it is a triangulation of the plane
(Theorem 5 in Section 5). This latter fact is of interest in the study of cell complexes and Alexandroff spaces, independently
from thinning. This paper pretends to contribute to digital topology; it does not pretend neither a computational analysis of
Kovalevsky’s thinning method nor an analysis of properties and practical relevance of Kovalevsky skeletons.
The novelties of this paper with respect to the previous version published in the Proceedings of IWCIA 2008 [29] are the

following ones:
1. Our cell complex is generated from any polygonal tiling, applying a general construction due to [30]. In contrast, the

cell complex in [29] was constructed only from the quadratic, the triangular, and the hexagonal tilings in an intuitive way.
2. All proofs of the present paper are valid for the general supposition of cell complexes constructed from polygonal

tilings. In contrast, many proofs of [29] used intuitive arguments valid only for the three specific cell complexes considered,
and were less detailed.
3. Our Theorem4was not proved in [29]. Our Theorem5,which is one of themain results of this paper and has importance

independently from thinning theory, was not even mentioned in [29].
The paper is organized as follows: In Sections 2 and 3, preliminaries about cell complexes, Alexandroff topological

spaces and important suppositions are presented. Section 4 reports the construction of a cell complex from any polygonal
tiling from [30]. In Section 5, we prove that the incidence graph of this cell complex is a special triangulation of the
plane (Theorem 5). This fact is applied in Section 6 where the relation between simplicity and local simplicity as well
as a characterization of simplicity by a connectivity number are studied (Theorem 12). Section 7 presents and analyzes
Kovalevsky’s thinning algorithm. Section 8 presents a proof of the fact that the parallel implementation of Kovalevsky’s
algorithm preserves topology (Theorem 15). Section 9 contains concluding remarks.
Throughout the paper,N, Z,R denote the sets of natural, integer, and real numbers, respectively. In a topological space X ,

forM ⊆ X , clX (M) denotes the closure ofM , intX (M) its interior, frX (M) its frontier, but we omit the index X if possible. R2
denotes the Euclidean plane equippedwith the standard topology. For a finite setM , |M| denotes the number of its elements.

2. Cell complexes

Recall the definition of a cell complex from [23], as it has been used in many papers of Kovalevsky:

Definition 2. An (abstract) cell complex is a structure (X,≤, dim) where (X,≤) is a poset (partially ordered set, that is,
≤ is a binary reflexive transitive and antisymmetric relation on the set X), and dim : X → N ∪ {0} is a function such that
x ≤ y implies dim(x) ≤ dim(y), for any x, y ∈ X . The elements of X are called cells, and, for x ∈ X , if dim(x) = k, x is named
k-cell. The dimension of (X,≤, dim) is defined by sup{dim(x) : x ∈ X}.

If (X,≤, dim) is a cell complex, then a subcomplex M = (M,≤M , dimM) of X is entirely determined by the subsetM ⊆ X ,
by defining≤M as the restriction of≤ ontoM ×M , and dimM as the restriction of dim ontoM .
We suppose the domain of a 2D digital image to be modelled by a two-dimensional cell complex C where an object of

interest is modelled by a finite subcomplex T , such that the image function assigns the value 1 to any cell of T , whereas each
cell of T c = C \ T has the value 0; T c is named the background. To model the digital image by a cell complex C , supposing
that the 2D image is defined on a discrete set D ⊂ R2, we follow the usual idea that D is identified with the set of 2-cells
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of C . In [12–17], D = Z2 (standard case) was identified with the set of 2-cells of a quadratic cell complex, but note that Z2
could be identified with the set of 2-cells of a triangular and of a hexagonal cell complex, too. For defining the subcomplex
which models the object, the lower-dimensional cells have to have been generated additionally. We suppose C to form a
decomposition of R2. Then the natural quotient map π : R2 → C which assigns to each x ∈ R2 the (unique) cell of C which
contains x, is an example of a digitization map. For M ⊆ R2, π(M) is the set of all cells which, considered as subsets of R2,
intersectM; this is an analog to the Gauss digitization defined for a set of pixels, see page 56 of [8]. We will apply the map π
in the construction of a cell complex from any polygonal tiling in Section 4. Under this philosophy, each object is the digital
version of some subset of the Euclidean space. Kovalevsky generated the lower-dimensional cells of the object in a different
way, independently of R2, applying some (heuristically founded) rule; for example, a maximum rule is applied in [12–15]
which implies that any object is a closed subcomplex.
Since in practice, a digital image is modelled by a finite portion M of the cell complex C , for many implementations of

algorithms to be correctly working, the object T has to be supposed to not touch the boundary of the image domainM . Our
proofs do not need such a supposition, because they work in the cell complex C corresponding to a whole plane tiling, and
any object T is supposed to be finite (and hence has a bounded pre-image, under the digitizationmap). So, T is ‘‘surrounded’’
by cells ofM \ T .

3. Cell complexes and Alexandroff spaces

An Alexandroff space is a topological space in which any element is contained in a minimal open neighborhood given as
the intersection of all open sets which contain this element [1]. Alexandroff T0 spaces and posets are equivalent structures
(actually, there are isomorphic categories): For a given poset (X,≤), the set st(x) = {y ∈ X : x ≤ y}, named the open star
of x, is the minimal open neighborhood of x, and the family {st(x) : x ∈ X} ∪ {∅} is a base of an Alexandroff T0 topology τ
on X . Conversely, for a given Alexandroff T0 space (X, τ ), denoting by U(x) the minimal open neighborhood of x, the
corresponding partial order, called the specialization order of (X, τ ), is defined by x ≤ y⇔ x ∈ cl({y})⇔ y ∈ U(x). For this
reason, a cell complex is a topological model for digital images. The specialization order≤ of (X, τ ) determines completely
the topology τ , for example, cl(M) = {y ∈ X : y ≤ m for somem ∈ M}, int(M) = {m ∈ M : m ≤ y implies y ∈ M}. For
details, see [1,10].
Now denote by (X, τ ) an Alexandroff T0 space and by (X,≤) its corresponding poset. We will also use the following

concept from [13]: For M ⊆ X , its open frontier is defined by of (M) = {y ∈ X : cl({y}) ∩ M 6= ∅ and cl({y}) ∩ Mc 6= ∅};
clearly of (M) = {y ∈ X : m ≤ y for somem ∈ M andm ≤ y for somem ∈ Mc}. The open frontier ofM is the frontier ofM
in the dual topological space which is determined by the reversed order≥.
In the following we recall some other known concepts and facts, for details we refer the reader to [1,10,31,30]: Two

