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Abstract--Start ing from a variational formulation, based on Hamilton's principle, the paper exploits 
the finite element technique in the time domain in order to generate, by an automated procedure, a 
numerical approximation of the nonlinear periodic equations peculiar to the dynamics of helicopter rotors. 
With this method, a unified approach is developed, which can be used to solve both the response and 
stability problem. Two simple examples are presented that show how the method can be used to study 
the trimmed response of a fully articulated rigid blade and the mechanical instability analysis of a four- 
bladed rotor. 

I N T R O D U C T I O N  

The analysis of the dynamic behaviour of an helicopter rotor is generally performed in two 
consecutive steps. At first, the periodic blade motion in steady flight is computed; then the 
stability of the trimmed solution is evaluated. 

From an analytical point of view, in the first phase the investigation is addressed only to 
the periodic solution of the nonlinear differential equations describing the blade motion, while 
in the second phase it can be extended to study both the linearized stability of an equilibrium 
solution and the time history response aft& a control excitation has been applied. 

Different methods[ 1-10] are available in the literature to solve each of the two previously 
cited steps, but in general, different schemes are used to attack trim and stability analyses. 

The helicopter rotor is generally modelled with a finite number of generalized coordinates 
by a separation of variables in the space and time domain[7]. 

Typically the space motion is approximated by the mode shapes of a blade rotating in 
vacuum, while the time dependency is provided by the amplitude of such modes. 

In this way an approximation of the rotor dynamics is obtained, which is based on a set 
of second-order nonlinear ordinary differential equations in the time domain. 

These equations can be solved in different ways. The first way can be easily used when 
a complete linearization of the equations is acceptable. In this case a periodic solution is assumed 
in the form of a Fourier series, and the unknown coefficients are determined by solving a linear 
system of algebraic equations. The method can be easily extended to nonlinear problems by 
iterating upon successive linearization until convergence to a periodic solution, but the analytical 
burden posed by the coefficient matrix computation becomes substantial in realistic analyses. 

The second way makes use of a step-by-step explicit numerical integration method, which 
seems able to compute the solution without any limitation in the form of the differential equations, 
and thus it can handle more general systems, provided they can be reduced to first order. 

Here a step-by-step method of integration seems to be the most efficient approach in solving 
the set of nonlinear differential equations describing the motion of the rotor, but even such a 
method does not seem to be free from drawbacks. In fact, it must be noted that, while the 
search of a periodic solution corresponds to the imposition of boundary conditions, the step- 
by-step procedure requires the knowledge of initial conditions, and in general, for nonlinear 
equations, it may be difficult to find which initial conditions are related to a particular periodic 
solution. Then the procedure is arbitrarily started and the integration performed until a steady 
state periodic solution is reached. It is obvious that the computer effort, and the related cost, 
is strictly dependent on the stability of the system and that lack of stability makes the method 
fail to converge. Such an event may be related to a true instability of the system, but no 
systematic information is provided for a stability analysis, which has to be dealt with by another 
approach. 

This work shows how an appropriate use of Hamilton's principle combined with a finite 
element approximation in time domain can provide an unified approach to the determination of 
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the periodic response of nonlinear dynamic s}stems and to the anal}si> of its stability[I I I- 
Another relevant feature of the finite element application to Hamilton's principle is its 

capability to provide an automatic way to derive the equations of the dynamic s',stem. ~ith a 
minimal analytical effort and with the consequent reduction in manual time spent in developing 
and checking the needed t'ormulas. 

FEM APPROXIMATION OF HAMILTON'S PRINCIPLE 

We assume that the configuration of an arbitrary holonomic mechanical system is described 
by a set of  generalized coordinates {q}. 

Denoting with {Q} the generalized external forces and with / the Lagrangian of the system, 
Hamilton's  principle can be written in the following synthetic way: 

'~ a{Y} r {/} dt = a{Y} r {b} 
I 

(1) 

where 

[a{q}j. {/,,} + {Q} , {b} = } . 

{ -,'/7} and { / q }  are the partial derivatives of / with respect to {//} and {q}, while {p} = ~it 
is the column vector of  the generalized moment.  

In many text books of analytical dynamics the right-hand side term of eqn (1) is dropped, 
and Hamilton's  principle is often regarded as a variational principle with constrained extrema. 
On the contrary, in view of the numerical application, these boundary terms play such an 
important role that they must not be dropped. To emphasize this aspect, hereafter Hamilton's  
principle in the form (I)  will be reffered as Hamilton's  weak principle (HWP). 

