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Introduction 

If R is a Noetherian ring and I is an ideal of R, then the Rees ring R(J) = 
R@I@- I”@-, L nothing but the graded ring associateId to the I-aclic filtration 
of R. The use of such rings in commutative algebra usually relates to the! Art in-Rees 
property or properties of filtered R-modules expressed in terms of the associated 
graded modules over the Rees ring. Starting from a Dedekind domain R and a 
fractional ideal I of R one may constuct the so-called generalised Rees ring a~ 
follows: 

The so-called arithmetically graded rings have been studied in [26], [27]. The 

concept of a generalised Rees ring then underwent conselquent generalisations both 
in the commutative case and in the non-commutative case and it turned out that 
these constructions of graded nature also have very nice ungraded properties. 
Moreover, in constructing those rings we obtain new examples of Goldie rings, 
maximal orders, tame orders in the sense of R. Fossum cf. [6], Krull orders in the 
P.I. case or the general case, and oHC-orders in the sense of H. Fujita, cf. [lo], or 
H. Marubayashi cf. [ 181. It may be apparent from the foregoing list of classes of 
rings that the constructions are also very effective in the non-N’oetherian case if the 
ground ring is a Krull domain or just an integrally closed domain. The organization 
of this survey is as follows. There are three major classes I,-orisidered here: mrong 

Rees rings, divisorial Rees rings, scaled Rees rings; in each of these classes we pa) 
particular attention to the commutative case, the P.I. Icase and the ge,l+rerul WW. In 
the list of references I included several recent papers vvhere general&d Rees rings 
have been applied or studied. The reader who cares, to check out these referera~es 
will find that the term generaked Rees ring is used in many ways; I hope that the 
terminology used in this note becomes the standard terT:rrinology for t 
Finally let me point out that many rings constructedi here turn out to be 
subrings of certain crossed products, twisted grouprin,g.s or grouprin.gs 
embedding is described in some sense (to be explicited iir the se 
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group or the class group of the part of degree zero. Due to the fact that the rings 
dealt with in this paper are usually H-graded the crossed product aspect of the theory 
is sometimes hidden; nevertheless I shall occasionally point out results concerning 
G-graded rings for a torsion free abelian group G. For a rather extensive treatment 
of graded ring theory we refer to the book by C. NtistZlsescu and the author, cf. [20]. 

1. Strong Rees rings 

Let G be an arbitrary group. A ring R is said to be a G-gruded ring if there exist 
additive subgroups R, of R, for (TE G, such that R =BCEG R,, R,R,C R,,. For all 
a, r’~ G. We say that the ring R is strongly G-graded if it is G-graded and such that 
R,R, = R,,. For all ~7, ZE G. If e is the neutral element of G, then R, is a subring 
of R and it is one of our main aims to derive properties of R from given properties 
of R,. An R-module 1M is a graded R-module if there are additive subgroups & 
of M;~EG~ such that: M=BGEG &, R,~J~&, (all modules will be left 
modules unless otherwise specified, if G is not abelian the order of T and cr in the 
foregoing definition has to be respected!). The set h(M) = U, ~~ is called the set 
of homogeneous elements of 1M. If 1M and N are graded R-modules, then an R-linear 
morphism f: M-N is said to be graded of degree o E G if f(M,)CN,, for all TE G 
(note the order!). Then we define 

HOMR(M, N) = @ HOM,&M, N),, 
0 

where each term consist of the morphisms which are graded of degree 0~ G. We 
write 

Hom,+JM, N) = HOM&‘K N),. 

The category R-gr consisting of graded R-modules with morphisms being the graded 
morphisms of degree zero, is a Grothendieck category (but R is not a generator for 
R-gr). Full detail on graded rings and modules may be found in [20]; let us just 
mention here that every graded module A4 over a strongly graded ring R is strongly 
graded in the sense that R,M,=M,, for all a, ZE G, and that consequently the 
categories R-gr and R,-mod are equivalent if R is strongly graded. (The 
equivalence being given by the functors R&, - and (- jeu as is easily seen.) From 
the definition of a strongly graded ring one easily deduces that each R,, cz E G, is 
an invertible R, -module because 

R,C&, R, 1 z R,R, l=Rp=RD lR,=R,-I&R,. 

