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We prove a reducibility criterion for certain families of representations induced 
from irreducible finite dimensional representations of the 1 l-dimensional 
parabolic subgroup of the universal covering group of SU(2, 2). If an induced 
representation is reducible and can be considered as a representation of SU(2, 2) 
as well, we compute the number of composition factors. 

I. INTRODUCTION 

Let C? be the universal covering group of SU(2,2), P the 1 l-dimensional 
parabolic subgroup of G. The connected component p” of P is a semidirect 
product of SL(2, @)n and a solvable group S. The finite dimensional irreducible 
representations 7 of X(2, @)n are parametrized by two nonnegative integers 
and we write ~(i, j), i, j E N. The characters x of S are identified with their 
restriction to the one-dimensional center of S. The extensions of ~(i, j) @ x 
from P” to P are parametrized by [0, 2). Let ~(i, j, A) @ x, X E [0, 2) be such an 
extension. 

THEOREM 1. (a) The representation indg ~(i, 0, A) @ x is reducible if 

x+{-h-Omod2 

(b) The representation indg ~(0, i, A) @ x is reducible if 

x-i-A=:OmodZ 
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OY 

Here we identify x with its differential at the identity and consider it to be a 
multiple of a short root. We normalize the induction so that if ~(0, 0, A) @ x is 
unitary, then indg ~(0, 0, A) @ x is unitary. 

THEOREM 2. The conditions of Theorem 1 are also necessary ;f X = 0 OY 

h .= 1 and x arbitrary OY if 1 Re x 1 > i/2 and h arbitrary. a 

Since our techniques for proving Theorem 2 for j Re x j < i/2 depend 
heavily on a classification of irreducible representations of SU(2, 2), we could 
prove Theorem 2 only under the restriction h = 0, 1, in which case the induced 
representation is actually a representation of SU(2, 2). We conjecture however 
that the conditions of Theorem 1 are necessary in general. 

THEOREM 3. (a) Let h = 0, 1, and assume x + i/2 - h = 0 mod 2. 

If 1 x 1 > A + 1, ind$ T(i, 0, A) @ x has 6 composition factors. 
2 

If 1 x 1 = 4 + 1, ind$ ~(i, 0, A) g x has 6 composition factors. 
2 

If / x ; = 4. 
2’ 

i z 0, ind$ T(i, 0, A) @ x has 5 composition factors. 

If x = i = 0, indg $0, 0,O) @ x has 3 composition factors. 

If j x j < z, i d 0, indg $i, 0, A) @ x has 7 composition factors. 
2 

(b) LetXE[0,2)andassumejRex>1/2. If x+i/2--=Omod2 
and x + i/2 + X f 0, OY x + i/2 - h # 0 mod 2 and x + i/2 + h = 0, 
ind$ T(i, 0, A) @ x has 3 composition factors. 

(c) For ind; ~(0, i, A) @ x we get the dual statements. 1 

Some of the composition factors we construct, correspond to representations 
obtained by analytic continuation of holomorphic and antiholomorphic discrete 
series representations. These were already obtained by K. Gross, W. Holman 
and R. Kunze [l], by H. Jacobson and M. Vergne [5] and H. Rossi and M. 
Vergne [6J. In a sequel to this paper we will discuss the unitarity of certain 
composition factors and their extension properties. 

The organization of the paper is as follows. After introducing notations and 
definitions in Chapter II we consider properties of the induced representations 
in Chapter III. Then using special functions we derive our results for 
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ind$(T(O, 0, A) @ x in Chapter IV. Our previous consideration in Chapter III 
now allows us to reduce the proof of Theorem 2 and 3 to dealing with 3 special 
cases, which is done in Chapter V and VI. 

II. PRELIMINARIES AND DEFINITIONS 

Let L be a real vector space of dimension 6 with a quadratic form Q of signa- 
ture 2, and let e, ..* es be a basis such that 

Q (f xiei , i xiei) = xl2 $- ... + xa2 - xs2 - xe2. 
i=l is1 , 

Let G be the connected subgroup of SL(6, R), which conserves Q, i.e. G is the 
connected component of SO(4,2), and let g be its Lie algebra. In general small 
German letters will denote a Lie algebra, capital letters the corresponding 
groups and A” will denote the connected component of the identity of the group 
A. As usually eij denotes the 6 x 6 matrix with 1 in the intersection of the ith 
row and jth column and zero otherwise. 

Once and for all we choose an abelian subalgebra a of g 

a = We16 + d 0 We,, + es2) 

and by H we denote ei, + e,, . The maximal compact subgroup K of G is 
isomorphic to SO(4) x SO(2) and straightforward checking shows that g is 
generated by RH and f = Lie K. Let g = f @ a @ n be an Iwasawa decomposi- 
tion of g. Unless otherwise stated, we will always assume that all parabolics 
contain n. The minimal parabolic subalgebra will be denoted by b and the 
11 dimensional subalgebra will be denoted by p. We have the Langlands 
decomposition 

B = M,AN 

where 
P = M,AJV, 

MB s SO(2) x Z, 
MD z SO(3, 1) x Z, 

and we may assume that A, = {exp t Hi , t E W>. 
The group Gi = SU(2, 2) = {g E GL(4, C), g = (E f;), where a, b, c, d are 

complex matrices satisfying 

ad* - bc* = 1 
cd* = dc* 
cdl* = ba*} 
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is a double covering of G. The subgroups of GI with Lie algebra in, , uts are 
isomorphic to S&(2, C), the group of complex matrices with determinant &l, 
and SO(2) x h, respectively. 