In view of the method used to obtain a numerical solution of eqn (1), i.e. Newtonian or 
quasi-Newtonian methods[ 12,131, and since / is generally a nonlinear function of {i/} and {q}, 
it is useful to provide a linear approximation of eqn (I).  

Thus, after a linearization of the left-hand side around a given state vector {Y}, the following 
expression is derived: 

'~ 8{Y}r{?} dt + 8{y}r[~-] .X{Y} dt = 6{Y}r{p 
/ ! 

(2) 

where the local tangent matrix [K] is defined as 

[g i7;71 [ /  ilql ] 
IK] = ( [ /  q//l + [ Q i l l ) ( [ / q q ]  + [Qq]) ' 

in which (/itgl],  [ / i lq] ,  [ / q q ] .  [Qil] and [Qq] indicate second and first derivatives with respect 
to the suffixes. In eqn (2) both 8{Y} and A{y} are synchronous infinitesimal changes of  the state 
vector {Y}. It is now easy to apply a finite element approximation to the linearized HWP as 
expressed by eqn (2). For this purpose we define the nodal vector 

{ x F  = [ {q ,F ,  {/~:F . . . . .  {qF} . . . . .  { ¢ , - , F }  

in which each vector {qK} represents the value of the generalized coordinates at the time nodes 
tt = tl, tz . . . . .  tK . . . . .  tv-~ -= tF, that specify the finite element. In each element, the state 
vector {Y} is interpolated among the nodal values {X}, of the element itself, i.e. an appropriate 
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partition of {X}. through suitable shape functions Ill as it follows: 

{r}= t, q {x},, = [ m ]  
LlflJ 

Thus eqn (2) assumes the following variational form: 

~{xF ({~} + [21a{x} - {B}) = 0, 
where 
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(3) 

{B} T = [ - { P : F ,  0 . . . . .  0 . . . . .  0 ,  { p , , . , i q ,  

and {L} and [K] are obtained through the FEM assembling process performed on the corre- 
sponding element matrices 

{L}~ = f [Nit0} dt, 
d, - £  [KI = [NT[KI[N dt. 

The variational statement eqn (3) can be used for solving both initial and periodic boundary 
problems. In the first case 5{X} is completely free, and this implies 

121±{x} = {e} - g} .  (4) 

This set of linearized equations can be solved for the N +  1 unknown vectors {p,,_,} and 
~{q~-} (k=2 ,3  . . . . .  N +  1), by making A{qt} = 0, in order to reflect the imposition of the 
initial conditions on {qt} and {Pt}. In the second case, i.e. when we enforce the periodicity 
constraints, 

{q.v+,} = {q,}, {P.v+,} = {P,}, 

assuming a period r = tr - tt, we simply have 5{x}r{B} = 0. Then from eqn (3) we obtain 

{Z} + [kl±{X} = o, (5) 

where the matrix [Kkand the vector {L} are obtained by folding the (N+ l)th row and column 
on the first ones of [K] and ILl. Then eqn (5) can be directly solved for the N unknown vectors 
{qA}, (K = 1,2 . . . . .  N). 

S T A B I L I T Y  ANALYSIS  OF PERIODIC PROBLEMS 

In the linearized stability analysis of any periodic solution {X}, eqn (3) can be used in the 
following form: 

[K]a{X} = A{B}, (6) 

where [K] is the tangential matrix, computed at the solution, and A{X}, A{B}, are the perturbations 
of the solution and of the boundary conditions. 

Equation (6) can be partitioned as follows: 

fK°ol IKo.l-l.f.,{x°}l 
ix , . ,  E x , . , , j t a { x , , } ,  = 

(7) 

where A{Xa} r = [A{q,}r,A{q,v+,}r] is the analysis set of unknowns and A{B,} r = [ - A{p,}r.A{p,._ i} r] 
is the related boundary term, while A{X,,} r = [A{q:} r . . . . .  A{qv} r] corresponds to the omitted 
set. 
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From eqn (7) we have: 
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A {Xo} = - [Xo,.l- ' [ X,,,I .1{X.}. (8) 

([K~,,] -[K,oI[K,,,,I-'[K,,.,I)MX,} = ,.X{&}. (9) 

The coefficient matrix of eqn (9) can be further partitioned as 

[x,,] [x,.,4J I .a{qbJ [ a{p}FJ' (10) 

where the subscripts 1 and F denote the initial and final time nodes, respectively. At last eqn 
(10) can be rearranged in the following form: 

&{q}F]. = [ [KFF][Ktr]-' [K~,] - [KF~'[KtF]-'[Ku]] ~A{q}tl 
aLo},j -[X1,]-' -[K,,]-'[Kz,] la },J ' 