elements x, y ∈ X are incident or comparable if x ≤ y or y ≤ x. The set in(x) = {y ∈ X : x is incident with y}, for x ∈ X , is
named incidence set of x. The (reflexive symmetric) incidence relation gives rise to an undirected graph on X called incidence
graph (or, comparability graph) which provides a well-known graph theoretical connectedness concept based on paths: A
subsetM of X is incidence-connected if for any p, q ∈ X , there exists {p0, p1, . . . , pn−1, pn} ⊆ M such that p0 = p and pn = q,
and pi is incident with pi+1, 0 ≤ i ≤ n − 1 (a pq-path). A component (in the incidence graph) is defined to be a maximal
incidence-connected subset of X . It is well-known, see [10], that for any M ⊆ X , M is topologically connected (there are
no two disjoint non-empty proper subsets A and B of M , both open in the subspace M , such that A ∪ B = M) if and only
if M is incidence-connected. Hence, a subset of X is a component in the incidence graph if and only if it is a topologically
connected component.
For any element x of X , its local order dimension in X (or height [2]) is defined to be the maximum length k of chains of

the form x0 < x1 < · · · < xk = x in (X,≤), where x < y means x ≤ y, x 6= y; and it is defined to be infinite if this
maximum does not exist. The order dimension of X is defined to be the supremum over the local order dimensions of all
its elements. An element x of the cell complex X will be named k-cell if its local order dimension in X is equal to k. Note
that, for a subcomplex M of X and x ∈ M , its local dimension in X can differ from its local dimension in M , because ≤M
is the restriction of ≤X onto M . We mention that the order dimension is a topological dimension: it was proved in [31],
that the order dimension of any poset coincides with the small inductive dimension (known from general topology) of the
corresponding Alexandroff T0 space.

4. Cell complexes from polygonal tilings

Let us report some well-known concepts (see [7] and [26]): A polyhedron is a bounded subset of Rn which is the
intersection of finitely many closed halfspaces, hence it is compact and convex. A two-dimensional polyhedron in R2 is
named a polygon. For any non-empty convex setM ⊆ Rn, there is precisely one affine subspace H of Rn called the carrier of
M which containsM and satisfies intH(M) 6= ∅. A plane tiling is a countable family of closed subsets of the Euclidean plane
R2, named tiles, whose union covers the plane, and whose interiors are pairwise disjoint. A plane tiling is locally finite if for
any x ∈ R2, there is an open disc which intersects only a finite number of tiles. A locally finite plane tiling is normal if each
tile is homeomorphic to a closed disc in R2, and monohedral if each tile is congruent to the same tile (prototile). A locally
finite plane tiling is a polygonal tiling if each tile is a polygon. A polygonal tiling is edge-to-edge if the intersection of any two
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tiles is a whole side of each of these tiles. It is well known that there exist only three monohedral edge-to-edge polygonal
tilings (2.1.1 of [7]): the quadratic tiling (the prototile is a square), the triangular tiling (the prototile is a triangle), and the
hexagonal tiling (the prototile is a hexagon).
Let T be now a polygonal tiling. Note that we do not require neither the edge-to-edge nor the monohedral conditions.

The construction of the cell complex, or equivalently, of the Alexandroff T0 space, resumed in this section, follows a general
proposal due to Kronheimer [18], but was developed in [30] (for any polyhedral tiling of Rn).
Define the family W = {int(T ) : T ∈ T }. Then, W is also locally finite, and each element W of W is the interior of a

(convex) polygon. Moreover, the union of the elements ofW is dense in R2 (because of the local finiteness, the union of the
tiles equals the closure of the point set union of W ). In consequence, W is a ‘‘fenestration’’ of R2 due to Kronheimer [18],
and it is a ‘‘polyhedral fenestration’’ of R2 as defined in [30].
For x ∈ R2, define Nx = {W ∈ W : x ∈ cl(W )}, Px = ∩{cl(W ) : W ∈ Nx}. Note that Nx is finite, and hence Px is a

polyhedron whose carrier will be denoted by Hx. Clearly Px is a polygon, or a line segment, or a single point, whose carrier
Hx isR2, or the whole line containing the segment, or the point itself, respectively. Define the following equivalence relation
on R2:

x ' y⇔ Nx = Ny, x, y ∈ R2.

Consider the quotient set C = R2/' = {[x] : x ∈ R2} where [x] = {y ∈ R2 : x ' y}, and denote by π the natural
quotient map from R2 onto C: π(y) = [x]whenever x ' y. We endow C with the quotient topology τ induced by π , that is,
defineM ∈ τ ⇔ π−1(M) is open in the Euclidean plane R2, for anyM ⊆ C . The following proposition was proved in [30].

Proposition 3. (C, τ ) is an Alexandroff T0 spacewhich is an open quotient space of R2 (π is an openmap), where for any x ∈ R2,
π−1({[x]}) = intHx(Px). Moreover, C = W2 ∪ W1 ∪ W0, where W2 = π(W) = {[x] : |Nx| = 1}, W1 = {[x] : |Nx| = 2},
W0 = {{x} : |Nx| ≥ 3}. Among all open quotients of R2 which contain the family W2, C is minimal in the following sense:
For any other open quotient C ′ of R2 which containsW2, any continuous open map of C onto C ′, which is injective onW2, is a
homeomorphism. The specialization order of C provides a two-dimensional cell complex (with order dimension equal to two).

As a consequence (for details, see [30]), any minimal open quotient C of R2 is a topological Alexandroff T0 space unique
up to homeomorphisms, which, for any fixed familyW , is named the digital space constructed fromW in [18] and [30].
Any [x] ∈ W2 = π(W) is an open cell in (C, τ ). For [x] ∈ W1, Nx = {U, V } for some distinct U, V ∈ W , and then

U([x]) = {[x], [y] = π(V ), [z] = π(W )}. For [x] ∈ W0, [x] = {x}, andU([x]) = {[x]}∪{[y] ∈ W∪W1 : x ∈ clR2(π
−1({[y]}))}.

