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1. INTRODUCTION 

In [8] the author derived an a priori inequality from which uniqueness and 
continuous dependence on the data were deduced for the solution of the 
Cauchy problem for the inhomogeneous biharmonic equation and for some 
weakly coupled linear and nonlinear systems. These systems may be con- 
sidered to have evolved from certain fourth order elliptic partial differential 
equations whose principal part is the biharmonic operator. In these impro- 
perly posed problems, the solution, or in the case of systems, the noncoupling 
function, was assumed to be uniformly bounded. Thus it was shown that one 
need not impose any additional restriction on the solution function (as was 
done in [4] for the biharmonic equation) to obtain such results. 

Improperly posed problems have received much attention recently (see 
the bibliography in [5]), as they have been found to represent problems in 
elasticity, geophysics, and the theory of potentials (see [4, 2, 71). Here we 
consider the Cauchy problem for the nonlinear biharmonic equation 

A% = h(x, w, w,i , do, Lb,,) 0.1) 

where d is the Laplace operator, the comma notation denotes partial dif- 
ferentiation with respect to xi , h is assumed to satisfy a Lipschitz condition 
in its latter four arguments, and ‘u is a C4 function which is assumed to be 
uniformly bounded in some domain. We shall derive an a priori inequality in a 
manner different from [8], from which uniqueness and stability of the 
solution can be deduced. The development of this inequality, which has 
further use in the determination of pointwise bounds, entails some “special 
handling” due to the derivative terms which may be present. 

* This research was supported in part by a University of Tennessee Faculty 
Research Grant and an Office of Naval Research Grant NOOO14-67A-0077-0008. 
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In Section 5 we remark on the application of the technique developed here 
to certain coupled systems of elliptic partial differential equations. 

2. FORMULATION OF THE PROBLEM 

Let D be a domain in Euclidean n-space with boundary S (a Lyapunov 
boundary) and let 2 be that portion of the surface S on which Cauchy data is 
prescribed. We assume z is a Cl surface. Let us denote by 

f 64 = % O<or<l, (2-l) 

where x = (x1, xs ,..., x,), a family of (not necessarily closed) surfaces which 
intersect D and form, for each OL, a closed region Da whose boundary consists 
only of points of Z and points on the surface f (x) = 01. Let & denote the 
portion of 2 and S, denote the portion of the surface f (x) = 01 which forms 
the boundary of D, . That this family is nonempty is clear from [8], where 
for n > 2 and T,, and R, certain constants, we can write 

f(x) = [l - (?)“7/[1 - (q,““]. 

We shall assume thatf is a Ca function in Di which satisfies 

(i) if 0 < h < p < 1, then D, C D, , 
(ii) I grad f I > & > 0, in D, , 

(iii) Af < 0, 1 Af ( < &,“, in D, , 
(24 

where c is a fixed constant. Furthermore, we assume that D, , for 0 < a < 1, 
has nonzero volume and D, has zero volume. 

Although in the following work several simplifications are possible if we 
consider regions D, with the portion S, of its boundary spherical (as in [S]), 
we choose the more general regions D, determined by (2.1) because of their 
usefulness in the determination of pointwise bounds [6]. 

Instead of (1.1) we assume u and v satisfy 

AU = h(Xy Vy Vyi y U, 24,~) 

Av = u 
(2.3) 

in D, where the notation and conditions were set forth earlier. On Z we 
assume that u and v satisfy 

s ~ (V - VO)’ da B “1 > S, (Vu,i - Vi) (V,i - Vi) da < ‘72 9 
(2.4) 
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where da is the element of surface on Z, the repeated index denotes summa- 
tion from 1 to n, the quantities oO , vi , u,, , ui are the respective measured 
values of v, v,~ , u, qi , on Z and 7~~ , r2 , na , and n4 are known constants. 