From Ro@R, R + RQT, 0, ‘PE G, it follows that a strongly graded ring R may be 
constructed starting from R, by giving a group homomorphism G -+Pic(R,) (one 
should check that changing the representative for [R,] E Pic(R,), one actually 
defines the same strongly graded ring up to graded isomorphism). If R, is a com- 
mutative domain, then we say that R is fractionally graded if each R,, CZE G, is 
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isomorphic to a fractional ideal of R,. It is clear how this notion may be extended 
to the non-commutati\ e case if R, is some ‘nice’ order over an integrally! closed do- 
main in some central simple algebra or in more general cases where the notion of 
fractional ideal (two-sided!) makes sense. Now we define a strong Ree::; ring to be 
a fractionally strong@ graded ring; this high-brow terminology may be clearified by 
looking at some concrete situations, (as explained in the introduction): 

1.1. The commutative case 

In this case a strong Rees ring may be written as R = C,, G I,X,, where lcp 0 E 6, 
is an invertible ideal of R, and where &Jr = Ior for all a, t E G, X,X, = X,, for all 
a, r E G. Let K be the field of fractions of R, (note that we have assumed here that 

R, is a domain). Then R is a subring of the group ring KG = GuEC; KX, completely 
described (up to graded isomorphism) by the group morphism G -Pic(R,), 
CF [&]. In case G = Z, we obtain R = CnEZ I” X”, for some invertible idcal I of R,. . 
If G is an ordered group, with positive part G, say, then we may define thle 
positively graded ring: 

R+ = c 4Txa 
UEG, 

(and similarly for R_). 

Properties 
1.1.1. Suppose G=Z. Then R is Noetherian if and only if R0 is Noetherian, if an4 
only if R_ and R, we Noetherian rings, cf. Lemma A.II.3.7, Proposition ,+Yll.?.J 
of [20]. A similar statement holds if G is polycyclic by finite, cf. Theorem A. II. 3.S 

of [20]. 

1.1.2. Suppose G: Z. If R is a gr-Dedekind domain (a graded domain such tha! 
graded ideals are projective), then R0 is a Dedekind domain, cf. Theorem B.11.2.7 
in [20]. 

If R’ is a gr-Dedekind domain, then there is an rz~ h\l such that R;,,, is a strong 
Rees ring, where (R[n,)i = Ri:, for all i&T; cf. Theorem B.II.2.12 in [20]. 

1.1.3. If G is torsion free abelian, then R is integrally closed if and only if RC. is 
integrally closed, cf. Proposition 7.1 in (211. 

If R is a Krull domain, then R, is a Krull domain and the kernel of the class 
group map Cl(R,)+<‘l(R) is ImI7 where &! is the group hom~omorp 
n: G-,Pic(R,)-+Cl(R,:# deriving from the structure of R, cf. Proposition 7 

PU. 

1.X.4. If G =Z, then rl combination of foregoing properties states that R is 3 
Noetherian integrally closed domain if and only if R. is Noetheri~~r~ in 
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closed. Expounding on A. 1.3 one immediately deduces that in case G = E, R is a 
Krull domain if and only if R. is a Krull domain, cf. Note 7.4 of (211. Actually 
there it is stated that the latter equivalence is still true when G is a Torsion free 
abelian group satisfying the ascending chain condition on cyclic sublizoups. 

1.1.5. If R is a Z-graded Krull domain, then Pi@(R) = Pit(R), Clg(R) -Cl(R) 
where Picg and Clg are defined to be the subgroups of Pit resp. Cl consisting of 
classes which may be represented by a graded element; cf. Lemma B.II.1.13 of [20]. 