The specialization order ≤ of (C, τ ) coincides with the natural bounding relation between polyhedra: [x] ≤ [y] ⇔ [x] ∈
clC ([y])⇔ π−1({[x]}) ⊆ clR2(π

−1({[y]})), for [x], [y] ∈ X .
From now on, the term cell complex and the notation C or (C,≤, dim) always will refer to the cell complex

constructed from any polygonal tiling T , as just explained. It is clear that each element ofW (the interior of a polygon)
projects on a 2-cell, each element ofW1 (a line segment without its end points) is a 1-cell, and the elements ofW0 (isolated
points) are the 0-cells of C . In the rest of the paper, (C, τ ) will denote the corresponding Alexandroff T0 space, and T is
supposed to be a finite subcomplex of C and will be named object . Note that T is not supposed to be closed or open.

5. The incidence graph of a cell complex from a polygonal tiling

For x ∈ C , recall that st(x) = {y ∈ C : x ≤ y} (open star), cl({x}) = {y ∈ C : y ≤ x} (closure), and in(x) = {y ∈ C :
x ≤ y or y ≤ x} (incidence set). Let us also denote st∗(x) = st(x) \ {x}, cl∗(x) = cl({x}) \ {x}, in∗(x) = in(x) \ {x}. Clearly
in(x) = st(x) ∪ cl({x}) for any x ∈ C; in(x) = st(x) for any 0-cell x, and in(x) = cl({x}) for any 2-cell x. For M ⊆ C ,
recall fr(M) = {y ∈ X : y ≤ m for somem ∈ M and y ≤ m for somem ∈ Mc} (frontier in C), and of (M) = {y ∈ X :
m ≤ y for somem ∈ M andm ≤ y for somem ∈ Mc} (open frontier in C). It is evident that fr(M) does not contain any
2-cell, and of (M) does not contain any 0-cell.
The following theorem is of essential importance because it provides the possibility of defining a connectivity number

and to characterize global simplicity by local simplicity, which will be the content of the next section.

Theorem 4. For the cell complex C under consideration and any cell p ∈ C, the set of cells in∗(p) can be ordered in a cyclic
sequence 〈c1, c2, . . . , ck〉 such that, within this sequence,

(i) any two consecutive cells are incident, and any cell is incident with exactly two other cells,
(ii) the cells are alternating a-cells and b-cells, where (a, b) = (1, 2) for any 0-cell p, (a, b) = (0, 2) for any 1-cell p, (a, b) =

(0, 1) for any 2-cell p.
(iii) For any 1-cell p, the sequence has exactly four cells.

Proof. Any p ∈ W2 (2-cell) is open in (C, τ ), then in∗(p) = cl∗(p) = frC ({p}) which is a set of 1- and 0-cells. π−1(frC ({p}))
is the boundary of the tile V = clR2(W ) where W = π−1({p}), hence it is a simple closed (Jordan) curve which consists
of t line segments and t vertices. Let us register the vertices vi and line segments si (taken without their end points) while
tracing this curve in the mathematically positive sense, ordered due to their appearance, to generate a cyclic sequence
S = 〈v1, s1, v2, s2, . . . , vt , st〉.
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Consider now one arbitrary line segment sj of S. Since the tiling is not required to be edge-to-edge, there is no guarantee
for sj to provide a unique 1-cell of C . Nevertheless, V intersects only a finite number of other tiles (since T is locally finite
and frR2(V ) is compact). Hence sj intersects only a finite number jk of tiles distinct from V , say V1, V2, . . . , Vjk . Due to the
construction of C , π(sj) consists of the images, under π , of r line segments of the form intsj(V ∩ Vm) (1 ≤ m ≤ jk) and r − 1
vertices given as the intersection of at least three tiles of the set {V , V1, V2, . . . , Vjk}where 1 ≤ r ≤ jk. Now, substitute sj in
the sequence S by the sequence of r line segments and r − 1 vertices just generated, but due to the ordering as they appear
during the tracing of the Jordan curve frR2(V ).
Performing such a substitution for each sj in S, we obtain a new cyclic sequence S ′ = 〈v′1, s

′

1, v
′

2, s
′

2, . . . , v
′

d, s
′

d〉,
d ≤ |{V ′ ∈ T : V ∩ V ′ 6= ∅, V 6= V ′}| of vertices v′i and line segments s

′

j (without end points). In consequence, 〈c1 = π(v
′

1),

c2 = π(s′1), . . . , c2d−1 = π(v
′

d), c2d = π(s
′

d)〉 is a cyclic sequence of alternating 0- and 1-cells, which by construction, satisfy
properties (i)–(ii) of the theorem.
Now let p ∈ W0 (0-cell), then p = [x] = {x} for some x ∈ R2 which lies in the intersection of at least three distinct tiles.

Now in∗(p) = st∗(p) which consists of 1- and 2-cells whose preimages (under π ) are all open polygons of the finite set Nx
and all line segments which belong to the intersection of exactly two elements of Nx and contain in its closure the point x.
Based on the fact that x ∈ intR2(∪{cl(W ) : W ∈ Nx}) (Lemma 4.2 of [30]), let us consider an open disc centered at x and
contained in intR2(∪{cl(W ) : W ∈ Nx}). Clearly the intersection of this disc with eachW ∈ Nx is an open sector. These (at
least three) sectors, togetherwith the line segments bounded by x, whose part inside the disc is contained in the intersection
of the closures of exactly two sectors, can be ordered in a cyclic sequence of alternating sectors and line segments, whose
images under π provide the sequence of alternating 2- and 1-cells, satisfying (i)–(ii) of the theorem.
For any p ∈ W1 (1-cell), by Proposition 3, there exist exactly two tiles V1, V2 withW1 = intR2(V1),W2 = intR2(V2) such

thatNx = {W1,W2} for any x ∈ π−1({p}). In consequence, in∗(p)∩W2 = {π(W1), π(W2)}. Now consider the two endpoints
y1, y2 of the line segment s = π−1({p}) (these exist since s is bounded). Then π(y1), π(y2) ∈ st∗(p) ⊂ in∗(p). If {z} would
be another 0-cell in in∗(p), z 6= y1, z 6= y2, then z ∈ π−1({p}) (z is an ‘‘interior’’ point of s), but there would exist a third tile
V3 such that intR2(V3) ∈ Nz which is a contradiction. In consequence in