The universal covering group G of G can be described as follows: SU(2, 2) 
acts on the space H(2) of hermitian 2 x 2 matrices (up to a set of measure zero) 

bY 

gx = (ax + b)(cx + q-1, 

Define 6, by 

N E H(2), g = (; f;, E G, 

det(c.rc + d) = 1 det(cx + d)j e”@ 

This defines So up to a summand of the form 271-n and we define 6,” by requiring 

Then 

2m < 6,” < 27r(n + 1 ), 12 EZ. 

C = {(g, S,“), g E G, , n E Z) 

with the multiplication 

(g, 477 (g’, SF) = (gg’, S&f + 87). 

The covering P of P is the set 

Hence P has Z connected components. 
We will now construct certain irreducible finite dimensional representations 

of P. We have the Langlands decomposition 

where 

U I((: azpl),(2n + I)n),nEI,deta = -11 
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-4, = I((: Qt--1), 2~), det a > 0, a diagonal, n E B/ 

m, = I( (i z), 2nrr), 3c E H(2), n E Z, (i t) identity in GL(4, @)I. 

Put * = e,, - ezz + e, - ed4 and let E be the subgroup of G covering 
{e, z>. Then I? z Z and commutes with the Cartan subgroup of the connected 
component of the covering i@, . Hence each finite dimensional representation 
of i@, is determined by a representation of SL(2, C), and a representation of 
i? on the highest weight space. 

The irreducible representations of E z Z are parametrized by h E [0, 2) as 
follows 

Let /3r , ,f3, be the simple positive roots of (sL(2, C),) @ C. Then we write 
7(n,/2/3r + n2/2p2, A) for the representation with highest weight n,/2/3, + n,/2/?, 
and the representation e, of E on the highest weight space. If there is no 
possibility of confusion, we will often write ~(n, , A) instead of ~(nJ28~ , A), 
tli # 0, and ~(0, A) for ~(0/3, + O/3, , A). In the following we will only consider 
the representations ~(n, , A), i = 1, 2, II E N. 

Define a character xU of A$, by 

where exp(M)u = etUfH) for ~1 in the complex dual (a, @ C)’ of a, . 
Then T(?Q, A) @ ,vU is an irreducible representation of F. For h = 0, 1 and 
n = 0 mod 2, it is a representation of P as well. 

Put +n, , A, CL) = ind$%(q , A) @ xU . The induced representation is defined 
in such a way, that it acts on the left and is unitary if r(ni , A) @ x,, is unitary. 
The representations ~(n, , A, p) are degenerate series representations of G. 

We parametrize the representations of B = &?a&flB as follows. Since 

@a z Sr x Z, the unitary dual A%a is isomorphic to Z x [0, 2). If (n, A) E 
E x [0, 2) write pn,A for the corresponding character of Al, . For v in the dual 
ac of a @ @ we define a character xv of AN by x,(an) = au. Here a E A, II E N 
and (exp tXp = e fv(X1 for X E a. Put U(n, A, p) = indgpp,,, @ xv . The represen- 
tations U(n, A, v) are the principal series representations of G. 

We write 9: for the dual of a subalgebra go of g. 
Let h = (a @ mg) @ C. Then h is a Cartan subalgebra of g @ C. In the root 

system Z of (g @ C, h) choose a set Zf of positive roots compatible with the 
ordering of the restricted roots d in a’ (determined through the choice of n). 
The highest weight of a finite dimensional representation of G is a pair (vr , YJ, 
where vr E nti , ~a E a’ and iv, + 1~~ is dominant and integral with respect to Zf. 
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III. SOME REMARKS ABOUT DEGENERATE SERIES REPRESENTATIONS 

A. Embedding of degenerate series representations in principal series 

Let 01~ , ova , 05 be the simple roots in C+. Then 01~ , $(a, + 0~~) are simple 
restricted roots and a’, = R+(ol, + 201, + 0~~). We identify (a, @ C)’ with C 
by p. = p+(~~r + 20r, + c+), (as @ C)’ with @” by v = v = vrq + ~&(a~ + CY~) 
and rnb with R by u$, = RQ(cx~ - CCJ. The differentials of characters of 
expc, m are thus identified with Z and those of exp, m are identified with 22. 
We choose o~i, 05 as the positive roots in SL(2, @)n . Unless otherwise stated, 
we write ~(n, h) for r(n, 0, h). Since the situation is symmetric with respect to 
T(n, 0, h) and ~(0, n, h), all formulas will be derived only for r(n, h) = T(n, 0, A). 

We have P 18, thus 

= ind$ indi P,,,~ @ xv . 

But 

Now 8, n ii!lD, is a Bore1 subgroup of i@, and indgAa,(pn,r @ xJ,B~~~ is a 
principal series representation. It follows [12]. 

LEMMA 3.1. The representation indz,B (pnSA @ x&-,~~ contains the 
representation T(m, A,,) as invariant subspace if 

A, = A, n 1 m, v2 - v1 =: - 1 - n/2. 1 

Hence T(n, A) @ xp is a subrepresentation of indi P,,~ @ xv for v = (p, -1 - 
n/2 + TV), and thus 

LEMMA 3.2. rr(n, A, p) is a subrepresentation of U(n, A, (p, -I - n/2 + p)). 1 

B. Equivalence and Duality 

If Vi , U, are finite dimensional contragredient representations of p, then 
ind$U, and ind:Ua are contragredient. Hence, since T((n, 0), h) @ X~ and 
~(0, n), h) @ x-,, are contragredient, we have 

LEMMA 3.3. rr((n, 0), A, p) and ~((0, n), A, -p) are contragredient. 1 

Let w, be the shortest element in the Weyl group mapping c~i + 201, + olg into 
its negative. 
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THEOREM 3.4. There is an intertwining operator A(w, , n, h, v), which maps 
U(n, h, V) into U(-n, X, wOv). 

