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With the global burden of mosquito-borne diseases increasing,

and some conventional vector control tools losing

effectiveness, the sterile insect technique (SIT) is a potential

new tool in the arsenal. Equipment and protocols have been

developed and validated for efficient mass-rearing, irradiation

and release of Aedines and Anophelines that could be useful for

several control approaches. Assessment of male quality is

becoming more sophisticated, and several groups are well

advanced in pilot site selection and population surveillance. It

will not be long before SIT feasibility has been evaluated in

various settings. Until perfect sexing mechanisms exist,

combination of Wolbachia-induced phenotypes, such as

cytoplasmic incompatibility and pathogen interference, and

irradiation may prove to be the safest solution for population

suppression.
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Introduction
The many pathogens transmitted by mosquitoes (Dip-

tera: Culicidae) which feed on the blood of humans in

order to mature their eggs are responsible for enormous

suffering worldwide. Annual deaths from malaria alone

number at least 600,000, up to 100,000 people contract

dengue each year, and Chikungunya causes severe

chronic joint pain in patients across the globe (World

Health Organization factsheet; URL: http://www.who.

int/mediacentre/factsheets/fs387/en/). Aside from caus-

ing mortality and morbidity, the economic and social

burden from these diseases is significant [65], particu-

larly in SubSaharan Africa (Multisectoral Action Frame-

work for Malaria; URL: http://reliefweb.int/sites/
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reliefweb.int/files/resources/Multisectoral-Action-

Framework-for-Malaria.pdf).

The pressure placed on humanity by these vectors is

increasing. Expansion of the distribution of several inva-

sive Aedes species such as Aedes albopictus [1] is evident in

many areas, including Europe [2,3] and USA [4]. Model-

ling and field experiments have predicted that Ae. albo-
pictus has the potential to invade large areas of Australia

[5] and urbanisation is increasing its abundance in China

[6]. With no effective vaccines or specific drugs to prevent

or treat mosquito-borne diseases, the best line of defence

is to combat the vector, to remove the contact between

mosquitoes and humans and thus interrupt the disease

transmission cycle. Effective mosquito control is hin-

dered by growing insecticide resistance of malaria [7]

and dengue vectors [8], even in regions only recently

invaded (e.g. [9]). There is therefore increasing demand

for complementary tactics that are effective, more sus-

tainable and friendly to the environment.

One such tactic could be the sterile insect technique (SIT),

which relies on the production and release of sufficient

sterile males to induce sterility in the wild females

which, over time, causes the target population to decline

(Figure 1). The SIT has no regulatory requirements and the

technique would be combined with others as part of an area-

wide integrated pest management (AW-IPM) approach to

reduce the vector population below the threshold required

for disease transmission. Sterilisation using ionising radia-

tion has been extremely effective and applied successfully

for population suppression, containment or eradication of

several major pest insect species [10].

Rather than sterilising males using irradiation, an alter-

native method is to exploit the natural phenomenon of

cytoplasmic incompatibility (CI). In most diplodiploid

species, CI is expressed as embryonic lethality after

matings between Wolbachia-infected males and uninfect-

ed females or females infected with a different Wolbachia
strain [11]. Proof-of-concept has been provided that CI

could be used to manage agricultural pests and disease

vectors through population suppression or replacement

approaches [12�,13,14]. CI-based population suppression

is known as the incompatible insect technique (IIT)

(Figure 1).

As the key mosquito disease vectors are all relatively

amenable to colonisation and rearing, and in many
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The sterile insect technique (SIT), incompatible insect technique (IIT) or a combination of the two could be used to suppress mosquito populations.

Male mosquitoes are sterilised either by the application of irradiation or (trans)infection with Wolbachia, or both, and then released into the target

population to sterilise the wild females.
situations the natural population densities are low, the

SIT, IIT, or a combination of the two are well suited for

their management. The advantages of combining these

tactics will be discussed in this review, alongside the

current state of the art for the two approaches. Much

progress has been made in recent years towards devel-

oping the required technology and methodology to bring

mosquito suppression using sterility to field application;

indeed pilot releases have begun in a number of sites

around the world. It should be mentioned, however, that

a number of other technologies have also been devel-

oped and are being tested in pilot trials including RIDL

(Release of Insects carrying a Dominant Lethal) and

Wolbachia-based population replacement strategies.

However, it is beyond the scope of this review to discuss

these approaches, and they have recently been reviewed

elsewhere [13,15].