We set 

V=v-#, u=u-$4, (2.5) 

for approximating functions I/ and 4, where by (1.1) and (2.3), we assume 

From (2.3), we obtain 

+=A#. (2.6) 

AV= U, A U = 4x, 0, v,i , u, 4 - h(x, $9 h , $9 hi) + PM #), 

(2.7) 

where 

Thus 

IAVI=IUI, 

1 AU 1 <L, 1 V 1 +L2(V,$‘,l,i)“’ +La 1 U 1 +L,(U,,US#‘~ + 1 2 I 
(2.8) 

7 

for L, , L, , L, , and L, , the appropriate Lipschitz constants. 
Further, we introduce the notation 

El = s V2 do, Es = 
I V,iV,i do, 

,? B 

Es = 
s 

U2 du, Eq = 
1 U,iU,i da, 

B E 
(2.9) 

Eg = IS C-%4 #)I” dx, 
Dl 

where dx is the element of volume in Dl . Finally, since v is uniformly 
bounded, we assume 

I VI GM 

in D, for some prescribed constant M. 
By means of the logarithmic convexity of a suitable functional, we shall 

derive the a priori estimate 

ss ( U2 + V2) dx < KM2’1-d’[k,q]6, 
Da 

(2.10) 
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where K and ki are computable constants and d is a fixed number between 0 
and 1. The uniqueness and stability results for the solution v in (2.3)-(2.4) 
then follow from (2.10). The form of the left side of (2.10) is chosen because 
of its usefulness in the more general problem discussed in Section 5 and in 
obtaining pointwise bounds. 

3. PRELIMINARY RESULTS 

Let us define the functional F by 

F(a) = r (cx - q) jj [U,iU,i + UAU + VliV,< + VAV] dx d7 + &Q , 
0 DS 

(3.1) 

where 0 < 01 < 1 and the ki are constants to be determined. In the next 
section we shall show that F satisfies the differential inequality 

FF” - (F’)2 > - C,FF’ - C,F2 (3.2) 

for computable constants C, and C, , where the prime denotes differentiation 
with respect to 01. The desired a priori inequality follows by means of (3.2). 
Presently, we develop several estimates which are used to deduce (3.2). 

By differentiation, 

F’zz OL sss [U,iU,i + UAU + V,iV,i + VAV] dxdri 
0 D7l 

F” = 
SI [U,iUyg + UAU + VyiVyi + VAV]dx. 

D, 

Using Green’s identity in (3.3) and recalling that ni =f,i 1 gradf 
we can write 

(3.3) 

(3.4) 

-I on S, , 

F’ = j jDa (uu,, + VV>,>f,i dx + j; jz (u g + Vg) da 4. (35) 
8 

Integration by parts now results in 

Fd$ s+~ (U2+V2)$o+ j,j, (u~+‘$+~d~ 
a cc n 

1 
(3.6) 

-- 
2 ss 

(Uz + V2)f,ii dx. 
De 
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LEMMA 1. For F defined by (3.1), we hawe 

c+l 
(3.7) 

<--- 2 ss B(U2 + Vz) dx + (4 + 6) Q, 
Dl? 

where j? = fyi f,i , the 0, are computable constants, c is given by (2.2), and the hi 
are to be chosen so that k, > 0, . 

From (3.6) we have 

W4 = f’F’(d d7 + hi 
0 

- ’ i;/,&( U2 + V’) f,ii dX d7 + kiei . 

Consequently, by means of (2.2) and the arithmetic mean-geometric mean 
inequality (abbreviated A-G inequality), the result follows. 

Before stating the next lemma we note that by means of (2.8) and the A-G 
inequality there exist constants a, and a, such that 

/ ss,, F-JAU + Vdvl o!x 1 
(34 

6% jlDn p( u2 + V2) dx + 4 IJDn [U,,U,, + VJ,il dx + %es - 
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LEMMA 2. For U and V defined by (2.5) and F by (3.1), we huwe 

GI 
SIS [UJJ,i + V,iV,,] dx 4 < 2F’ + 2B$F, (3.10) 

0 %I 

\j-“// [UdU+VAV]dxd+F’+2B,F, 
0 D, 

(3.11) 

for computable constants B, and B, . 