Proof. Although the original proof of [7] is under the assumption that G has 
finite center, we can use the reduction technique to reduce the construction of the 
intertwining operator to constructing an intertwining operator for principal 

series of shi(2, W). But this has been done in [S]. 1 

THEOREM 3.5. There is an intertwining operator B(n, h, TV), which maps 
~((n, O), 4 p) into +(O, n), A, --EL). 

Proof. Consider n((n, 0), h, p) as a subrepresentation of U(n, h, (CL, -1 - 
n/2 + p)), and ~((0, n), X, --CL)) as a subrepresentation of U(-n, h, (- 1 - 
n/2 - II)) respectively. Then 

A(w,, 71, A, (p, -1 - 5 + P)) u(n, A, (P, -1 - i + P)) 

c u(-%A,(-p, -1 -i-P)) 

and 

4% , n, A, (P, - 1 - n + ph((n, O), A, CL) C n((O, n), A, -p). 

The operator A(w, , n, h, (p, - 1 - n + p)) depends analytically on p and 
hence so does its restriction to rr((n, 0), h, CL). We thus can find a normalization 
of the restricted operator in such a way, that it is nonzero for all p. 1 

C. A realization of ~(0, 0, p) and ~(0, 1, p) 

Let e EL have the coordinates (1, 0, 0, 0, 0, 1). Then 

K . e = {(xl ,..., X6) / x1* + x2* + x3* + $2 = 1 = x5* + .X62} gg s3 x 9. 

The isotropy group at e is isomorphic to SO(3) and will be denoted by K(P). K 
operates on dipz(K/K(P)) as well. Here we take the 6p2 with respect to the left 
invariant measure on S3 x 9. This representation of K decomposes in a direct 
sum of finite dimensional representations and each representation of K with a 
K(P) fixed vector occurs in this decomposition exactly once. We label these 
representations as follows: 

Let d, be the Casimir of SO(4), d, be the differential operator corresponding 
to the generator of SO(2). Then 

H(i,j) = {f E Cm(K/K(P), d,f = -i(i + I)f 
A2f = if > 
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is an irreducible invariant subspace and 

P(K/K(P)) = @ H(i,j). 
&N\(O) 

?a! 

For x = (x1 ,..., x6) E K . e and g E G we define g * x = y = ( y,(gx,) ,..., y,(gx)). 
The action of G on K . e is defined by 

g o x = ( Yl’(&) + Ye*(P) + Y3w) + Y4%?W2 * P- 

This action is differentiable. For p E @ we define nU by 

(TTJg)f)(x) = (i (y,“(g-‘r))“‘2f(g-l 0 x), 
1 

g E G, f~ Y2(K . e), x E K . e. 

One checks easily that this is indeed a representation. 

CLAIM. TT~ is the direct sum of two representations. 

Proof. Let J: P(K . e) + P(K . e) be defined by (J)(x) = f(-x). Then 
we have 

Define 

Hl = @ H(i, j) 

ie%col 
i+j=l mod 2 

and 

H2 = @ H(i, j). 
i+pl 

i+j=O mod2 

H2 is the + 1 Eigenspace of J and HI is the - 1 Eigenspace of J. 1 

PROPOSITION 3.6. rr,, restricted to HI or H2 is equiwalent to x(0, 0, p), or 
~(0, 1, p) respectiereb. 

Proof. Let f be a representative of x E K . e in K. Then 

g3 = k(gK)m(g?)a(g.?)n(g3), 
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where 

Now e is the highest weight vector of a representation with highest weight 
(0, q -+ 2aa + 01s) and thus 

g2 . e = k(g2) * u(gZ) . e. 

Then k(g.?)e E Ss x Sr and a(g.@e = u(gz)“i+?03+ase = C: ( y,(gx)2pe. Hence 
n,, = ind$ n(O) @ x,, , which is the direct sum of ~(0, 0, p) and ~(0, 1, CL). 1 

D. A d#erent view of ~(0, A, p) 

Identify S3 x (0, 2~) with an open subset of S3 x S by 

(x, 9’) - (x1 eiq) 

and define for X E g, f E Ca(Ss x (0, 2~7)) and p E @ 

(~/,V>f >(-5 d = -$ dexp tx)f (x, v)L=~ 

VU is a representation of g and hence of the enveloping algebra U(g). 
We now consider the induced representation ~(0, A, p) as acting on the 

sections of a bundle over S3 x S’. Choosing a restriction to S3 x (0, 2~) of 
the induced bundle, the Cm vectors of the representation form a VU-invariant 
subspace of Cio(S3 x (0, 2~)). 

Put 

H(i, j, A) = {f E C”(S3 x (0, 2a)), such that 

Ll,f = -i(i + I)f 

4f = (A +i)f> 

PROPOSITION 3.7. The restriction of V, to H(h) = @iENj~zi+j+,m,,d2 H(i, j, A) 
is infinitesimal equivulent to the representation of the enveloping algebra on the 
space of K-finite vectors of ~$0, A, p). 1 

E. Some remarks about tensor products with Jinite dimensional representations 

We say that a (g, k?) module M is a Hurish-Chundra-module (H.Ch.module), 
iff 
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(a) the center Z(g) of U(g) acts nilpotent on M. 

(b) considered as a Z? module each irreducible representation of R occurs 
with finite multiplicity and M is a direct sum of irreducible representations of R. 

Recall the definition of the Harish-Chandra homomorphism I+G of Z(g) into the 
Weyl group invariants in the symmetric algebra of (m, @ a)’ @ @ [l I]. We will 
say that M has central character y if z E Z(g) acts by 

and y is in the positive closed Weyl chamber %?+ (with respect to a fixed chosen 
ordering of the roots in (m @ a)’ @ C.) 