∗(p)∩W0 = {π(y1), π(y2)}. Clearly p is not incident
with any other 1-cell, implying in∗(p) = {π(W1), π(W2), π(y1), π(y2)}, which proves (iii) and also makes evident (ii) for
any 1-cell. �

Recall that any (undirected) graph (X, R) (X a set, R an irreflexive symmetric binary relation) has a representation in R2,
where the elements of X are drawn as points, and each pair of points (x, y) ∈ R is represented by a straight line segment.
We call the graph (X, R) a triangulation of the plane if it has a representation in R2 which is a polygonal edge-to-edge tiling
whose tiles are all triangles. The degree of an element x ∈ X is defined to be the number of y ∈ X such that (x, y) ∈ R. We
recall also (see [21]) that a subgraph (induced by) M ⊂ X is defined as the graph given by all elements of M , and all pairs
(a, b) ∈ R such that a, b ∈ M . A cycle is defined to be a subgraph A in which each element is in relation with exactly two
other elements of A. Evidently, any sequence of three elements a, b, c ∈ X such that (a, b), (b, c), (c, a) ∈ R, is a cycle.
The last theorem implies the following fact:

Theorem 5. The incidence graph of the cell complex from any polygonal tiling is a triangulation of the plane. Each 0-cell or 2-cell
has degree≥ 6, each 1-cell has degree 4, each cycle of length 3 contains exactly one cell of each dimension 0, 1, 2.

Proof. We will construct the desired representation in R2 of the incidence graph of C , using the construction of the cyclic
sequences of cells in in∗(p) as performed in the proof of the previous Theorem 4, and based on Proposition 3. For each cell
p ∈ C , choose a unique point p̂ ∈ π−1({p}) ⊂ R2. For distinct p1, p2 ∈ C it follows p̂1 6= p̂2 since C is a decomposition of
R2. So, the set Ĉ = {p̂ : p ∈ C} is a set of points of R2 which represents C . For p ∈ W0, p̂ is an interior point of the (open)
polygon π−1({p}); for p ∈ W1, p̂ is a point (distinct from the end points) of the line segment π−1({p}); for p ∈ W0, p = {x}
for some x ∈ R2 and p̂ = x. Now, for any distinct p, q ∈ C , connect the points p̂, q̂ by a straight line segment [p̂, q̂]whenever
p, q are incident. We will show now that the representation of the incidence graph of C given by the vertex set Ĉ and the
straight line segments [p̂, q̂], is an edge-to-edge triangular plane tiling.

(i) Let p ∈ W2. In the proof of Theorem 4, in∗(p) = cl∗(p) was ordered in a cycle π(S ′) = 〈c1 = π(v′1), c2 = π(s
′

1), . . . ,
c2d−1 = π(v′d), c2d = π(s′d)〉 of alternating 0-cells π(v

′

i) and 1-cells π(s
′

i), which represents one complete tracing of the
boundary of the convex polygonW = π−1({p}). Clearly all pairs [ĉi, ˆci+1], for i = 1, 2, . . . , 2d− 1, and the pair [ ˆc2d, ĉ1], are
line segments of the representation. From the convexity ofW it is clear that each line segment [p̂, ĉi] \ {ĉi} lies inW . From
the construction of the cycle S ′ it follows that the set of triples {{p̂, ĉi, ˆci+1}, i = 1, 2, . . . , 2d− 1} ∪ {{p̂, ˆc2d, ĉ1}} form a set
of triangles whose interiors are pairwise disjoint. As a consequence, the proposed representation, when (its application is)
restricted to clC ({p}), is an edge-to-edge triangular tiling.

(ii) Very similar arguments can be used for the case p ∈ W0, where p = [x] = {x} for some x ∈ R2. From the construction
of the cycle of 1- and 2-cells of in∗(p) = st∗(p) in the proof of Theorem 4, it follows that the proposed representation, when
restricted to st(p), is an edge-to-edge triangular tiling.

(iii) Consider now an arbitrary triangle of the representation, constructed in (i) or (ii), that is, which belongs to the
restriction of the representation to a set clC ({p}) for some 2-cell p, or, to a set stC ({p}) for some 0-cell p. Consider the first case
(the other case could be treated analogously): let p be a 2-cell and consider the triangle4(p̂, q̂, r̂) of the representation. Since
any two k-cells of C are not comparable, p, q, r have to be cells of pairwise distinct dimension (which confirms an affirmation
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of the theorem), say, r a 1-cell and q a 0-cell. Then q < r < p, q, r ∈ cl∗(p), r, p ∈ st∗(q), which imply that the three line
segments [p̂, q̂] = [q̂, p̂], [q̂, r̂] = [r̂, q̂], [r̂, p̂] = [p̂, r̂] and hence the whole triangle4(p̂, q̂, r̂) belong to the restriction of
the representation to clC ({p}) as well as to st(q) (where q is a 2-cell). In consequence, each triangle reported in (i) coincides
with a triangle reported in (ii). This implies that the whole incidence graph of C is connected.

(iv) To complete to prove that thewhole incidence graph of C is a triangulation, we show that, given any triangle reported
in (i) or in (ii), any side of this triangle belongs to another uniquely defined triangle reported in (i) or in (ii). Consider a triangle
from (i) (the case of a triangle from (ii) could be treated analogously.): Let p be a 2-cell and considerM = 4(p̂, q̂, r̂), where
r is a 1-cell and q is a 0-cell, so, q < r < p. The line segment [p̂, q̂], due to the construction in the proof of Theorem 4,
is a side of exactly two triangles which belong to the representation restricted to cl({p}), one of which coincides with M .
Consider now the line segment [q̂, r̂]. A triangle distinct fromM using the vertices q̂, r̂ can only have a third vertex which is
a 2-cell s 6= p, but this s is uniquely determined since the 1-cell r is incident with exactly two 2-cells. Then q < r < swhich
implies that 4(q̂, r̂, ŝ) belongs to the representation restricted to st(q). The analysis of the line segment [p̂, r̂] is similar: A
triangle distinct from M using the vertices p̂, r̂ can only have a third vertex which is a 0-cell t 6= q, but this t is uniquely
determined since the 1-cell r is incident with exactly two 0-cells. Then t < r < p which implies that4(p̂, r̂, t̂) belongs to
the representation restricted to cl({p}).