Brg R = Br RO, for G = Z; cf. [28). For full detail on graded Brauer groups cf. 
1341. Moreover, Brg R = Br R. = Brg(R+, K, ); this is a rephrasing in the terminology 
of relative Brauer groups, cf. [34], of a result mentioned in [28], here K, stands for 
the kernel functor on R-gr associated to the filter of powers of &,OR,. 

Remark. Strong Rees rings R over Dedekind domains R0 turn out to be the key 
tools in obtaining a structure theorem for H-graded gr-Dedekind rings, see Section 
3. Surprisingly (if one looks at Brg R = Br R,) this is also true for the structure of 
the graded Brauer group of a gr-Dedekind ring. Here one will use the trick of 
creating holes in the gradation i.e. considering RfnJ -for variable n, cf. [34]. 

1.2. The P. I.-case 

For generalities concerning the theory of P.I. rings we refer to C. Procesi’s book 
[22]; some extra results in combination with a graded structure have been obtained 
in [30], cf. also section C.I.2 of [20]. In this section we consider strong Rees rings 
R over ‘nice’ orders R. in some central simple algebra QO. There are two types of 
results mentioned here. First we have results for arbitrary strongly Z-graded rings 
over the orders considered, these are obtained by restricting to the P.I.-case some 
results of H. Marubayashi, E. Nauwelaerts, F. Van Oystaeyen, [19]. Secondly we 
have results for a restricted kind of strong Rees rings graded by a group G which 
is abelian torsion free and which satisfies the ascending chain condition for cyclic 
subgroups, these are obtained by restricting to the strong Rees case some results of 
L, Le Bruyn, F. Van Oystaeyen 1161 (the latter reappear in Section 2). 

We have used a rather cheap boutade when extending the term ‘fractionally 
graded’ to the non-commutative case; so let us be a little more careful in explaining 
what is really meant here now. First consider a strongly G-graded ring R over a 
prime P.I. ring R, with ring of fractions Qe, a central simple algebra with center 
Z(Qf) == Q(Z(R,)), (see Posner’s theorem in 1221). Since R, is a prime Goldie ring 
every giaded essential left ideal of R will contain a regular element of degree zero 
(using the fact that R is strongly graded!) and so the regular homogeneous elements 
of R from a (left) Ore set of H with (1eft)ring of fractions Qg a gr-simple gr- 
Artinian ring in the sense of 1201. lt is easy to see that the regular elements of degree 
e also form on Ore set, Se say, and that: 
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The structure theorem for gr.c s.a. (cf. Corollary A.I.4.3, Theorem A.I.5.8 of [20]), 
yields that Qg = QOIX, XI’, y] for some y E Aut(Q,) in case G = H and more gener- 
ally one easily deduces from the crossed product theorem in [20] that Qg = IQ,, * G. 
Clearly it makes sense to write R = C aEG IaXa now; we always assume that 1,~~ 
restricts to an automorphism of R, for each ci E G, where y. is the automorphism 
of Qc corresponding to the action of X,. If R has to be an P.I. ring, it L’ollows 
from a result of G. Cauchon, cf. [3], that each ya has to have the property: $O is 
inner for some n, E tN. If G = Z there is no condition on the cocycle describing the 
crossed product QP + G for the latter to be a PI. ring, if G is torsion free labelian 
such a condition may be readily written down, cf. [ 161. In the sequel of this section 
R will be II P.6. strong Rees ring as explained above. We will say that R is a nor- 
malizing strong Rees ring if for all OTE G, J+, is defined as conjugation by some nor- 
malizing element a, E Qe (i.e. a, R, = R,a,). 

Properties 
1.2.1. If P is a prime ideal of R lying over zero in RO, then C(P) is a regular (left 
and right) Ore set of 18; the localization QP(R) is a principal left and right ideal 
ring with unique maximal ideal Q&R)P, cf. Proposition 2.9 of [19]. 