Let M be an H.Ch.module with central character y and V, a finite dimensional 
irreducible representation of g with highest weight 6. The (g, Z?) module 
M @ V, has a summand with central character y + S, which is again a H.Ch. 
module. Let PyY+’ be the projection on this summand and let I&‘+* be the functor 

M-t P,Y+‘(M @ V,). 

Let p, be the contragradient module to V8 . Then M @ Vz, has a direct 
summand with central character y - S. Let Pz-” be the projection on this 
submodule and let vGe8 be the functor 

M--f PC-“(M @ VT8) 

THEOREM 3.8. [13]. (a) Let WY and W,,+8 be the stabilizer in the Weyl group 
of y + 6 respectively. If WY = WY,, , then #I’” is an exact fun&or in the category 
of H.Ch.modub. 

(b) 9)vym8 is a morphismus in the category of H.Ch.modules, if WY-, 3 WY . 1 

If WY-, 1 W, = {id} then pzyYP8 applied to an irreducible H.Ch.module is 
either irreducible or zero [lo]. 

If rr is an indecomposable representation of e, rr,R a direct sum of irreducible 
representations of R and Horn&, rrla) < co for all irreducible representations 
S of x, then the representation of the enveloping algebra U(g) on the space of 
K-finite vectors of n is a Harish-Chandra module. Since by definition two 
representations of G with the above properties are equivalent iff the corre- 
sponding H.Ch. modules are equivalent, we will not distinguish between a 
representation of e and its H.Ch. module. A representation 6 of R is called a 
K-type of n if Horn&, TIP) # 0. 

We will often not distinguish between a representation of R and its highest 
weight. 

Straightforward computations show that the central character of rr(la, h, p) 
has a nontrivial stabilizer iff 



DEGENERATE SERIES OF SU(2,2) 105 

In all these cases the stabilizer has order 2, unless n = 0. Then it has order 4. 
By the considerations of Chapter 5 [9] and some elementary calculations 

follows: 

PROPOSITION 3.9. Let ~~(71, A, p) be a degenerate series representation, 6 the 
highest weight of a jinite dimensional representation. 

(a) If Rep<--n/2-1, S=S01,+20rz+(S+8)05 withO<8<26, 

$:+‘7r(n, A, p) = 7r(n + 8, X(S), p - S) 

(b) ?f -n/2 - 1 < Rep < -n/2, S = SC+ + 2Sar, + 3Sog and (p, n) # 
(0, O), 

#E+%(n, A, p) = 77fn + 26, ;\(26), p - S) 

(c) If -n/2 < Re P < n/2, n # 0, 8 = (8 - 8) OLD - Sola - 2%~~ , 0 2 
8 > 612, 

#~+C(n, A, y) = 7r(n - 8, X(8), p + 6) 

Here A(8) = h mod 2, if 8EZ 

A(8) = h + 1 mod 2, if $=$modZ 1 

IV. REDUCIBILITY AND COMPOSITIONSERIESOF n(n,h,p). THECASE 1 Rep 1 > n/2 

Let e(X, i, j) be the unique vector in H(A, i, j), which transforms according to 
e, x T(O)~,(,, . Since H commutes with P n R, we have 

~(0, A, p)(H) e(k i, i) = c Y(P, i,j, 2;j) e(k id 
ii 

where y(p, i, j, Z, j) E C. 
By [12] reducibility of a representation is equivalent to reducibility of the 

corresponding H.Ch. module. Since each K-type of rr(n, A, p) has multiplicity 
one, to prove irreducibility of ~(0, A, II) it suffices to show that ~(0, A, p)(H) 
acts transitively on the set {e(X, i, j)}. 
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And conversely, since H and f generate g each H invariant subspace corre- 
sponds to an invariant subspace of ~(0, h, CL). 

Using the theory of spherical harmonics [4], we write for (x5 , x6) f (1, 0) 

e(X, i, j) = (x6 + ix,)jfAC,(x,), 

where Cj( ) is the Gegenbauer polynomial of degree i. 

LEMMA 4.1. [4]. 

w> = ; (Cl.&) + G-l(4) 

(1 - 9) $ C&X) = (f + 1) C,+,(x) - f C,-,(x) 

(1 - x”) C,(x) = ; C,(x) - ; C,-,(x) - ; C,+,(x) 1 

Now let 

Then 

A(t): = exp(--t H) 

Vu(H) e(h, i, j) = $ [(cash tx, + sinh t~,)~ + x22 + xS2 + xf]ui2 

X6 
[(cash tx, + sinh tx,)s + x22 + xss + xqs]r/2 

+ iX6jlfA 

’ ci [(cash tx, + ( Xl 

sinh txJ2 + x22 + xs2 + x42]1/2 ill t=o 
= j.~x~~~(x~ + ix,)i+A Cj(xl) + x6(1 - x1”) --& (5 + ix5)j+A Ci(xl) 

‘1 

+ ~~(1 - jce2) -& (x6 + ix5)j+A C&d 

Using the previous lemma we get 

VJH)e(X,i,j)=[$+~(~+l)+~]e(&i+l,j+l) 

+[$-f-t +] e(A, i - 1, j + 1) 

+[%+;(++I)-*]e(A,i+l,j-I) 

+ [$ - i - L$L] e(j+, j - 1, i - 1). 
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THEOREM 4.2. ~(0, A, CL) is reducible # 

p+A=Omod2 

p-A=Omod2. 

Proof. Only if the above conditions are satisfied, one of the coefficients in 
the above formula is zero. 1 

Let T be a representation of i: on a Banach space FF. We call an irreducible 
representation ?T’ a composition factor or subquotient of n, if there are closed T 
invariant spaces VI , Tis of V, Vr C Va and T’ is equivalent to the representation 
on T’2/lvl . 