The first result here follows by the A-G inequality and (3.7). Since 

OL 
5.u [U,iU,i + V,,V,J dx d7 = F’ - 

sss 
[UAU + VAV]dxdT 

0 D, 0 D71 

we have by (3.8) 

<F’ + j j,,j,* CUdU + VdVl fix 4 / 3 

s”ss [u&,i + V,iV,tl dx 4 
0 

k" + 2 j ,  1~1 jjDnWz + V2) dx + wsf 4. 

Thus we obtain the second result by means of (3.7). Again, by (3.8) 

+ ’ j;jjDn [ U,iU,i + V,iV,i] dx d7, 

so that the third result follows by (3.10). 

LEMMA 3. IfF is dejned by (3.1), then 
JF’I <3F’+4B$, (3.12) 

where B, is the computable constant of the previous lemma. 

This is an immediate consequence of (3.10) and (3.11). 
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LEMMA 4. For U and V defined by (2.5) andF by (3.1), 

) /J D, {U,iU,i + V,,V,i - W1[(U,if,J2 + (V,if,i>‘l> dx 1 < BP’ + BP 
(3.13) 

for computable constants B3 and B, . 

As a special case of the identity in Lemma 2 in [6], we have 

Is {U,iU,i + V,iV,i - W1[(~,~f~$’ + (V,,f,d2]} dx 
D, 

+ j=j jDnW%r),i (U,kUPk + V*kV3k> 0 

- 2(8-lf,i),k (u,iu,k + V,iV,k>> dx 4 

- 2 j”J^j p-‘f,i(lJ,iA U + V,iA v) dx dv* 
0 &I 

Using the A-G inequality, (2.8) and Lemmas 1 and 2, we arrive at (3.13). 
We recall that in (2.3)-(2.4) only w was assumed to be uniformly bounded 

in D. Now we avoid imposing any additional requirement on v or on its 
derivatives, as in [4], by establishing that integrals of U2 over compact subsets 
of D, are bounded in terms of M2. This result is important in the final analysis 
of the convexity argument. Thus we prove 

THEOREM I. If U is dejked by (2.5), then ssDE U2 dx ,< CoM2 fov Co 
a computable constant and E between 0 and 1. 

We define the function T as 

1 in De 

1 -f(x) in 
1-S 

B 
1 - 4' 

where 7,i7,i < Ml and ( 7,ii 1 < M2 for constants Ml and M2 , so that 

ss U2dx < 
IS 

r4 U2 dx. (3.14) 
D& 4 
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Now by (2.7) and integration by parts, we have 

ss r4U2 dx = 
s 

&J&t da - 
an ss 

r4U,iV,i dx - 
jj 

T~,JJV,~ dx, 
Dl 4 Dl Dl 

so that utilizing the A-G inequality with positive constants yr and yz , we 
obtain 

ss r4U2 dx < j 1-‘Ugdo +tY1 
.cI 

T~U,~U,~ dx 
Dl El 4 

+ + y;l jj, T’Vy;iV,i dx 

+ 2Mlyz j s,, T~U’ dx + 2~;’ j j,, r2VeV>i dx. 

(3.15) 

We now integrate the second integral on the right by parts and use (2.8) 
and the A-G inequality with constants ys and y4. Thus 

f .T r6 U,i U,i dx 
4 

= s #W=do - 
an ss 

PUAU dx - 
ss 

T~,~UU,~ dx 
z1 Dl 4 

d j,, r6U g do $ (1 + L, + 4 ril + 3%~;~) jj,, r4u2 dx 
+ itL12 jjDl raV2dx + $Lz2 

ss 
TT,~V,~ dx + 4 

ss 
r8c!Z2 dx 

D1 Dl 

+ (frL42~4 + 3~3) j j,, ~~u,iu,i dx. 