( l i )  

in which the coefficient matrix is an approximation of the Floquet transition matrix of the 
periodic problem. As in FIoquet theory, we look for homogeneous solutions of eqn (11) of the 
type 

A{q}r], = h[A{q }z], 

l a {p } , J  • 

which leads to an eigenvalue problem that can be directly solved[ 14] in the range of the highest 
X of interest. The eigenvalues h and the corresponding eigenvectors [A{q} r, ,X{p}rlr are in general 
pairs of complex conjugate ones. Moreover, an approximation A{X} of the complete eigenso- 
lution {q(t)} at nodal time points can be obtained, remembering that A{X} r = [A{X,} r, A{X,,}r], 
with the solution of eqn (8), by making A{X,} = [A{q}/, hA{q}tl, with A{q}z and h taken from 
the eigensolution under consideration. Equation (10) can be interpreted as finite difference 
equations of the state variables A{q}l, A{p}l and A{q}r, 3.{p}F at the beginning and at the end 
of each period, since for periodic solutions, the tangent matrix is constant irrespective of the 
period. Therefore, for the period following the one considered in eqn (10), we have 

[K,,] [K,~-] ] .J"A{q},.t -&{P}'+' l 
[KM [KMJ LA{q}..,} = { A{p}~-+,J' (12) 

and since the relations 

A{p},+, = A{p}F ' 

A{q}¢+, = A{q}t.z 
13) 

must hold for the continuity of the solution, we obtain the following finite difference equauon: 

[KtFl~{q}t.,_ + ([Kttl + [KFF])dX{q},., + [Ketl~{q}t = O, (14) 

which entails a solution of the type 

A(q},+, = X A(q},. (15) 

By substituting eqn (15) into eqn (14), the following quadratic eigenvalue problem is obtained: 

(h"[K/rl + M[K,] + [KFF]) + [KF, I)A{q}, = 0. (16) 
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It is interesting to note that the eigenproblems of eqns (16) and (11) have the same eigenvalues, 
as it can be trivially proved by substituting the vector A{p}~ in eqn (11) with the linear relationship 

A{p}t = - ( k  [Ktr] + [K,]) A{q},. 

This approach to the analysis of the stability of periodic systems closely resembles the one of 
Floquet's method. In fact eqn (6) replaces the integration for n-independent sets of  initial 
conditions, i.e. the procedure usually adopted when the transition matrix cannot be obtained 
analytically[ 1,151. 

As it is well known[15], any fundamental solution of a linear system with periodic coef- 
ficients of period 'r is expressed as 

{q(t)} = e ~' {cO(t)}, (17) 

where {cO(t)} are periodic functions of the same period "r, and for a solution such as q(t +'r) = hq(t), 

13 is given by 13 = (l/ 'r)  Ink. When h is complex, the imaginary part of 13 is not uniquely 
determined, since a __.2n'rr can be added, n being an arbitrary integer. When this arbitrariness 
is removed by choosing n = 0, from eqn (17) we have 

{cO(t)} = p- ' : '  e -~°"* {q(t)}, (18) 

where p and 0 indicate the modulus and the principal argument of h( - ~ < 0 < ~). The nodal 
approximation A{X} of each eigensolution {q(t)} can now be used in eqn (18) to set N values 
of its periodic part {cO}: 

{,I ,F  = [{co,}L{co=F . . . . .  {coN}q. 

Provided that the period "r has been divided into an even number N of equal intervals, by means 
of time nodes tK = (K - I)'r/N (K = 1,2 . . . . .  N +  1), {c0(t)} can be approximated with a 
truncated Fourier series by using {~b} as sampling values. Therefore, the eigensolution {q(t)}, 
eqn (17), is available in the form 

{ q m t  = p "  Z e * ' ° ' ' "  ' "  {c,.}. I Ig)  
I g  

where the expansion coefficients are given by 

= ,, 

and 

(k- l)2rr/'r, 
COK = ( k -  1 -N)2"rr/'r, 

/20al 

for 1 -< K -< 1 + N / 2 ,  (20b) 
f o r l  + N / 2 < k < - N .  