1.2.2. Let G = Z. If Ro is a (classical) maximal order in Qo, then R is a ma~irml 
order in Q= Q&R), cf. Theorem 3.1 of [I!?]. 

1.2.3. Let G=Z. If RO is a Krull order (in the P.I. case the concepts of Krull 
orders introduced in [4], [ 13]? [ 171 all coincide, and there is no confusion possible 
here), then R is a Krull order. 

1.2.4. Let G=Z. If RO is a Dedekind prime ring, then R is prime Noetherian masi- 
ma1 order in Q such that graded left (and right) ideals of R are projective left (right) 
R-modules. In this case R is also a graded Asano order in Qe; cf. Proposition 3.9 
in [19]. 

1.2.5. Let G =Z If R, is an HNP ring with enough invertible ideals, then R is a 
vHC-order with enough v-invertible ideals in the sense of [lo], [IS], cf. Thtl~nm 
4.12 of [ 191. In this case the divisor group satisfies: D(R) = D,(R)WI(Q% dwc: 
D,(R) is the graded divisor subgroup of D(R). 

1.2.6. If’ RO is a prime Noetherian Asano order, then R is in particular a krti 
order, cf. Note 4.15 in [I9]. 

1.2.7. Let G be torsion free abelian. If RO is a relative maximal order in the se 
of [15], then so is R if R is a normalizing Rees ring over R,; cf. Theorem 4.5 in 

WI. 
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1.2.8. Let G be torsion free abelian. A normalizing strong Rees ring R over a maxi- 
mal order ((in the usual sense) is again a m;aximal order; cf. Corollary 4.6 of [ 161. 

1.2.9. Let G be a torsion free abelian group satisfying the ascending chain condition 
with respect to cyclic subgroups. If R0 is a Krull order and R is a normalizing 
strong Reu ring wer R,, then R is a Krull order; cf. Corollary 4.8 in [ 161. 

1.2.10. Let G be as in 1.29. If R, is an I-INP ring, then a normalizing strong Rees 
ring R over R, is a tame order of Q, (Thelorem 4.12 of [la]). If R, is a tame order 
(cf. I<. Fossum [6] for details on tame orders), then so is R, cf. Corollary 4.14 of 

]161. 

1.2.11. Let 6 be as in 1 2.9. Let R, be a Krull order and let R be a normalizing 
strong Rees ring over R,. The central class group, of the Krull orders involved will 
be denoted by CCI, Ccl,. For the definition and further properties of central 
classgroups we refer to 1141 or to [16]. We have: Ccl(R) = CCl,(R)@CCl(Qg), 

where Q”=Qe*G; cf. Theorem 5.6 of (161. 

Remark. A PI. MC-order is the same as a tame order. In more general cases, 
&K-orders may be considered to be the generalizations of tame orders. 

1.3. The general case 

We consider a strongly L-graded ring R over a prime left Goldie ring R,. All the 
results mentioned here stem from [IP] unless otherwise mentioned. Lifting and des- 
cent of the left Noetherian property, similar to 1.1.1.) again follows from general 
graded ring theory, cf. (201. 

Properties 
1.3.1. If for all prime ideals P of R such that Pfl R0 = 0 we have that R/P is a left 
Goldie ring, then the left version of 1.2.1 holds but still Q;(R) is a bounded prime 
principal left and right ideal ring with unique maximal ideal. Let 9 be the set of 
prime ideals of R such that Pf7Ro =O, then :Y corresponds bijectively to the set of 
proper prime ideals Qg and 

Qg= n Qb(R)WQg) 
PE .4 

where S(Qg) is a simple Noetherian ring. 

.3.2. The sratements similar to 1.2.2 , . . . , 1.2.6 are valid in this general situation if 
we assume that R0 is a prime left and right Goldie ring (where this should not 
follow from the assumptions made in the phrasing of the statements). 