By choosing ys = (12)-l and y4 = 2-lL;‘, collecting terms, and substituting 
in (3.15), we obtain 

+ [Y# + L, + L,2 + 36%) + 2M,r21 j j, 74u2 dx 

+ BL12Yl jjDl T*V’ dx + (&L22yl + + y;’ + 2~3 

(3.16) 
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We now integrate by parts twice so that 

J-1 T~V,,V,~ dx = s WEdo - 
Dl 21 an IS 

r2VAV dx 
4 

1 -- 
2 I 

H1 g V2 do + + js, r2,J2 dx. 

Use of the A-G inequality with a constant ys results in 

IS T2V,iVpi dx < 
Dl s WEdo - a7 

z’, an s 
r- V2du 

zl an 

+ h ~5 jj,, r4U2 dx + (4 r;l + J4 + M2) j j,, V2dx- 

Consequently, substituting this estimate into (3.16), choosing 

yl = [6@ +L, +L42 + 36Mr)l-l, ~2 = WW1, 

Ys = [3(4L,2Yl + 8 r? + 2dr 
and collecting terms, we arrive at 

IS r4U2 dx < 2 
au 

Dl s ( =1 
7pUg + ylWan) do 

+ (LAY, + r;l + +il) jzl (T~V g - 7 $ VP) da 

+ L% + (L:YI + A1 + S1) CS r;’ + Ml + MaI1 

X 
ss 

V2dx +rl 
ss 

rscY2 dx. 
4 Dl 

Finally, since the Ei , which occur as a result of the A-G inequality, can 
be bounded in terms of M2, we find that the conclusion of the theorem follows. 

4. A PRIORI ESTIMATE 

We shall now show that the functional F satisfies the differential inequality 
(3.2). First we note that by means of (3.5) 
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However, due to the derivative terms in (2.8) and the region of integration D, 
in (3.4), we are unable to manipulate the term 

F 
jJ (UAU + VAV)dx 

Da 

which occurs on the left side of (3.2) so as to dominate appropriate portions 
of the right side. Consequently, we add and subtract the same expression 
which, when combined with this term, will enable us to verify that F satisfies 
(3.2). Thus, we form 

(F’)2 < jj 
& 

B(U2 + v2) dx jjD~!WW,if,i)” + (~>,.f,i)7 dx 

(4.1) 

- 11 fi(U’ + V2) dx jj fl-‘[(U,if,i)” + (v,,f,i)“I dx* 
DE 4 

Using (3.7), (3.4), and (4.1), we see that 

FI;” - (F’)2 > a Jj fl(U’ + V’) dX jj (U,iU,i + v,ivsi) dx 
D’X & 

+F jj (UAU + VAV)dx 
Da 

- SJ fl(u’ + v2) dx jj 8-1[(usif,i)2 + (~~~.f~~)“l dx 
D, D, 

- 1 j jDa (uU,i + vV,,)f,i d-j2 

-WIj j:j, (U~+P~)ddj 11 

+ j j,= B( u2 + V2) dx j j, B-‘[(U,cfd2 + (~JrJ21 dxs 
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that is, 

FF-((F’)2>f jj /yu2+ V2)dx 
DC? 

where 

I= jjDmW2 + vz> dx jjD, P-‘[(U,if,i)” + P’d,i)“l dx 

(4.3) 
- 1 jjDm (UU,i + vv,,)f,i dj2, 

]=I-F jjDa(I UAUI + 1 VAVl)dx. (4.4) 

We shall show that 

J > - B,F2 - B,FF’ (4.5) 

for computable constants B, and B, and thus overcome the difficulty pre- 
viously mentioned. 