(v) In the incidence graph of C , each 2-cell has degree≥ 6 since each polygon has at least three vertices and three sides.
Each 1-cell has degree four, by Theorem 4. Each 0-cell has degree ≥ 6 since it is incident with at least three 2-cells by
Proposition 3 and then also with at least three 1-cells. �

6. Simplicity, local simplicity, and connectivity number

In analogy to usual definitions (see [24,22]) of simple points and end points in adjacency graphs, we define the following:

Definition 6. Let p ∈ T . The cell p is named globally simple if T has the same number of connected components as T \ {p},
and, T c has the same number of connected components as T c ∪ {p}. The cell p is named end cell if it is incident with exactly
one cell q ∈ T , q 6= p.

Kovalevsky proposed in [14] and [15] two other definitions of simplicity, which are locally determined, and will be
reported in the following:

Definition 7. Let p ∈ T . The cell p is named (locally) simple if p ∈ fr(T ) and st∗(p)∩ T and st∗(p)∩ T c both are non-empty
and connected, or, if p ∈ of (T ), and cl∗(p) ∩ T and cl∗(p) ∩ T c both are non-empty and connected. The cell p is named
in-simple or incidence-simple if in∗(p) ∩ T and in∗(p) ∩ T c both are non-empty and connected.

A locally simple cell was named simple in [14], and an in-simple cell was named IS-simple in [15]. These two concepts
of local simplicity are in general not equivalent. The following relation between them is easily derived:

Lemma 8. Let p ∈ (fr(T ) ∪ of (T )) ∩ T .
(i) If p is a 1-cell and p ∈ fr(T ), then p is simple if and only if one of the two 2-cells of in∗(p) lies in T and the other in T c ; p is
not simple if and only if both 2-cells of in∗(p) belong to T c .

(ii) If p is a 1-cell, and p ∈ of (T ), then p is simple if and only if one of the two 0-cells of in∗(p) lies in T and the other in T c ; p is
not simple if and only if both 0-cells of in∗(p) belong to T c ;

(iii) If p is a 0-cell or a 2-cell or a non-end 1-cell, then p is simple if and only if p is in-simple.
(iv) Any end 1-cell is in-simple, but its local simplicity can fail.

Proof. Let p ∈ (fr(T ) ∪ of (T )) ∩ T .
(i) and its dual version (ii) are clear.
(iii) If p is a 0-cell then p ∈ fr(T ) and in∗(p) = st∗(p); analogously, if p is a 2-cell then p ∈ of (T ) and in∗(p) = cl∗(p). In

both cases, using (i), clearly p is simple if and only if p is in-simple.
Now let p be a non-end 1-cell. From Theorem 4, in∗(p) can be written as a cyclic sequence 〈c1, c2, c3, c4〉, where, without

restriction of generality, c1, c3 are 2-cells, and c2, c4 are 0-cells. Suppose that p ∈ fr(T ), then from (i) we can assume c3 ∈ T c ,
and simplicity of p implies c1 ∈ T (or c1 ∈ T ), which implies that p is in-simple, independently from the values (1 or 0) of
c2, c4. Conversely, if p is in-simple, because p ∈ T , c3 ∈ T c , the hypothesis c1 ∈ T c , based on the fact that in∗(p) intersects T
in at least two cells, would imply c2, c4 ∈ T , contradicting that p is in-simple. In consequence, c1 ∈ T and hence p is simple.
The proof for the case p ∈ of (T )would be completely analogous.
(iv) If p is an end 1-cell, then in∗(p) ∩ T = {q}. Evidently, then p is in-simple. Nevertheless, taking into account (i), if

p ∈ fr(T ) and q is not a 2-cell (or, analogously, if p ∈ of (T ), and q is not a 0-cell), then p is not locally simple. �

We note in passing that the definition of simplicity in [15] said ‘‘in case that p ∈ fr(T ), if...’’ instead of our version
‘‘if p ∈ fr(T ), and...’’. The original definition from [15] would cause contradictions in the context of our paper where we
do not suppose the object T to be closed (this supposition is implicit in [15]), and then, there can exist (end 1-) cells in
fr(T ) ∩ of (T ) ∩ T which would be simple, considered as belonging to fr(T ) but not simple, when considered as belonging
to of (T ); or vice versa.
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It is easy to see that any globally simple or end cell of T belongs to (fr(T ) ∪ of (T )) ∩ T , so, only cells of this set are
candidates to be deleted in a thinning algorithm. In order to achieve a reasonable efficiency of practical thinning algorithms,
the global simplicity of a cell has to be decided by local properties, see [24,22]. For thinning on adjacency graphs, for example,
template matching techniques and ‘‘connectivity numbers’’ are popular. For a thinning algorithm to be theoretically well
founded and preserving topology, it is necessary that these local properties provide a confident base for the decision for a
cell to be deleted. The fact that local simplicity (which is used in the algorithm) implies global simplicity, would guarantee
to delete not too many cells; whereas the equivalence between the two simplicities would also guarantee to delete not too
few cells.
Based on Theorem 4 we now define a connectivity number, which will be used for deducing a characterization of global

simplicity by local simplicity, but also provides a key for an efficient implementation of Kovalevsky’s algorithm.

Definition 9. Let p ∈ T and let 〈c1, . . . , ck〉 be a cyclic sequence of the cells of in∗(p), which satisfies all properties of
Theorem 4. Denote by vi the value (1 or 0) of the cell ci in the binary image represented by C , for i = 1, . . . , k = |in∗(p)|.
Define the connectivity number of p as cn(p) =

∑|in∗(p)|
i=0 |vi − v(i+1)|, where the sum (i+ 1) is calculated modulo |in∗(p)|.

The connectivity number is the number of changes from value 1 to value 0 or vice versa, in the set in∗(p), and its definition
depends on Theorem 4. It is easy to see that cn(p) is independent of the particular selection of the cyclic sequence (two
distinct such sequences only distinguish by a shifting on the cycle), and we have the following properties:

Lemma 10. (i) For any non-isolated cell p ∈ T (that is, in(p)∗∩T 6= ∅), cn(p) is strictly positive if and only if p ∈ fr(T )∪of (T ).
(ii) For p ∈ fr(T ) ∪ of (T ), the number of connected components of in(p)∗ ∩ T equals the number of connected components of
in(p)∗ ∩ T c , and both are equal to 12 cn(p). Hence, cn(p) is an even number.