THEOREM 4.3. (a) Let /* - X = 0 mod 2 and p + X = 0 mod 2. 

If 1 p 1 > 1, ~(0, A, CL) has 6 composition factors 
If [ p ( = 1, ~(0, A, p) has 5 composition factors 
If p = 0, n(0, 0, 0) has 3 composition factors. 

(b) IfP--h=O mod2and~+h#Omod2orif~+X=Omod2and 
p - h + 0 mod 2, then ~(0, A, p) has 3 composition factors. a 

Our considerations about tensoring with finite dimensional representations 
imply: 

THEOREM 4.4. Let / Rep / > n/2. 

(a) r(n, A, CL) is reducible i# 

p+i--A=Omod2 

OY 

~+~+X==Omod2. 

(b) ~((0, n), A, CL) is reducible 22 

p-i-A==Omod2 

OI 

p - i $- X = 0 mod 2. 

(c) Let p + n/2 - A = 0 mod 2 and ~1 + n/2 + X = 0 mod 2. 

If I p / = n/2 + 1, then r(n, A, II) has 5 composition factors. 
If 1 p 1 > n/2 f 1, then ~(n, A, p) has 6 composition factors. 

580/33/I-8 



108 BIRGIT SPEH 

(d) If p + n/2 - h == 0 mod 2 and p + X + 42 # 0 mod 2, OY if 
p + n/2 - h + 0 mod 2 and p + n/2 + h = 0 mod 2, then rr(n, A, p) has 3 
composition factors. 

(e) For ~((0, n), A, p) the dual statements to c, d are true. 

In the next chapter we will study the representations ~((0, n), A, p)) and 
+(n, O), 4 p) for I Re p I < n/2. 

Proof of Theorem 4.3. (a) Let p = X = 0. Then 

Fl = @ H(i, j, 0) 
j+is-1 

i+j=Omod~ 

V, = @ Wi, j, 0) 
j-i>1 

i+j=Omod 2 

rr3 = @ H(i, j, 0) 
i+j>-1 
i-id 

i+j=Omod~ 

are invariant subspaces of ~(0, 0, 0) and Vi @ Va 0 V, = H(0). 

(b) Letp = -1, h = 1. Then 

Lrl = @ ff(i, j, 1) 
i-j-0 

and 
i+j=O mod 2 

L’z = @ H(i, j, 1) 
i+j=Z 

i+j=OmodZ 

are invariant subspaces of H(1) un d er ~(0, 1, - 1). Furthermore H(l)/ Vi @ l/, 
is a direct sum of 3 invariant subspaces 

V3 = @ H(i,j, 1) 
z+i>Z 
i-i<0 

i+j=Omodt? 

L’* = @ H(i,j, 1) 
ifjc-2 

i+i=O mod 2 

V5 = @ H(i, j, 1). 
i--i>0 

i+j=O mod 2 

(c) To complete the proof of the first part of Theorem 2, by IIIE it 
suffices to consider the case p = -2, X = 0. Here I’, = H(0, 0, 0) is an invari- 



DEGENERATE SERIES OF SU(2, 2) 109 

ant subspace of H(0) under ~(0, 1, - 1). Furthermore H(O)/ V,, has two invariant 
irreducible subspaces 

v, = @ m j, 0) 
(i.i)t(O.O) 
-3cifiSO 

i+i=O mod 2 

and 

v, = @ w, j, 0). 
(i.j)+(O.O) 
-3d-j<O 

i+j=Omod 2 

The space (H(O)/VJ/Vr 0 Vs is the direct sum of 3 irreducible invariant 
subspaces 

v3 = @ w, j, 0) 
i+j<--3 

i+j=O mod 2 

v4 = @ H&j, 0) 
i-j<-3 

i+j=O mod 2 

If.5 = @ ~(~,j, 0). 
i+j;sO 
2-i>O 

r+j=O mod 2 

This proves the first part of Theorem 2. 

(d) The last assertion is proved similarly. 1 

V. REDUCIBILI’II- OF m(n, A, p). THE CASE / Rep 1 < n/2 

We will first prove that the representation rr(n, h, CL) is reducible for a certain 
set of parameters by producing a nontrivial composition factor, and then use 
some results about intertwining operators to show that the representation is 
irreducible otherwise. 

Recall some results about z(2, [w), the universal covering group of SL(2, Iw). 

The irreducible representations of z(2, W) are constructed as follows [8]. 

Let b be the Bore1 subgroup of z(2, Iw). Then 

All irreducible finite dimensional representations of b are parametrized by a 
character xv of (D)O defined by x,,((t t-1)) = UY, and a character e, , X E [O, A), 

as defined in Chapter II. Put I?’ = z(2, R). 
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c THEOREM 5.1 [8]. (a) ind, xv @ e,\ is reducible, iff y + h = 1 mod 2 or 
y-A= 1 mod2. 

(b) If y $- X = 1 mod 2 and y E Z\O, then ind&,, @ e),] has 3 composition 
factors, the $nite dimensional representation F,, , the holomorphic discrete series 
representation D,+, and the antiholomorphic discrete series representation D,-. 

(c) If y f h = 1 mod 2, y $E\O, then ind$ xv @ e, has a holomorphic 
continuation of discrete series representation D,+ as composition factor and another 
infkite dimensional composition factor I,,+. If y - 1 = 1 mod 2, y # Z\O, then 
ind$ x,, & e, has an analytically continued antiholomorphic discrete series represen- 
tation D,-- as composition factor and an infinite dimensional composition factor IV,-. 