Developing the sterile insect technique
against mosquitoes
After a period of enthusiasm in the 1960s to early 1980s

[16], the use of sterile male release for mosquito control

was largely abandoned. However, the growing pressures
www.sciencedirect.com 
from mosquito-borne pathogens described above, and the

proposed use of modern biotechnologies to sterilise or

otherwise alter mosquitoes, have led to revived interest in

recent years.

In the last decade, the Joint FAO/IAEA Programme and

their collaborators have been the main drivers for the

development of the ‘‘SIT package’’ for mosquitoes.

Requests from many countries to develop and evaluate

the SIT for use against mosquitoes have spurred the

development and ongoing validation of mass-rearing

equipment, diet and protocols for Anopheles and Aedes
species. Diets have been optimised to feed the larval stages

of An. gambiae [17], An. arabiensis [18], An. stephensi [19] and

Ae. albopictus [20]. Anopheles larvae can be mass-reared

efficiently in large trays fitted into a novel tilting rack

system [21,22], and the system is being validated for Aedes
species. Anopheline pupae can be separated from larvae

based on differential buoyancy using custom vortex equip-

ment [23], or the Fay-Morlan separator used for Aedes [24],

quantified volumetrically, and allowed to emerge into

adult mass-rearing cages [25]. Blood meals are offered to

females using a modified hemotec membrane feeder and
Current Opinion in Insect Science 2015, 10:156–162
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water is added to the cage floor for oviposition [26]. Eggs

are flushed from these cages and can be quantified ([27] for

Aedes, Maiga et al., personal communication for Anopheles),
stored and hatched effectively [28] to give a reliable

quantity of eggs and so a predictable larval density in

rearing trays.

A method to accurately separate males from females on a

large scale, crucial for the required male-only release, is

still required [29], particularly for Anopheles, which do not

have the sexual dimorphism that allows the sexing of

Aedes on a small-medium scale [24,30�]. A method to spike

blood meals with Ivermectin [31] is a reasonable stop-gap

solution. This requirement for sex separation applies for

all mosquito suppression methods based on release, in-

cluding those described below. The methods for radia-

tion–sterilisation of mosquitoes have long been available,

developed alongside those for many other target species,

but have more recently been revisited to optimise doses

[32–34], and to assess the use of X-rays as an alternative

for gamma irradiation [35,36].

Progress in SIT field application
The vanguard in reviving the use of the SIT against

mosquitoes was an Italian group [37] who released around

1000 irradiated Ae. albopictus pupae per hectare per week,

inducing up to 68% sterility in the target populations in

three pilot sites of between 16 and 45 ha [38�]. Releases

continued for 5 years, and demonstrated the potential of

sterile males to suppress an Ae. albopictus population.

The importance of quality management of sterile mos-

quito males to ensure adequate performance and com-

petitiveness after release is evident from examples in

other species [39]; the estimation and quantification of

the impact of mass-rearing, radiation and handling on

male mating competitiveness of sterile males has

attracted a lot of research. Semi-field and field experi-

ments have demonstrated that a radiation dose can be

selected that gives sufficient sterility without significantly

impacting competitiveness [40,41,42�]. With this reassur-

ance, several vector control groups, supported by the

FAO/IAEA, are conducting preparatory activities and

initiating pilot trials that include the SIT.

The first step in assessing the SIT in a given context is to

select proper pilot sites, which should have a manageable

size, a low mosquito population density and a good level

of geographical or biological isolation, among other crite-

ria reviewed in Malcolm et al. [43] and Brown et al. [44].

Two such sites have been identified by the Ministry of

Health and Quality of Life in Mauritius [45], where they

have also completed the second preparatory step, the

long-term surveillance of the Aedes albopictus natural

population using ovitraps and BG-Sentinels to trap adults.

A project in La Réunion has progressed to a similar stage

[46]. A good understanding of the biology, dynamics and
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distribution of the male population in the target area is

crucial to properly plan the releases and to monitor their

effect. Although several effective traps exist for male

Aedes surveillance, male Anopheles are much more difficult

to monitor.

In Sudan, the target species, An. arabiensis, is contained

along a narrow strip on either side of the River Nile, and

surveillance has demonstrated temporal variations of

population densities that were overall low [47]. Further,

mark-release-recapture  experiments have demonstrat-

ed the ability of radiation-sterilised males to locate and

participate in naturally occurring swarms, or to start new

swarms [42�]. Encouraged by these data, small-scale

releases have started, and construction of a mass-rearing

facility is scheduled to supply the sterile mosquitoes for

suppression trials. A project in South Africa, targeting

An. arabiensis, is at a similar stage of advancement [48].