Proof. (i) Let p ∈ T . cn(p) > 0 implies p ∈ fr(T ) ∪ of (T ), since, if p 6∈ fr(T ) ∪ of (T ), then st(p) and cl({p}) are subsets of T ,
hence in(p)∗ ⊆ T which implies cn(p) = 0.
Now let p ∈ fr(T ) ∪ of (T ). Consider p ∈ fr(T ), so, st(p) intersects T c . Taking into account that p is non-isolated, in(p)∗

intersects both T and T c , implying cn(p) > 0. The case p ∈ of (T ) can be treated analogously, taking cl({p}) instead of st(p).
(ii) We have cn(p) > 0. Recall that in(p)∗ is a cycle in the incidence graph of C . We find then an even number l of com-

ponents Aj, where 2 ≤ l ≤ |in(p)∗|, which can be ordered, following the cycle of cells in in(p)∗ (!), as {A1, . . . , Al}, such that,
without restricting generality, A1, A3, . . . , Al−1 are the components of in(p)∗∩T , whereas A2, A4, . . . , Al are the components
of in(p)∗ ∩ T c . It is then evident that in(p)∗ ∩ T has 12 cn(p) components, and that the same is true for in(p)

∗
∩ T c . �

The connectivity number will be used to characterize global simplicity, based on the following property:

Proposition 11. If p ∈ (fr(T ) ∪ of (T )) ∩ T is (locally) simple then p is globally simple.

Proof. Let p ∈ fr(T ), then p is a 0- or 1-cell (the proof for the case p ∈ of (T ) is analogous). Assuming that p is not globally
simple, we prove that st∗(p) ∩ T or st∗(p) ∩ T c is not connected: Based on Definition 6, we have to study the following two
suppositions:
(1) T \ {p} has strictly more components than T .
(2) T c ∪ {p} has strictly less components than T c (T c ∪ {p} cannot have strictly more components than T c since p ∈ fr(T )).
Consider supposition (1) (the proof under (2) is similar). If p is a 0-cell, then there exists q1, q2 ∈ T \ {p} such that there

is no q1q2-path in T \ {p}, but there exists a q1q2-path w in T . Hence w = {q1 = γ1, . . . γi−1, p, γi+1, . . . , γn = q2}, where
2 ≤ i ≤ n − 1 and γi−1, γi+1 are distinct. Supposing that st∗(p) ∩ T is connected, there is a γi−1, γi+1-path z in st∗(p) ∩ T ,
implying that {q1 = γ1, . . . γi−1} ∪ z ∪ {γi+1, . . . , γn = q2} is a q1q2-path in T \ {p} which contradicts our supposition. In
consequence, st∗(p) ∩ T is not connected.
If p is a 1-cell, let {p1, p2} = cl∗(p), and {c1, c2} = st∗(p). Because p ∈ fr(T )∩T , st∗(p)∩T c 6= ∅. Furthermore, by studying

the incidence set of p, it is not difficult to prove that st∗(p)∩ T = ∅, which implies by Theorem 4 that st∗(p)∩ T c = {c1, c2}
which is not connected. �

The following proposition applies the previous one as well as a digital Jordan curve theorem proved in [21]. Recall the
graph theoretic concepts from Section 5. Moreover, an arbitrary graph (X, R) is called locally Hamiltonian if for each p ∈ X ,
the set {q ∈ X : q 6= p, (p, q) ∈ R} is a cycle (see [21]). A triangle is defined to be a cycle of three elements (and three
pairs). Recall that the incidence graph G = (C, R) of the cell complex C is given by the set of all cells of C together with the
incidence relation R. Then (C, R) is locally Hamiltonian if for each p ∈ C , in∗(p) is a cycle.

Theorem 12. For any p ∈ (fr(T ) ∪ of (T )) ∩ T , p is globally simple if and only if cn(p) = 2.

Proof. Let p ∈ fr(T ), then p is a 0- or 1-cell (the proof for p ∈ of (T ) would be analogous). Suppose first that cn(p) = 2. To
show that p is globally simple, it is sufficient by Proposition 11 to prove that st∗ ∩ T and st∗ ∩ T c both are non-empty and
connected. If p is a 0-cell then in∗(p) = st∗(p), and Lemma 10 implies that each of the sets st∗(p)∩T and st∗(p)∩T c consists
of exactly one component. If p is a 1-cell then st∗(p) ∩ T = ∅, or st∗(p) ∩ T has exactly one element. In both situations p is
globally simple.
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Fig. 1. Example of the application of Kovalevsky’s algorithm to a subcomplex (of the quadratic cell complex) which is neither closed nor open. From left
to the right: Original subcomplex (object), Result after the first step of the first iteration (simple non-end cells from the frontier were deleted), Result after
the second step of the first iteration (simple non-end cells from the open frontier were deleted), Result after the first step of the second iteration which is
the Kovalevsky skeleton.

Suppose now that cn(p) 6= 2, and let us prove that then p is not globally simple. By Lemma 10 and using p ∈ fr(T ), we
can assume that cn(p) ≥ 4. Hence each of the two sets in∗(p) ∩ T and in∗(p) has at least two components. Choose a cyclic
sequence 〈c0, c1, . . . , ck〉 of in∗(p) such that the cells cα, cβ belong to distinct components of in∗(p) ∩ T c , and cγ , cδ belong
to distinct components of in∗(p)∩ T , and α < γ < β < δ. If cα, cβ belong to distinct components of T c then p is not globally
simple because cα, cβ belong to the same component of T c ∪ {p}. Suppose now that cα, cβ belong to the same component
of T c . If cγ , cδ belong to distinct components of T \ {p} then they belong to the same component of T , hence again, p is not
globally simple.
Now consider that cγ , cδ are cells of the same component of T \{p}. In the following wewill show that this is not possible

(together with, that cα, cβ belong to the same component of T c). Suppose this situation. Since the incidence graph of C is
connected by Theorem 5 and T induces a finite subgraph, there is a (finite) cγ , cδ-path w = {a1 = cγ , a2, . . . , ak = cδ}
in the subgraph induced by T \ {p}. Then clearly w′ = w ∪ {p} is a closed path which does not contain cα, cβ . Since the
incidence graph is by Theorem 5 a triangulation, it is easy to reduce the closed (cyclic) path w′ = 〈a0 = p, a1, . . . , ak〉
into a cycle v = 〈a0 = p, a′1, a