THEOREM 5.2 [8]. The lozcest K-type of D,,T, D,,- has the weight 1 $- y, or 
-1 - y vespectizle[v. 1 

We now return to s?i(2, 2). Let P1 1 B be a parabolic not conjugate to P. 
Then 

and 

P, gg SL(2, IR) ;, s1 ;x [w+ x A$ 

LEMMA 5.3. Let v = (q , 2 v ). The representation U(n, A, V) has 

G * ,.-. 
in&, Du; 2-L.L:4 54 P,, ‘a! x~I.~,.~~~ 

G 
or indgl D~&,I~ i& P,, ‘3 xv~a,N1 

as composition factors, if 

or if 

A+?-$= lmod2, 

x - 5 + !k = 1 mod 2 
2 4 

respectively. 

If v,/2 - vz/4 is positive, then these representations occur as sub-representations. m 

This lemma follows by a step-by-step induction argument as in IIIA. 

PROPOSITION 5.4. Assume TV E R, (p T 1 f n/2) > 0 and u + n/2 - X = 0 
mod 2. The invariant subspaces 

dn, A, r) and indFl Dl+l+n;2 ‘3 pn 53 x(~,-wz+~)I.~~,~, 

of [‘(n, A, (p, - 1 - n; 2 I p)) hazle a nontriaial intersection. 
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Proof. The strategy of the proof is as follows. We will construct a K-type in 
U(/(n, A, (p, -1 - n/2 + p), which occurs with multiplicity one. Then we will 
show, that this K-type is contained in ind$* Du+l+n,4 @p-,, @ ~~~~~~~~~~~~~~~~~ 
and in n(n, A, cl). Hence it is contained in the intersection of both subspaces. 

We assume 01~ and 01s are compact roots. Let Hai , i = I, 2, 3 be the coroots 
to oli . Then 

Here H, is the generator of the abelian summand of k, normalized such that 

We consider HE, as a generator of the Lie algebra of the maximal compact 
subgroup of the SL(2, R)-factor of PI . 

CLAIM. If a K-type with highest weigllt (n/2or, , y), y E R, occurs in U(n, A, 
(cl, -1 - n/2 + p)) with nontrivial multiplicity, then it has multiplicity one. 

Proof. The generator of ma is (-HN1 + Has). In its spectrum under the 
representation with highest weight (n/2 0~~ , y) the eigenvalue n/2 has multiplicity 
one. By Frobenius reciprocity the assertion follows. 1 

CLAIM. If a K-type with highest weight (n/2 (Y, y), y E R, occurs in U(n, A, 
(p, - 1 - n/2 + EL)) with nontrivial multiplicity, then it is a K-type of the sub- 
representation ~(71, A, p). 

Proof. The representation of SO(4) with highest weight (n/2) a1 remains 
irreducible when restricted to the diagonal subgroup SO(3). By Frobenius 
reciprocity the assertion follows. 1 

Let us now assume y = A + m, m E Z. Then Ha, has on the lowest weight 
space of the representation with highest weight ((n/2) CY~, y) the Eigenvalue 

A 
e(H,,) = $ + y(H.,) == $ + z + F 

All other Eigenvalues of Ha, on this K-type are smaller than e(Hap). 
By Frobenius reciprocity and 5.2, a K type with highest weight ((Q)cx, x -+ 112) 

is a K-type of 

if there is at least one Eigenvalue of Ha, of the form $(p + 1 + n/2) + 6 = 
h/2 + d/2, d an odd integer. 
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Choose m = d - n. Then the K-type with highest weight ((n/2) al, x + m) 
is a K-type of 

idI DL+l+n~2) 0 pn 0 XL-~-~~~+~~I~ N 1 1 

and hence of U(n, X, (p, - 1 - n/2 + CL)). By the first claim it has multiplicity 
one in U(n, h, (p, - 1 - n/2 + CL)) and by the second claim it is also a K-type of 
~(n, h, p). Thus this K-type is contained in the intersection of both invariant 
subspaces. 1 

The same considerations can be used to prove 

PROPOSITION 5.5. Assume p + 1 + n/2 > 0 and p + n/2 + h = 0 mod 2. 
The invariant subspaces n(n, h, II) and 

in&; Di+l+n.‘2 0 P-,, 0 XL-~-~~~+~)I~,~~ 

of U(n, h, (p, -1 - n/2 + CL)) have a nontrivial intersection. 1 

THEOREM 5.6. Let X = 0,l. The representation rr(n, h, p,) is reducible, iff 

pi-;--h=Omod2 1 

To prove this theorem we will use a result of R. Langlands for linear groups [3]. 
Let U(n, h, v), h = 0, 1, be a principal series representation. Assume v is dominant 
with respect to the positive root system d+ determined by n. There is an inter- 
twining operator A(n, h, V) from U(n, X, V) to U(zo’n, h, w’v), where w’ is the 
longest element in the Weyl group W. 

THEOREM 5.7 (Langlands [3]). The image of A(n, X, V) is irreducible if v is 
strictly dominant, otherwise it is a direct sum of irreducible if v is strictly dominant, 
otherwise it is a direct sum of irreducible representations. 1 

Proof of Theorem 5.6. Let U(n, h, V) b e a principal series representation, 
X = 0, 1, v arbitrary. For each root 01 E d, define D,(n, X) C a: as follows. If LY. is a 
long root, then 

and h a) - - -Omod2ifA+n = 1 
2 

If OL is a short root, define 

D&l, n) = IV E a; 1 q 1 = InI +m,m >,2andm =Omod2. 
I 
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By [8], U(n, h, V) is reducible iff Y E UuEd D,(h, n). Now assume v E D,(X, n) for 
exactly one LY E d +. Let w E W such that WV is dominant. Then by 3.8 of [IO] the 
image of A(wn, h, euy) is a degenerate series representation n,(h, 71, v). 