When the interest is focused on limit stability, the sole eigenvalue analysis is required. In fact, 
stability is provided by the condition p -< 1, while any p > 1 denotes instability. Obviously a 
complete eigensolution analysis, carried out with eqn (19), provides more informations on the 
instability mechanisms themselves. Moreover, eqn (19) shows that the argument 0 acts as a 
frequency shift, and the indetermination of g2n,tr is meaningless, since for eqn (20) it corre- 
sponds to a redifinition of the integer K. Due to the finite sampling of  N values, the folding 
frequency limit to t = N'rt/'r must be taken into account[ 17]. Consequently, for a correct choice 
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of the number N of nodal points, a physical insight of the specific problem under investigation 
is necessary. It is important to note that the function ¢tt) is in general periodic, and not simply 
harmonic: therefore, the eigensolutions {q~t)} cannot be characterized by means of a single 
frequency. However, in many practical cases the periodic function q:It) is ~ell approximated 
by a single harmonic function, so that a single frequency characterization can be accepted in 
such cases. 

The approach illustrated above gets rid of all the troubles related to the solution of the 
indetermination of 4-2n'tr by physical insight or by continuous variation of a system parameter[ 1 ]. 
and it affords a reliable method to automatically decide when the frequency content of the 
eigensolution is purely harmonic. In fact. in such cases, a single coefficient C,. is numerically 
predominant in the series expansion, and its corresponding frequency co,. 4- 0/v is assumed as 
the characteristic frequency. Finally, some considerations have to be made about the different 
requirements that the numerical approximation must satisfy, depending on the t.', pe of problem. 
i.e. periodic solution or stability analysis, under consideration. 

In tact, the determination of the periodic response leads to the solution of a boundary value 
problem, in which only precision requirements are relevant: on the other hand, the study of the 
stability implies the solution of an initial value problem, in which both precision and stability 
consideration must be taken into account, if spurious numerical instabilities have to be avoided[ 111. 

N U M E R I C A L  E X A M P L E S  

The method here described can be applied to many classes of periodic problems[ I 1]. Here 
its use is demonstrated by two simple yet significant examples. The first one is concerned with 
the nonlinear periodic response of a fully articulated rigid blade, while the second refers to the 
"'ground resonance" stability analysis and the results compared with those of Ref. 18. 

In Fig. 1 a fully articulated rigid blade is sketched, and the significant dimensions of the 
rotor blade are given. The blade and the hub are assumed as rigid: nonlinearities and control 
couplings are taken into account by simulating the swashplate through the imposition of the 
inextensibility of the pitch linkrod. A quasi steady aerodynamic model and an uniform distri- 
bution of induced velocity are assumed. 

The flapping, drag and pitch angles are chosen as degrees of freedom I Fig. 2 ~. The pushrod 
inextensibility constraint has been imposed by means of a nodal collocation of each time node. 
and the pitch increment ~0 is eliminated, during Newton-Raphson iteration, bv solving 
the constraint relation at each time node of the finite element time discretization. Such elimination 
procedure has been preferred to the use of Lagrange's multipliers, which although more general. 
in this case, would have doubled the order of the system. 

The calculations are performed in steady flight conditions, and flight control settings are 
imposed by fixing swashplate location and rotation. 

Some results of this numerical application are here briefly discussed. 
If the array vector {q} represents the generalized coordinates of this problem, i.e. the flap. 

drag and pitch angle of the blade, then the velocity {V} of the centroid of any blade section in 
a reference frame rotating with the hub can be computed with the expression 

{v} = [Cl{q} + {k;}. 

where the matrix [C] is function of {q} and its analytical expression can be easily determined 
from Fig. 2. by means of simple trigonometric relationships and {V,} is the velocitv entrained 
by the hub. 

Taking into account only the translational kinetic energy of the blade. ~ e have 

f I T=-~I ~ m{V}r{V} dr = -~_ {#}qMl{O} ÷ {Z}~{O} - {T,,}. 
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Fig. I. Blade geometry. 

where 

[M] = m [c] r [c ]  dr ,  

{Z} = m {v,}r[cI dr, 

To = ~ m {v,}r{v,} dr. 

Thus the first and second derivatives of the kinetic energy T with respect to {q} and {//} can be 
easily computed from first and second derivatives of [C] and {V,}, once the rotor configuration 
and motion are known. The integrals with respect to the radial coordinate r are numerically 
computed by means of Gauss quadrature formulae. 

Making use of the well known blade element aerodynamic theory, the aerodynamic forces 
acting on each section have the form 

{F} = [A] {w}, 

where {w} is the airspeed of the section, and the matrix [A1 is a function of the profile aerodynamic 
coefficients and of {w}. 

Co;vmoL /NJv.~r ~ "  ~ 

fL.~PPING . 

Fig. 2. Rigid blade degrees of freedom. 
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Fig. 3. Convergence behaviour. 

Therefore, the generalized forces are given by 

f 
R 

{Q} = [C]r{F} dr. 
) 

and the computation of the derivatives {Q,~} and {QJ can be easily performed, once the rotor 
configuration and motion are assigned. 