A coordinated research project (CRP) is being initiated

by the FAO/IAEA (‘‘Mosquito Handling, Transport,

Release and Male Trapping Methods’’) to support

these projects in developing and validating suitable

methods for releasing sterile male mosquitoes and

surveying the target population before, during and after

suppression trials (http://www-naweb.iaea.org/nafa/ipc/

index.html).

With these pieces in place, the whole SIT package for

mosquitoes is coming closer to full scale field trials, and it

is expected that within a very few years multiple feasi-

bility studies in a range of settings and against a number of

species will have been completed and have demonstrated

the effectiveness and applicability of the technique

against these disease vectors.

Incompatible insect technique: an additional
tool and its potential combination with the
sterile insect technique for population
suppression
About 50 years ago Wolbachia-induced CI as a tool to

suppress natural populations of Culex pipiens fatigans was

used for the first time [49]. During the last few years there

have been significant developments, both in the labora-

tory and in the field, towards the use of IIT for population

suppression of mosquito vectors. There are also self-

sustaining Wolbachia-based approaches that target popu-

lation replacement with CI-inducing and pathogen-

blocking strains; however the applicability, effectiveness

and sustainability of this strategy require more studies

[13,50].

Wolbachia-infected lines of Culex pipiens quinquefasciatus
were selected and tested in laboratory cages for CI

expression and population suppression of four natural

populations originating from four islands: Grand Glor-

ieuse, Mauritius, Mayotte and La Réunion [51�,52�]. The

results of these trials were very promising, indicating that
www.sciencedirect.com
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C. p. quinquefasciatus males infected with the Wolbachia
strain wPip(Is) were fully incompatible (100% CI) with

females from the four islands of the south-western Indian

Ocean [51�]. As a next step, semi-field experiments were

run showing that the wPip(Is) males were: (a) able to

induce complete CI in La Réunion field females and (b)

fully competitive against field-collected males to mate

with field-collected females [52�]. Similar IIT-based pilot

trails were implemented against Aedes polynesiensis, with a

proof-of-concept pilot trial in the Society Islands [53,54],

and an ongoing field trial in French Polynesia (Bossin,

personal communication).

New Wolbachia infection and CI types have been devel-

oped for one of the major dengue vectors, Aedes albopictus
[55]. One of the lines, ARwP, is infected with a wPip

strain which naturally occurs in Culex pipiens. Mating

experiments have shown that ARwP males exhibited full

CI with uninfected females or naturally double-infected

females (wAlbA and wAlbB), suggesting that this strain

could in principle be used for population suppression.

The use of ARwP (wPip) males to suppress naturally

double-infected (wAlbA and wAlbB) Ae. albopictus popu-

lations would be advantageous if there was complete CI

between these strains, to minimise the risk from any

accidental release of wPip-infected females. However a

recent study showed that crosses between males with low

wAlbA density and ARwP females were partially fertile

[56]. This finding suggests that the accidental release of

wPip-infected ARwP females may jeopardise a popula-

tion suppression programme by instead causing popula-

tion replacement. Thus IIT application will require a fail-

proof sexing method so that it could be used as a tactic to

suppress populations of mosquito vector species in a way

similar to the SIT.

The requirement for perfect separation of males and

females prior to release, discussed above, is particularly

important for IIT because the accidental release of

females may result in the loss of IIT and render a

population suppression programme into population re-

placement. A possible strategy to manage this risk is to

combine SIT and IIT (Figure 1) [14,53,57,58]. A strategy

combining a low radiation dose to ensure female sterility

(SIT), and IIT is being initiated against Ae. albopictus. A

triple-infected line (wAlbA, wAlbB and wPip) was shown

to be completely incompatible with double-infected

(wAlbA and wAlbB) lines as well as providing protection

against dengue (Xi, unpublished data). No significant

negative impact of the triple infection on several fitness

traits could be measured [59], though the time required

for immature development was significantly reduced in

males compared to females, a finding which could be

explored for sex separation.

Until recently, Anopheles species were considered to

be Wolbachia-free. However, Wolbachia was recently
www.sciencedirect.com 
detected in a natural population of Anopheles gambiae in

Burkina Faso [60]. The wAlbB strain was recently trans-

ferred from Ae. albopictus to Anopheles stephensi creating a

new stable transinfected line expressing complete CI,

produced for population replacement strategies, but po-

tentially effective for population suppression [13]. Taken

together, these data suggests that Anopheles species are not

‘‘resistant’’ to Wolbachia infection and that IIT could also

be used for population suppression of Anophelines.

Conclusion
In response to the growing interest and demand for the

development and application of the SIT, with possible

combination with the related IIT against mosquito vec-

tors, significant advances have been made in developing

the required equipment and protocols for rearing, ster-

ilising and assessing the quality of male Aedes and Anophe-
les mosquitoes. Most of the pieces are thus in place for the

technique to be validated in suppression programmes on a

small scale, and in several different settings the prelimi-

nary work of site selection, population surveillance, up-

scaling of rearing and quality control is well advanced.