′

2, . . . , a
′

k〉 (where each element is incident only with its predecessor and its successor in v),
v ⊆ w′. (The idea to reduce w′ into v is as follows: Perform one complete tracing of w′, and for i = 0, 1, . . . , k, if the pairs
(ai, ai+1) and (ai+1, ai+2) belong to the same triangle, then eliminate ai+1 fromw′; calculate the indices modulo k+1.) Note
that the existence of cα, cβ implies that v contains p and contains strictly more than three elements. The cycle v satisfies
the suppositions of Theorem 1 of [21] (to be a graph-theoretical Jordan curve): it is a cycle of length strictly greater than
three, in a triangulation which clearly is a connected planar locally Hamiltonian graph. Hence the subgraph induced by C \v
has exactly two components in C . It is evident that cα, cβ lie in distinct components of C \ v. Hence, any cα, cβ-path must
intersect v ⊂ T , which contradicts that cα, cβ lie in the same component of T c .
In consequence, cn(p) 6= 2 implies that p is not globally simple which completes the proof. �

Theorem 12, Lemmas 10 and 8 imply the following equivalences.

Corollary 13. (i) For any p ∈ T , p is globally simple if and only if p is in-simple.
(ii) If p ∈ (fr(T ) ∪ of (T )) ∩ T is a 0-cell or 2-cell or non-end 1-cell, then p is globally simple if and only if p is (locally) simple.

7. Kovalevsky’s thinning algorithm

Recall that each cell of the object T has value 1, and each cell of T c has value 0. To delete a cell of T means that its value
is changed from 1 to 0. Thus a cell belongs after its deletion to T c . We quote from [14] and [15] the following thinning
algorithm:

Definition 14 (Kovalevsky’s Algorithm). Let T be an object in the cell complex C . Each iteration consists in the following two
steps:
Step 1: Detect and delete all cells from fr(T ) ∩ T , which are simple and non-end. Count the number of cells which are

deleted in this step, and denote it by a. Let T be the remaining object.
Step 2: Detect and delete all cells from of (T ) ∩ T , which are simple and non-end. Count the number of cells which are

eliminated in this step, and denote it by b. Let T be the remaining object.
In the case that a+b 6= 0, perform the next iteration starting with step 1; in the case a+b = 0, the algorithm is finished,

and the actual remaining object T is considered the result of the algorithm and will be called the Kovalevsky skeleton.

Kovalevsky’s proposal of thinning algorithm is general and can be applied to any object within any cell complex. The
unique example in [14,15,17] involves a closed object within the quadratic cell complex. The simplicity concept used in [14]
is equivalent to our ‘‘locally simple’’ concept,whereas the simplicity concept used byKovalevsky in [15] and [17] corresponds
to our ‘‘in-simple’’ concept. Our propositions and theorems of the previous section prove that cells which are ‘‘simple’’ or
‘‘IS-simple’’ according to Kovalevsky’s definitions are also globally simple. The Fig. 1 shows an example of the application of
Kovalevsky’s algorithm to a subcomplex which is neither closed nor open.
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Kovalevsky’s algorithm can be performed both by a sequential or by a parallel implementation. In a sequential
implementation, step 1 of the algorithm (and, similarly, step 2) works in the followingmanner: First, determine fr(T )∩ T =
{m1,m2, . . . ,mk}. Then, for i = 1, 2, . . . , k, in the case that mi is recognized to be in-simple and non-end in T , delete mi
immediately from T , that is, T := T \ {mi}, before proceeding to check the next elementmi+1. In consequence, the property
of the cellmi+1 to be in-simple and non-end can be influenced by whether the cellmi was deleted before or still exists. It is
evident that the sequential deletion of in-simple (equivalently, globally simple) elements always preserves topology. Hence,
in particular, the performance of a sequential implementation of Kovalevsky’s algorithm, applied to a non-empty connected
object, produces a non-empty connected Kovalevsky skeleton.
The situation is distinct for the parallel implementation of Kovalevsky’s algorithm. In this case, step 1 (and, similarly,

step 2) works as follows: First, determine fr(T ) ∩ T = {m1,m2, . . . ,mk}. Then, for i = 1, 2, . . . , k, in the case that mi is
recognized to be in-simple and non-end in T , it ismarked but not (yet) deleted.When all cells of {m1,m2, . . . ,mk} have been
checked, then all marked cells are deleted, that is, T := T \ {m ∈ fr(T )∩ T : min-simple and non-end in T }. In consequence,
the fact that some cellmi is marked as to be deleted later, does not have any influence on whethermi+1 is simple in T or not.
In other words, the in-simplicity of a cell is checked always with respect to the object which equals the actual remaining
whole object at the beginning of the step.
It is well-known from the literature about thinning that the resulting skeletons obtained from sequential and from

parallel implementations of the same thinning algorithm can be quite distinct, and that it is far from trivial to find out
whether a parallel implementation of a thinning algorithm preserves topology. We will show in the next section that the
parallel implementation of Kovalevsky’s algorithm preserves topology.

8. Parallel thinning due to Kovalevsky’s algorithm

Based on the equivalence between global simplicity and in-simplicity by Corollary 13, we will use in-simplicity in this
section. Recall from Definition 14 that each iteration of Kovalevsky’s algorithm consists of two steps. The following theorem
will imply that Kovalevsky’s algorithm can be parallelized.

Theorem 15. Let T be an non-empty object in the cell complex C. Denote by Tk the remaining object after having applied k steps
of the parallel implementation of Kovalevsky’s algorithm to the input object T , for k ≥ 0, where T0 = T . Then, for all k ≥ 1, the
number of connected components of Tk is equal to the number of components of T , and also, the number of connected components
of T ck equals the number of components of T

c .