1.3.6. The author verified that the above retults may be generalized to the case 
where G = Zn, n E N, thus yielding a restricted generalization of the statement 4, 
I .2.7, . . . , 1.2.1 I in the non-P.I. case. It is conjectured that a!1 these results ;Ire still 
valid if G is an abelian torsion free group satisfying the ascending chain co,ndition 
on cyclic subgroups. 

2. Divisorial Rees rings 

Whereas strongly graded rings of type G over a given ring R, may be para- 
metrized, up to graded isomoryhism, by the gro,up homomorphisms G -+ Pic(R,,), 
the divisorially graded rings over R, will be paralmerized by Cl(R,) or a convenient 
non-commutative equivalent. Actually any group of suitab1.y defined fractional 
ideals could be used in the construction e.g. the central class roup of am !Z?-Krui! 
ring, cf. [14], the normalizing class group of certain orders o\ er Krull rings form\ 
a variant of the K-theoretically flavored LFP groups of Frtihlich, Reiner, Ullonr, 

M , . . . . Here we have chosen to use a relative Picard group with respect to the prime 
ideals of height one, for the theory of relative Picard groups wt: refer to [34], 1351, 
or [16]. This Pic(R,, K) reduces to the usual class group whenever R, is a Krull 
domain, so the term divisorial in the title of this section will make sense’. 

Let A be an arbitrary ring and let K be any kernel functor (cf. [ 1 l]) in .-l-mod. 
An A-bimodule fa is said to be rc-fiat if for every exact sequence O+ K -+M ---, ,‘I’ in 
A-mod, where K(K) =K, i.e. K is a K-torsion module, we have that the kt:rnrl ot 
the induced map PO, M-+PO, W is a K-torsion module too. .4n A-bimodule P i\ 
K-invertible if p@& - maps K-torsion modules to K-torsion modules and if there 
exists an A-bimodule Q with the same property such that 

(isomorphisms are A-bimodule isomorphisms and QK is the localization functor 
associated to K). Each K-invertible module is K-flat, cf. (341. The K-invertible 
modules form a group under the operation 

lhis group is called the relative Picard group for K. RougMy said a K-dik isoriall*+* 
graded ring R is a G-graded ring such that 

QG’V,J = R,, 

for all 0, T E G. A very interesting case is obtained by taking for K the kerrhi;: f~r~c~~~r 
B which is the infimum of the kernel functors associated to the prime ideals oi height 
one. In the ‘nice cases’ taking the bidual of a module is the same as localizing the 
module at CT, i.e. Q&V) = M **. It will now net be surprising to see that most res 
concerning strong Rees rings which are of a ‘Krull type’ will have equivalents in 
case of divisorial Ree; rings. 
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2.1. The commutative case 

In this case a divisorial Rees ring may be written as 

where each II,, is a divisorial ideal and such that 

I,*Z,=(I,I,)*$=Q,(I,I,)=I,, for all y,r~G. 

We assume that R, is a Krull domain here. It is clear that R is a graded subring 
of KG, where K is the field of fractions of R,, and that R is up to graded isomor- 
phism completely determined by the group homomorphism 

G -+Pic(R,, a) = Cl(R,), Y - Vyl. 

Properties 
2.1.1. If G is abelian torsion free and if G satisfies the ascending chain condition 
for cyclic subgroups, Ihen R is a Krull domain. cf. Note 7.4 in [21]. 

2.8.2. If M is a graded reflexive (M= M**) R-module, then there is a canonical 
graded isomorphism of degree e, 

cf. Lemma 3.2 in 1211. From Theorem 3.5 in lot. cit. it follows that R is a genera- 
lized crossed product with respect to a suitably defined cocyclc; so to obtain the 
most general definition of a commutative divisorial Rees ring we might allow a co- 
cycle in the definition of the multiplication i.e. 

XYXT=&XY,* for all y,r~G. 

Nevertheless we will assume here that C is the trivial cocycle (results will be valid 
in :he more general situation as well). 

2.1.3. Let 6; =Z. An application of some results from 1341 yields that the reflexive 
Brau:r group P(R,) equals the graded reflexive Brauer group, ,V(R), of R. 