The representation r$, II, v) is characterized by the following property. Let 
~1, be the Weyl group element with maps OL into a simple root and define a 
parabolic subgroup Pa = M,A,N, by the condition a,c = kern W~CU. Then 
indim @%.A 0 x,;~,) h as a finite dimensional composition factor ~,(n, h, V) 

and n&X, rz, V) = ind,ca T&H, X, v). 
Considera(n,h,p)withX=O, 1,~++/2-~#0mod2and~Re~~~ 

n/2 as a subrepresentation of U(n, h, (p, --I - n/2 + CL)) as in 3.2. But 
(P, -1 - 42 + CL) 6 Rh 4 f or exactly one root (Y E d+ and 01 is simple. Hence 
by 3.1 and 3.2 rr(n, h, p) = n&(,(n, /\, (,u, - 1 - n/2 + p)). Thus by 5.7 rr(n, h, p) 
is irreducible. If 1 Re p / > n/2, 4.4 implies the theorem. 

Remark. Comparing our results with those of Jacobson, l’ergne [4] and 
Gross, Holman, Kunze [1], it is easy to show that the representation constructed 
in Proposition 5.4 as the intersection of 2 invariant subspaces is equivalent to the 
representation constructed by analytic continuation of holomorphic discrete 
series. 

VI. COMPOSITION SERIES FOR Z-(tl,h,p). 
THE CASE 1 Re p 1 I n/2, h = 0, I 

Recall the classification of irreducible representations of G as worked out in 
[I 11. Let t, be a Cartan subalgebra of k @ C, p the highest weight of an irredu- 
cible representation of K and \ ‘,> the restriction of the Killing form of gc to 
f c , pc half the sum of the positive compact roots. Define 

A K-type p is called lowest K-type of representation r, if p is minimal with 
respect to this norm among all K-types of r. A subquotient of a representation, 
which contains a lowest K-type, is called bottom quotient. 

The irreducible representations of G fall into three disjoint classes: 

(a) discrete series representations, 

(b) bottom subquotients of principal series representations, 

(c) bottom subquotients of representations induced from a discrete 
series representation of PI . 

Using the results on reducibility, duality and tensoring with finite dimensional 
representations we deduce that it suffices to compute the composition series for 
x(2,0, 1) and 7r(2, 1, 0). 
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We now proceed as follows. We list all irreducible representations with these 
central characters and using K-type considerations and intertwining operators 
we compute the multiplicity of the representations in the Jordan-Holder series 
of 7r(2,0, 1) and ~(2, 1, 0). 

Denote the positive roots in fc by /I1 and pa . We assume that & is the Cayley 
transform of 01~ , and /?a of (~a respectively. 

Case 1: +2,0, I) 

(a) The central character is singular, hence there are no discrete series 
representations with this central character. 

(b) Bottom quotients of the principal series: 

I. Ci(-2,0, -$(a1 + 01s) - 201*) 

II. L(-2, 1, -%(LY1 + Us) - 201*) 

III. L’(-4, 1, -01r - OLa - 05) 

IV. LT(-4,0, -a1 - a2 - a2). 

By 3.2, the bottom quotient of I is the bottom quotient of ~(2, 0, 1). 
The lowest K-types of II have highest weight (pi , 0) and (j& , 0). It is left 

to the reader to check that they are not K-types of ~(2, 0, 1). 
By [9], IV is irreducible and some of its K-types have multiplicities larger 

than one. Hence IV cannot be a subquotient of rr(2,0, 1). 
The lowest K-type of III has highest weight (2(/3, + pa), 0) and multiplicity 

one in 7~(2, 0, 1). Hence to prove that III is not a composition of ~(2, 0, I), it 
suffices to prove the 

CLAIM. The lowest K-type of III is a K-type of the bottom subquotient of 

74&o, 1). 

Proof of the Claim. The multiplicity of (2(& + /Q, 0) in U(-2, 0, 
-+(a1 + (us) - 2cya) is two. By 5.7, to prove the claim it suffices to show that 
one of the K-types is contained in the kernel of the corresponding intertwining 
operator. By 3.14 of [lo], it suffices to show that this K-type is contained exactly 
once in the direct sum of the kernels of the factors of this operator. By 3.8 of 
[lo], the kernels of the factors have the same composition factors as U(-4, 1, 
-01~ -a2 - 4 indZl D2+ 0 p1 0 XWA,N, and indFlD2- 0 p1 0 x(I.~)IA,N,~ 

An easy checking shows that (2(/3, + fi2), 0) has multiplicity one in U(-4, 1, 
-01~ - 01~ - %) and multiplicity zero in the other two representations. This 
proves the claim. 

(c) Bottom quotients of generalized principal series representations: 

I. idI D2+ 0 p2 G3 x(~.~)I~ N 11 



DEGENERATE SERIES OF SU(2,2) 115 

I\‘. indFl D3- 0 p1 6 x(I.-+)I~,~, 

\-. ind’ D,+ 0 p1 0 ~(~,-~)l,~ N PI 1 1 

VI. id1 4- 0 p1 $3 x(~,+)I+,,~ . 

By [g] I and II are irreducible and some of their K-types have multiplicities 
larger than one. Hence I and II cannot be subquotients of ~$2, 0, 1). 

It is left to the reader to verify that the subquotients of ~(2, 0, 1) constructed 
in 5.4 and 5.5 are the bottom subquotients of III and IV. 

Exactly as in the proof of 5.4 and 5.5, one verifies that the bottom quotients 
V and VI are subquotients of 77(2,0, 1). 