Proof. We present the main idea of the proof, given by induction on k. Let us call two objects equivalent if they have the
same number of connected components, and if the numbers of connected components of their complements also coincide.
In the induction base it is proved that T1 is equivalent to T , and then, under the induction hypothesis that Tk is equivalent to
T , it is proved that Tk+1 is equivalent to T . Both the induction base and the induction step proof, are based on the following
reasoning:
Let R be an object which is is equivalent to T , and whose in-simple non-end cells r1, . . . , rn are cells of its frontier [or,

analogously, of its open frontier], which are arbitrarily ordered and have been detected in a parallel manner. The latter
means that each of these cells was detected to be in-simple and non-end, as a cell of the whole object R. It is proved using
(n − 1) steps that R1 = R \ {r1, . . . , rn} is equivalent to T . The l-th step consists in proving that rl+1, . . . , rn are simple in
R \ {r1, . . . , rl}. That R \ {r1, . . . , rl} is equivalent to T , is obtained in the (l− 1)-th step, for l > 1. In the case l = 1, we apply
that R is equivalent to T . In the (n − 1)-th step, it is proved that the cell rn is in-simple in the object R \ {r1, . . . , rn−1}, so,
it is proved that R1 is equivalent to T . Observe that R1 is the result of having applied to the object R one step of the parallel
implementation of Kovalevsky’s algorithm, which corresponds to the treating of cells of the frontier [or, analogously, of the
open frontier]. �

Corollary 16. The parallel implementation of Kovalevsky’s algorithm preserves topology. In particular, the Kovalevsky skeleton
of any non-empty object is non-empty, and, the Kovalevsky skeleton of any connected object is connected.

For illustration, the Figs. 2 and 3 show results of the application of the parallel implementation of Kovalevsky’s algorithm
to objects modelled on the quadratic cell complex. Both figures contain on the left an object modelled as subcomplex and its
Kovalevsky skeleton inscribed, and on the right a standard (pixel set) skeleton generated by a thinning procedure included in
the Digital Image Analysis System DIAS [5], which essentially is the Eckhardt/Maderlechner skeleton [6]. In these examples,
the exactness of the Kovalevsky skeletonwith respect to topology preservation can be observed, as well as certain similarity
with the Eckhardt/Maderlechner skeleton.
Note that in this paper, the concept of parallel implementation has the theoretical meaning explained above and is not

necessarily related to the use of parallel processors. In the sequential implementation, during tracing the (open) frontier of
the object, each cell detected to be simple non-end, is deleted immediately. But applying the parallel implementation, such
a cell is only marked, and after having checked the whole (open) frontier, in each iteration we need an additional tracing of
the (open) frontier to delete all marked cells, when using a standard computer.
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Fig. 2. On the left: an object subcomplex and its Kovalevsky skeleton inscribed; in the middle: the Kovalevsky skeleton which is a subcomplex; on the
right: the Eckardt/Maderlechner skeleton of the object which is a pixel set.

Fig. 3. On the left: an object subcomplex and its Kovalevsky skeleton inscribed (black); on the right: the Eckhardt/Maderlechner skeleton (black) of
the object.

9. Comments and concluding remarks

In this paperwe provided a theoretical foundation of Kovalevsky’s thinning algorithm, if it is applied to a 2D binary image
modelled by a cell complex constructed from any polygonal tiling. We proved that local simplicity is sufficient for global
simplicity, andwe characterized global simplicity by a connectivity numberwhich is locally computed. This characterization
indicates that incidence-simplicity is equivalent to global simplicity. For the corresponding proof, we applied a digital Jordan
theorem from [21] valid in any connected planar locally Hamiltonian graph. We proved in detail in this paper that the
incidence graph constructed from any polygonal tiling has these properties, showing that it is a triangulation of the plane,
with some additional special properties. This latter result is of interest in digital topology independently from thinning.
Moreover,wepresented the idea of a proof that the parallel realization of the algorithmpreserves topology. The reasoning

in this proof has similarity with the discussion in [9], where the simplicity of sets is studied. We will further investigate the
possibility to prove our theorem based on results of [9].
Both parallel and sequential implementations of Kovalevsky’s thinning algorithm use local tests for deciding whether

a cell should be deleted or not. This implies that the time complexity of the algorithm is O(n) where n is the number of
elements of the object, which is standard for thinning algorithms [22]. Although in practice, the skeleton can havemuch less
elements than the original object, there exists the worst case such that each element of the object belongs to the skeleton.
In Kovalevsky’s algorithm, for each object cell to be deleted or not, the corresponding local test studies the open star or the
closure of this cell, which for example in the case of the quadratic cell complex is a set of at most eight other cells. Practical
running time of the algorithm can be speeded up by involving at the beginning of each iteration a rapid boundary tracing
algorithm (see for example Section 11.2 of [17]) in order to determine the (open) frontier. The number of necessary iterations
depends on the ‘‘thickness’’ of the object.
With respect to the space complexity of Kovalevsky’s algorithm, we comment that storage of the whole object is needed.

Whereas for other thinning algorithms, the object is a pixel set, our object is a subcomplex of 2-, 1-, and 0-cells. Under use
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of the quadratic cell complex, if our subcomplex is constructed from a pixel set with m elements by interpretation of the
pixels as 2-cells and generation of the lower-dimensional cells as additional structure (as proposed in [17]), then we need
to store approximately 4m object cells (each pixel = square generates two 1-cells and a vertex 0-cell, and the whole object
will need some 1- and 0-cells more to complete the frontier if we wish the object to be a closed subcomplex).
Future projects include, besides generalizations of our theoretical studies to weaker conditions on the initial tiling and to

higher dimensional images, the computational analysis of the algorithm, the study of topological and geometrical properties
of the skeletons, the comparison of Kovalevsky skeletons with those obtained by other thinning algorithms which have
been proposed in the literature and are based on the adjacency graph model, and the study of the quality and usefulness
of Kovalevsky skeletons related to practical applications (including preprocessing and postprocessing for achieving certain
quality). Wemention that Kovalevsky’s thinning algorithmwas implemented on the quadratic cell complex and a triangular
cell complex using the connectivity number [20], and for the hexagonal cell complex [27]. Both sequential and parallel
implementations for the quadratic cell complex based on template matching were performed in [32], where also a first idea
for converting any Kovalevsky skeleton (subcomplex) into a sub-adjacency-graph was developed.
To see that topological properties of the Kovalevsky skeleton are interesting, we mention the observation from [29] that

despite its irreducibility (it does not contain any simple non-end cell), the skeleton of a (two-dimensional) object can have
order (and hence topological) dimension equal to two, which contradicts the intuitive idea, that a skeleton should be ‘‘thin’’
or ‘‘curve-like’’. Similar properties were observed for skeletons on adjacency graphs [19]. This fact could be interesting in
the context of defining digital curves.
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