The aerodynamic field induced by the rotor is approximated in a rather simple way by the 
Glauert relationship. 

The drag hinge is fitted with a linear viscous damper and the blade is assumed to possess 
a constant twist angle of one degree per meter. 

Parabolic shape functions and Gauss numerical quadrature formulae are used to obtain the 
element matrices for the finite element time discretization. 

The harmonic content of the solution suggests that six parabolic elements spanning the 
period of rotation can afford results of acceptable precision. Some numerical tests to check the 
convergence for finer and finer time discretization have confirmed the previous assumption. 

We will now show the results obtained in some calculation performed with no cyclic pitch 
and null rotor disc angle of attack. 

A typical way in which the rotor thrust T, torque C and the mean induced velocity converge 
to trimmed solutions, is shown in Fig. 3 versus the number of iterations. Figures 4-6  are related 
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Fig. 4. Blade angle of attack distribution thoveringl. 
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Fig. 5. Variation of the thrust, torque and induced velocity versus swash plate position. 

to trimmed hovering conditions, with a rotor speed of 385 rpm, and they show the behaviour 
of the same quantities, and of blade angle of attack, flap, leadlag and pitch motions versus the 
swashplate position H, labeled control setting. 

Finally Fig. 7 shows the motion of rotor blade and the angle of attack at 75% of the blade 
span axis at various azimuth angles. 

It is of some interest to remark that, even in presence of a severe stall of the retreating 
blade, the method has shown no difficulty in converging to the solution. The second numerical 
example concerns the analysis of the mechanical instability of the four bladed rotor taken from 
Ref. 18 and shown in Fig. 8. 

In order to compare the results, the mathematical representation is exactly the same as that 
previously studied in Ref. 18, and the same numerical values of the parameters are used in the 
present calculations. 

The referred test case has been solved with a finite element mesh which involved four 
azimuthal time elements, each having four nodes for a total of twelve nodes per revolution 
period. Floquet's transition matrix is evaluated by assembling the tangent matrix of each element 
which is numerically computed by means of four Gaussian integration points. This crude 
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Fig. 6. Flap. lead-lag and pitch angles vs swash plate position. 
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Fig. 7. Flap, lead-lag and blade angle of attack azimuth. 

approximation of only four time elements seems to be quite adequate for the present purposes 
and Fig. 9 shows the results for the non isotropic hub and one blade damper inoperative, 
compared with those of Ref. 18. The numbers attached to the different modes are used to 
provide a label for the various modes. These figures illustrate the variation of the real and 
imaginary part of the characteristic exponents as a function of the rotor speed; continuous curves 
refer the results of Ref. 18, while the present calculation are marked with black points. 

In particular the so-called modal damping is computed by (1/T) In p while the so-called 
modal frequency is the frequency corresponding to the highest Fourier expansion coefficient. 
It is convenient to note that in this case the eigensolution is mostly a harmonic function so that 
the modal frequency can be also computed as to = a tan -m (loak/Reh). 

It is noted that the results of this paper show the presence of an extra mode with respect 
to those of Ref. 18. In this mode the hub, the blade with an inoperative damper and its opposite 
blade do not oscillate so that the modal damping is simply one-half of the ratio of the lag 
damping to the mass moment of inertia, and obviously, it is independent to the rotor speed. 
For this mode the condition of one blade damper inoperative is ineffective. This mode is missed 
in Ref. 18 for this case, while it is present when all of the blade dampers are working. 

The conclusion to be drawn here is that even with the crude approximation of four elements, 
each spanning over a quarter of a period, a good agreement is obtained with the results of 
Ref. 18. 

Y~ 

~ , ~  V ~ I~q~i 

Im.-X 

Fig. 8. Mathematical representation of rotor and hub tfrom Ref. 181. 
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Fig. 9. Modal damping and frequencies for nonisotropic hub. one-blade damper inoperative. 

CONCLUSIONS 

The method presented proves to be a practical tool for the analyses of  nonlinear t r immed 

responses,  and related stability studies, of  helicopter rotors. Moreover ,  this method affords an 

unified approach to attack both periodic response, stability analysis and transient t ime history[ 1 1 ] 

due to a control excitat ion.  Since the explici ty deve lopment  of  the differential equat ions of  

motion is not required,  it leads to an automated and easy- to-check formulation.  Thus even 

systems with many degrees o f  f reedom,  as those required in rotor aeroelastic analyses,  could 

be effect ively  solved. A further advantage of  the method is the possibility of  exploi t ing the 

sound and wel l -known numerical  techniques already developed for different applications o f  the 

finite e lement  method.  
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