2.2. The PA’. case 

Here we assume that R, is a relative maximal order in a c.sa. Qe; let o be the 
kernel functor associated with R, in the sense of [ 151. Examples of relative maxi- 
mal orders are: maximal orders (0 is trivial), Krull orders (here o is the central kernel 
functor associated to the height one prime ideals of the center which is a Krull 
domain), HNP rings (a is trivial), tame orders (cf. [Ml). 
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Properties 
The divisorial equivalents of 1.27,. . . , 1.2.11 9 hold, because in [ 16] these proper- 

ties were proved in this generality. In the h-graded case the divisorial equivalents 
of 1.2.2, 1.2.3, 1.2.5, are very likely to be true beet I heave not checked them com- 
pletely as yet. In the P.I. case, the non-commutative version of 2.1.2 holds if CJ has 
the property that ~!‘(a) is G-invariant (the latter is the case in each of the examples 
given). In the general case, i.e. R, is a relative maximal order in a simple Artinian 
ring but not necessarily P.I., the divisorial versions of the results in 1.3 are still con- 
jectures (although some parts are obvious in the B-graded case). 

3. Scaled Rees rings 

Consider the ring A = C[X, -1 of skew polynomials over a3 with respect to con- 
jugation in a=. Put I=(X) and consider the strong Rees ring 

R= 1 I”Y” over A. 
ntzi2 

It is not hard to verify that R is an Azumaya algebra with center: 

. ..+py-3+py-2+~y-~+&}_py+py*+py$.... 

This ring looks like a strong Rees ring but it is doubled. We restrict attention to wnt- 

mutative Z-graded rings here and then we may generalize the above situation in the 
following definition. Let t > 0 in N; a scaled Rees ring of level t is a ring of the form 

R = c lc+yn 
ntzZ 

where I is an invertible ideal of R and 

a,(t) = [n/t] 

is the integral part of n/t. It is clear that R is Noetherian if and only if R0 is 
Noetherian. Let us assume that R, is a Dedekind ring (if R, is a Krull domain these 
one can introduce divisorial scaled Rees rings but we do not go into this here). 

3.1. If t = 1, then 2: is integrally closed. 
If t > 1, then R is integrally closed if and only if I is a semiprime ideal (Van den 

Bergh, Van Oystaeyen). 

In the proof of 3.1 it is essential that R contains the gr-Dedekind ring: 

This observation actually leads to a complete description of gr-Dsdekind rings (fi 
attempts to this effect appeared in [26]): 
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3.2. If R is any gr-Dedekind ring, then 

R = c Ia” X” 
neP 

where ws Q and I is an invertible ideal of RO (M. Van den Bergh). 

In the proof of 3.2 it is essential that one can define rational powers of an in- 
vertible ideal in an unambiguous way such that these powers satisfy the expected 
rules like* 
the form’ 

Ial% a+B etc. (not necessarily equality though!). In general a ring of 

R= c IanX” 
ncl[ 

where a E Q, and 1 an invertible ideal of Ro, is called a lepidopterous Rees ring. So 
a lepidopterous Rees ring is a scaled Rees ring if and only if the ideal I is semiprime. 
Actually one may refine these techniques in order to obtain structure results con- 
cerning certain Noetherian graded integrally closed domains. Non-commutative 
scaled and lepidopterous Rees rings are the topic of some recent research, so out 
of the scope of this survey. 

Finally, the property of the class group map Cl(&)-, Cl(R) mentioned in 1.1.3 
allows an interesting type of applications. Indeed this property allows on many 
occasions to construct a strong Rees ring R over R, such that Cl(R) = 1, the conse- 
quences of this fact (oriality) in the particular situation one is considering may then 
be pulled back to degree e by graded methods in order to obtain results about R,. 
This idea has been used in [23] in order to investigate diagonalization of matrices 
over Dedekinl domains. 
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