Before large scale releases are feasible, however, more

efficient and less labour intensive methods are needed for

transporting and releasing male mosquitoes into the field,

as well as more effective methods for monitoring pro-

gramme progress, particularly for Anopheles species. These

are fairly simple design and engineering questions, which

some time and careful evaluation in the field will be able

to address in due course. The other major challenge is the

development of an accurate sex separation method which

can be applied on a large scale, which may require more

sophisticated developments [29]. Until perfect sexing is

available, the combination of SIT and IIT could be used

to ensure that any unintentionally released Wolbachia-

infected females would be sterile. In addition, Wolbachia
transinfection may provide protection against the estab-

lishment, replication and/or transmission of Plasmodium,

also eliminating the risk of disease transmission

[13,14,61]. Once these remaining pieces are in place,

sterile male release programmes hold great promise for

control of mosquito vectors, particularly in urban areas

where the human population to be protected is concen-

trated.

The effects of any genetic manipulation on the robust-

ness and competitiveness of male mosquitoes in an open

field setting is difficult to know before release. It is likely

that genetic modification will have an impact [62], though

the extent of the effect will be strain-specific. Wolbachia
transinfection may or may not negatively impact mosqui-

toes [59,63], and may not interrupt disease transmission.

With the application of radiation it is possible to adapt the

dose to induce an adequate level of sterility whilst mini-

mising the effect on male performance. The random

mutations and gross gonad damage caused by irradiation
Current Opinion in Insect Science 2015, 10:156–162
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[16] eliminate the risk of resistance, which is a major

problem with insecticide use, and potentially with genet-

ic control measures [64]. Finally, in circumstances where

there is public or regulatory opposition to the use of

genetically modified organisms, release of fertile Wolba-
chia-infected females for population replacement, or ge-

neric insecticides, the SIT and the SIT–IIT combination

offer an acceptable alternative. It is hoped that the

effectiveness of these techniques can be demonstrated

in the near future, and if proved effective, another pow-

erful tool will have been added to the limited arsenal

available for use against mosquito-borne diseases.
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Dabiré RK, Diabaté A, Levashina EA, Catteruccia F: Evidence of
natural Wolbachia infections in field populations of Anopheles
gambiae. Nat Commun 2014, 5:3985.

61. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT,
Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M,
Current Opinion in Insect Science 2015, 10:156–162 
Hugo LE et al.: A Wolbachia symbiont in Aedes aegypti limits
infection with dengue, Chikungunya, and Plasmodium. Cell
2009, 139:1268-1278.

62. Marrelli MT, Moreira CK, Kelly D, Alphey L, Jacobs-Lorena M:
Mosquito transgenesis: what is the fitness cost? Trends
Parasitol 2006, 22:197-202.

63. Yeap HL, Mee P, Walker T, Weeks AR, O’Neill SLO, Johnson P,
Ritchie SA, Richardson KM, Doig C, Endersby NM, Hoffmann AA:
Dynamics of the ‘‘popcorn’’ Wolbachia infection in outbred
Aedes aegypti informs prospects for mosquito vector control.
Genetics 2011, 187:583-595.

64. Alphey N, Bonsall MB, Alphey L: Modeling resistance to genetic
control of insects. J Theor Biol 2011, 270:42-55.

65. Shepard DS, Undurraga EA, Betancourt-Cravioto M,
Guzmán MG, Halstead SB, Harris E, Mudin RN, Murray KO,
Tapia-Conyer R, Gubler DJ: Approaches to refining estimates
of global burden and economics of dengue. PLoS Negl Trop
Dis 2014, 8:e3306.
www.sciencedirect.com

http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0605
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0605
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0605
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0605
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0610
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0610
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0610
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0615
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0615
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0615
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0615
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0615
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0620
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0620
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0620
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0620
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0625
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0625
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0625
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0625
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0625
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0630
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0630
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0630
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0635
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0635
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0635
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0635
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0635
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0640
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref0640
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref1
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref1
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref1
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref1
http://refhub.elsevier.com/S2214-5745(15)00090-5/sbref1

	Back to the future: the sterile insect technique against mosquito disease vectors
	Introduction
	Developing the sterile insect technique against mosquitoes
	Progress in SIT field application
	Incompatible insect technique: an additional tool and its potential combination with the sterile insect technique for popu...
	Conclusion
	References and recommended reading
	Acknowledgements