Since all K-types of ~(2, 0, 1) have multiplicity one, each composition factor 
occurs with multiplicity one in the composition series of 7r(2, 0, 1). Hence we 
proved 

PROPOSITION 6.1. 7r(2, 0, 1) has 5 composition factors. 

COROLLARY 6.2. Put S(n) = n mod 2. The representations CT(n, S(n), n/2) and 
r(n, S(n), -n/2) have 5 composition factors. 

Case 2. ~(2, 1, 0) 

(a) The central character is regular. Thus by [12], there are 6 inequivalent 
discrete series representations with this central character. Since discrete series 
representations for a fixed central character are uniquely characterized by their 
minimal K-types [2], we identify the discrete series representations with their 
minimal K-types. 

The minimal K-types of discrete series representations with this central 
character are: (0,4), (0, -4), (215,) O), (2A, O), (A + I%, 1) and (A + A, - 1). 

The representations with minimal K-types (0,4), (0, -4) are not subquotients 
of ~(2, 1, 0), since ~(2, 1, 0) has only K-types of dimension 3 or larger. 

Using Blattner’s formula [2] we derive that multiplicity of the K-types 
WI + 2A, 2) and G’A + 2t% , -2) in the discrete series representation with 
minimal K-type (p, + /3a , I), and (& + pa , -1) respectively, is two. Thus 
these discrete series representations are not subquotients of ~(2, 1, 0). 

Again by Blattner’s formula [2], the multiplicity of the K-types (2p, + /3a, 0) 
and (j?, + 2/3,, 0) in the discrete series representation with minimal K-type 
(2pr , 0) and (2p2 , 0) respectively, are two. Thus these representations are not 
subquotients of ~(2, 1, 0). 
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(b) Bottom quotients of principal series representations: 

I. U(O, 0, -*(al + %) - 4 

II. U(0, 1, -go11 + 013) - 4 

III. U(2, 0, -(CL1 + Cxa) - 2&a) 

IV. U(2, 1, -(nr + 01a) - 2a,) 

v. U(4,0, -$(a1 + a3) - %) 

VI. c’(4, 1, -&x1 + CLa) - o$). 

The bottom quotients of I, II and III are not composition factors of ~(2, 1, 0), 
since their lowest K-types are not K-types of ~(2, 1, 0). 

By 3.2, the bottom quotient of IV is the bottom subquotient of 7r(2, 1, 0). 
By [lo], VI is irreducible and hence at least one of its K-types has multiplicities 

larger than one. Hence IV cannot be a subquotient of 7r(2, l,O). 
As in case 1, we are left with one possible contribution of a principal series 

representation. By the same argumentation as in that case, we deduce that the 
bottom quotient of V is not a composition factor of 7~(2, 1, 0). 

(c) Bottom quotients of generalized principal series representations: 

V. in&, D:‘-’ 0 pn 0 x+(~,+~,+~,)I~~~~ 

~1. idI K’-’ 0 p--2 0 x+(~~+~,+~~H+.,~ 

The bottom quotient of I is a subquotient of x(0,0, 2) by 5.4. Thus the proof 
of 4.3 implies that it has a one-diynsional K-type. Since n(2, 1, 0) has no one 
dimensional K-types, I is not a subquotient of ~(2, 1, 0). 

It is left to the reader to verify that the subquotients of 7r(2, 0, 1) constructed 
in 5.4 and 5.5 are the bottom subquotients of III and IV. 

The lowest K-type of II is (& + & , -2). This K-type has multiplicity 1 in 

742, 1,O). 

CLAIM. The bottom quotient of II is a compositionfactor of 7r(2, 1, 0). 

Proof. We first show that the bottom quotient of II is a composition factor 
of U(2, 1, -(01r + 0~~) - 20r,). By 5.3 and 2.8 of [lo], the bottom quotient of 
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indZl W’ 0 PO 0 X(O,l)l,4,N, is a composition factor of U(0, 0, -p). By 3.2, 
U(2, 1, -(01i + 05) - 2~~s) E U(0, 0, --p)/n(O, 0, 2). The proof of 4.3 shows 
that no subquotient of ~(0, 0, 2) has lowest K-type (pi + & , -2). Hence the 
bottom quotient of II is a composition factor of U(2, I, -(ai + 01~) - 2~s). By 
3.2, U(4, 0, -&(a1 + as) - as) g U(2, 1, -(a1 + a,) - 2~x,)/7r(2, I, 0). Hence 
to prove that the bottom quotient of II is a subquotient of ~(2, 1, 0), it suffices 
to prove that it contains a K-type, which is not a K-type of Lr(4, 0, -*(ai + 

4 - 4. The K-type (HP, + A), 3) is a K-type of II and not a K-type of 
CT(4, 0, -$.(a, + aa) - 01a), hence it is a K-type of a common composition 
factor 7r of II and n(2, 1, 0). Since none of the lowest K-types of the already 
constructed composition factors is a K-type of II and none of the lowest K-types 
of V and VI, n is the bottom quotient of indF1 Di(-) @ p. @ ~(~,i)l~ N . 1 

The lowest K-types of V and VI are (&3i + @a , f 1) and (Q/I1 i1$/3, , f 1). 
These K-types have multiplicity one in 7r(2, 1, 0) and in the representations 
III and IV. Hence to prove that the bottom subquotients of V and VI are not 
composition factors of n(2, 1, 0), it suffices to show that they are K-types of the 
bottom quotients of III and IV. Using the same argumentation as in the proof 
of the claim in case I b, this follows. 

Thus we proved: 

PROPOSITION 6.3. The representation 7r(2, 1, 0) has 7 composition factors. 

PROPOSITION 6.4. The representation r(n, A, p), p + n/2 - X = 0 mod 2, 
1 p 1 < n/2 has 7 composition factors. 
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