Cardiovascular Division, Institute of Clinical Medicine, Graduate School of Comprehensive Human Science, Tsukuba University, Japan
E-mail address: happa_yo714@yahoo.co.jp (Y. Ito)

Introduction. Inflammation is thought to be one of the major factors in the progression of arrhythmogenic atrial remodeling that promote atrial fibrillation (AF). The aim of this study was to investigate the effects of inflammatory state before and immediately after catheter ablation on clinical outcomes after catheter ablation of persistent AF. Methods. We investigated 176 patients with long-standing persistent AF (sustained AF duration: 1 to 20 years, with a mean of 3.4 ± 3.8 years) undergoing catheter ablation. The high-sensitivity C-reactive protein (hs-CRP) level was measured as an inflammatory marker before and immediately after the catheter ablation. Patients were divided into two groups according to the hs-CRP level in the baseline: high hs-CRP group (n = 84, >0.075 mg/dl) and low hs-CRP group (n = 92, <0.075 mg/dl). Results. Catheter ablation was successfully performed in all patients. After 12-month follow-up, 53.4% of the patients had AF recurrence. The hs-CRP level before catheter ablation was significantly associated with AF recurrence (p = 0.024), however, neither the hs-CRP level immediately after catheter ablation nor the increment of hs-CRP after catheter ablation was not associated with AF recurrence. Multivariate Cox regression analysis revealed that longer duration of AF (p = 0.001), larger left atrial diameter (p = 0.049), and higher hs-CRP level (p = 0.033) were significantly associated with AF recurrence. In Kaplan–Meier AF free curves, there is a significant difference in AF free rates between low hs-CRP group (57% at 1 year) and high hs-CRP group (35% at 1 year) (p = 0.007). Conclusions. The increased hs-CRP level reflecting an inflammatory state before catheter ablation may be one of the important predictors of recurrence of AF after catheter ablation in patients with long-standing persistent AF.

doi:10.1016/j.jifs.2014.01.025

Regional differences in the effect of hypoxia on endothelin-1-induced contraction in rat arteries
Masashi Tawa, Takashi Shimosato, Hirotaka Iwasaki, Takeshi Imamura, Tomio Okamura

Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
E-mail address: tawa@belle.shiga-med.ac.jp (M. Tawa)

Acute arterial occlusion due to an embolus or a thrombus causes hypoxia in the vascular bed, usually resulting in critical injury. Hypoxia affects more or less vascular function, but the response to low oxygen differs in individual vascular beds. The present study examined the influence of hypoxia on endothelin-1 (ET-1)-induced contraction in isolated rat carotid and mesenteric arteries. Although the addition of ET-1 (10−10 to 10−8 M) produced a dose-dependent contraction either in carotid or mesenteric arteries, the response to ET-1 was significantly attenuated by hypoxia in carotid, but not in mesenteric, arteries. The impaired contraction to ET-1 in carotid arteries was also observed in endothelium-denuded preparations or in the presence of an endothelin type B (ETB) receptor antagonist (BQ-788, 10−6 M). Meanwhile, ET-1-induced contraction of carotid arteries in the presence of an endothelin type A (ETA) receptor antagonist (BQ-123, 10−6 M) was not affected by hypoxia. Incidentally, ET-1-induced contraction was largely inhibited by antagonism of ETA receptors either in carotid or mesenteric arteries. In addition, IRL-1620 (10−7 M), a selective ETB receptor agonist, did not cause any contraction in both arteries. Although a crucial feature of the response to hypoxia is to produce reactive oxygen species like superoxide, the treatment with superoxide dismutase (200 U/ml) did not affect the influence of hypoxia on ET-1-induced contraction in both arteries. These findings suggest that although ET-1 induces contraction through ETA receptors either in carotid or mesenteric arteries, hypoxia impairs this pathway only in carotid arteries. Furthermore, extracellular superoxide seems not to be a causal factor responsible for this regional difference.

doi:10.1016/j.jifs.2014.01.027

Urinary ET-1 excretion after exposure to radio-contrast media in diabetic patient and patients with preexisting impaired renal function
Fabian Heunisch4, Gina-Franziska von Einem3, Markus Alter3, Axel Kretschmer2, Berthold Hocher3

4Center for Cardiovascular Research, Charite, Berlin, Germany
3Bayer AG, Wuppertal, Germany
2Institute for Nutritional Science, University of Potsdam, Potsdam, Germany
E-mail address: Fabian.Heunisch@charite.de (F. Heunisch)

Preclinical studies indicate that the renal endothelin system is involved in the pathogenesis of acute renal failure. Contrast media

Pericardial resistance artery contractile responses to endothelins
Thomas M. Leurgans4, Maria Bloksgaard4, Akhmadjon Irmukhamedovb, Lars M. Rasmussen, Jo G.R. De Meyeab

4Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
bDepartment of Cardio-Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
4Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
E-mail address: tleurgans@health.sdu.dk (T.M. Leurgans)

Because the parietal pericardium is opened during cardio-thoracic surgeries, the tissue might be used for translational research. We investigated whether i) contractile resistance-sized arteries can be isolated from the parietal pericardium and ii) whether their arterial smooth muscle responses to ETA- and ETB-receptor stimulation and blockade.

doi:10.1016/j.jifs.2014.01.025