We apply Schwarz’s inequality, (2.8) and the A-G inequality to get 

ljjDa(l UdUl + I WP/2 

< j j, ( u2 + V dx j jDa G' V2 + (A V21 dx 

d jjDaBW2 + v2)dx lb, jjDmW2 + v2)dx 

+ b2 j jDa (",iu,, + v,iv,i> dx + ba+j 

for positive constants b, , b, , and b3. Further, by (4.3) and (3.7), we have 

1 jjDaCl udu I + I r’dvl) dxi2 

<2F b, 
I ss 

/3( U2 + V2) dx 
RX 

+ b, jjD~VW,i + v,iv,i - WIK~d,i)” + P’,cf,i)“lI dx + kc,/ 

+ 2b2 II + [JSDa ( uu,, + VV,,)f,, dx]lj . 
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Since by (3.5) and A-G inequality 

for positive constants b, , b, , b, , and b, , we obtain 

(4.6) 
d 2bJ + =‘V$ + WW’ + BP)) + 2bz(b$; + I F’ 02, 

where we have used Lemma 1 and 4 with computable constants b, and b, . 
We now combine (4.6) with (4.4) an d use the A-G inequality on the term 

involving braces so that 

J > I - F[2b,l+ F2 + {b,F + b,(B,F’ + B,F)}2 + 2b,(b$ + / F’ l)2]1/2. By 

the elementary inequality 

(Cl2 + c22 + G2 + c42)1’2 G I Cl I + I c2 I + I $3 I + I c4 I > 

we arrive at 

J > I - F(2b21)1/2 - F2 - F[b,F + b,(B,F’ + B,F)] 

- (2b2)lj2 F(bgF + IF’ I). 

Finally, applying the inequality 

Cl2 - 2c,c, > - c22 

to the first two terms on the right, we obtain 

J 2 - F{(l + i! 4) F + [bJ + h@,F + B4F)I 

+ (2bP2 (b,F + I F’ I)>. 

Clearly, then, there are computable constants B, and B, so that (4.5) is 
satisfied. 

Returning now to (4.2) and using (3.7), (3.9), (3.12), (3.13), and (4.5), we 
find that 

where 

FF” - (F’)2 >, - C,FF’ - C&F2 

C, = 64 + B, + B, and C, = SB,B, + B, + B, . 
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Since a solution of (3.2) vanishes identically, if it vanishes for one value of a! 
in lo, 11 (see [31), we assumeF(ar) > 0 on [0, 11. To complete the derivation 
of the a priori inequality, we let 

and note that 

p = exp(- C,(Y) 

2$ [logFp-c”‘q = C$* + FF” + C,FF’ - (F’)* z o, 
F*C,sp* 

where prime denotes differentiation with respect to CL As the function 

S(p) = log Fp-c~‘cl’ 

is convex, we have by Jensen’s inequality [l], for 0 < 01 < Or, 

where 

F(4 < &W91d [F(Wd, 

&P-F 
1-p’ j5 = exp(- C&l, 

& = exp II- C2a + (1 - 4 Gd 
Cl 

Consequently, by (3.1), (3.7), and Theorem I, we have 

THEOREM II. If V and V are dejned by (2.5) and q by (2.9), then 

IS (V* + Y”) dx 6 KM2(1-d)[kirg]“, 
DC2 

wkere K, M, and ki are computable constants and d is a&ed number between 
0 and 1. 

5. RmL4RKs 

Instead of considering the Cauchy problem for (l.l), one might study the 
same problem for the system 

Au = h(x, w, W,( , 11, U,i) 

de, =g(x) 24, 
(5.1) 
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where in D, u and v are Cs functions, with only v assumed to be uniformly 
bounded, and g is a C2 function satisfying 1 g(x)] > g, > 0. More generally, 
we may replace the Laplace operator A in (5.1) by a uniformly elliptic 
operator L. 

In these cases, we no longer assume (2.6) and, consequently, introduce the 
additional notation 

We then have obvious changes for A V’ in (2.7) and (2.8) and consequent 
changes in the results which depended on them. However, none of these 
changes render the results invalid; they only require a modification of coef- 
ficients and the addition of terms involving l s . Thus in these problems we 
obtain an inequality of the form (2.10) and deduce simultaneously that the 
solutions u and v of (5.1)-(2.4) are unique and depend continuously on the 
Cauchy data. 

Further, similar results seem to be possible for more general coupled 
elliptic systems. This will be considered in a subsequent paper. 
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